

REMEDIAL INVESTIGATION REPORT AND REMDIAL ACTION WORK PLAN

Former Camden Laboratories Property

1667 Davis Street City of Camden Camden County, New Jersey Block 1392 Lot 33

NJDEP PI No. 016718

NJDEP Case No. 08-07-01-1547

woodardcurran.com

0230198.01 Camden Redevelopment Agency October 2019

TABLE OF CONTENTS

SEC	ECTION PAGE		
1.	INTRODU	JCTION	1-1
	1.1 1.2	NJDEP Regulations and Guidance	
2.	SITE LOC	2-1	
	2.1 2.2 2.3	Site Location and Description Former Site Use Current Site Use	2-1
3.	PHYSICAL SETTING		
4.	3.1 3.2 3.3	Topography and Drainage Soils and Geology Hydrology RY OF AOCS AND PREVIOUS INVESTIGATIONS/REMEDIATIONS	3-2 3-2
4.	4.1	AOC-1: Former Aboveground Storage Tank	
	4.1 4.2 4.3	AOC-2: Former Underground Storage Tanks (USTs)	4-2 4-3
	4.4 4.5	AOC-4: Building C Floor Drains	4-3
	4.5 4.6	AOC-5: Suspected Septic System (North of Building 1/F)	4-4 4-4
	4.7	AOC-7: Incinerator	4-5
	4.8 4.9	AOC-8: Transformers	
	4.9 4.10	AOC-9: Stalling	
	4.11	AOC-11: Hydraulic Lift System	4-7
	4.12	AOC-12: NJDEP Case No. 97-02-21-1440-39	
	4.13 4.14	AOC-13: NJDEP Case No. 98-11-20-1919-54AOC-14: Regional Ground Water Contamination	
	4.15	AOC-15 Conductive Area	
	4.16	AOC-16: Mercury Spill	
	4.17 4.18	AOC-17: Unknown Liquid in Sumps/Vaults	
5.		AL OVERVIEW	
٥.	5.1	Geophysical Investigation	
	5.2	Additional Assessments	
	5.3	Soil Investigation Activties and Results	
	5.4	Groundwater Investigation Activities and Results	
6.	RECEPTOR EVALUATION		
	6.1	Land Use Assessment	
	6.2	Ground Water Assessment	
	6.3 6.4	Vapor Intrusion Assessment Ecological Evaluation	
		u	= .

7.	RELIABILITY OF DATA		7-23
	7.1	Data Usability Assessment	
	7.2	Representativeness Evaluation	7-24
8.	CONC	8-1	
	8.1	AOC-1: Former AST / AOC-12: NJDEP Case No. 97-02-21-1440-39	
	8.2	AOC-2: Former Underground Storage Tanks (USTs)	
	8.3	AOC-3: Storage Containers	
	8.4	AOC-4: Building C Floor Drains	
	8.5	AOC-5: Suspected Septic System (North of Building 1/F)	
	8.6	AOC-6: Building 6/B Drywell	
	8.7	AOC-7: Incinerator	
	8.8	AOC-8: Transformers	
	8.9	AOC-9: Staining	8-4
	8.10	AOC-10: Compressor Blowdown	
	8.11	AOC-11: Hydraulic Lift System	
	8.12	AOC-13: NJDEP Case No. 98-11-20-1919-54	8-6
	8.13	AOC-14: Regional Ground Water Contamination	8-6
	8.14	AOC-15 Conductive Area	8-7
	8.15	AOC-16: Mercury Spill	8-8
	8.16	AOC-17: Unknown Liquid in Sumps/Vaults	8-9
	8.17	AOC-18: Soil Pile	8-9
9.	REMEDIAL ACTION WORK PLAN		9-11
	9.1	Excavation of Contaminated Soils in AOC-16	9-11
	9.2	Post-Excavation Soil Sampling	
	9.3	Excavation Restoration	
	9.4	Permitting and Plans	
	9.5	Remedial Action Report	
	9.6	Remedial Action Implementation/Schedule	
10.	VARIANCES10-		10-13
11	REFE	RENCES	11-14

LIST OF TABLES

Table 1: Summary of Soil Sampling Results for AOC-1
 Table 2: Summary of Soil Sampling Results for AOC-5
 Table 3: Summary of Soil Sampling Results for AOC-11
 Table 4: Summary of Soil Sampling Results for AOC-16
 Table 5: Summary of Soil Sampling Results for AOC-18

Table 6: Ground Water Sampling Results – August & October 2018

LIST OF FIGURES

Figure 1: USGS Site Location Map Figure 2: Site Plan with AOCs

Figure 3: Soil Sampling Locations and Results for AOC-1 and AOC-11

Figure 4: Soil Sampling Locations and Results for AOC-5
Figure 5: Soil Sampling Locations and Results for AOC-16
Figure 6: Soil Sampling Locations and Results for AOC-18

Figure 7: Ground Water Contours – August 2018
Figure 8: Ground Water Contours – October 2018

Figure 9: Ground Water Sampling Locations and Results (August & October 2018)

APPENDICES

Appendix A: Supporting Documents

Appendix B: Geophysical Survey Report

Appendix C: Regional GroundWater Evaluation
Appendix D: Supporting Documents for AOC-15

Appendix E: Photo Log

Appendix F: Soil Boring Logs

Appendix G: SPLP Calculators for AOC-16
Appendix H: Monitoring Well Doccumentation

Appendix I: Disposal Doccumentation
Appendix J: Field Sampling Forms
Appendix K: Receptor Evaluation
Appendix L: Laboratory Reports

1. INTRODUCTION

This Remedial Investigation (RI) Report and Remedial Action Work Plan (RAWP) has been prepared by Woodard & Curran on behalf of Camden Redevelopment Agency (CRA) to document the investigation activities conducted at the Camden Laboratories property located at 1667 Davis Street, Camden, Camden County, New Jersey (herein referred to as the "Site") and present CRA's proposed remedial action for the Site based on same. The RI Report documents the findings of investigations conducted to date for Areas of Concern (AOCs) located within the subject property and the RAWP provides a narrative description of the proposed remedial strategy to address contaminated soils. This document is intended to meet the RI and RAWP reporting requirements specified in the New Jersey Department of Environmental Protection (NJDEP) Technical Requirements for Site Remediation, New Jersey Administrative Code (N.J.A.C.) 7:26E.

Woodard & Curran conducted RI activities at the Site on behalf of CRA between January 2018 and January 2019. The investigations conducted during this time period are primarily related to soil impacts identified at the Site during the SI conducted by others and potential impacts to ground water. The RI included the following activities:

- Assessment of potenital impacts related to various storage containers identified at the Site (AOC-3);
- Soil investigation to evaluate potential impacts associated with the suspected septic system (AOC-5);
- Soil investigation to evaluate potential impacts associated with the hydraulic lift (AOC-11);
- Evaluation of known regional ground water contamination and potential impacts to the Site (AOC-14);
- Soil investigations to characterize the nature and extent of mercury impacts to soil and potential impacts to ground water (AOC-16); and
- Evaluation of potential impacts related to unknown liquids in sumps/vaults identified at the Site (AOC-17).

The scope of work discussed herein was developed based on the findings of previous investigations conducted by others and in accordance with the Remedial Investigation Work Plan (RIWP) dated July 28, 2017 prepared by TRC Environmental (TRC).

1.1 NJDEP REGULATIONS AND GUIDANCE

The RI was conducted in accordance with N.J.A.C. 7:26E. The requirements include determining the nature and extent of contamination both on and off-site, determining potential impacts to receptors, and collecting sufficient information to select possible remedial actions.

The applicable soil and ground water remediation standards for this Site include the following:

- New Jersey Non-Residential and Residential Direct Contact Soil Remediation Standards (NRDCSRS/RDCSRS) listed at N.J.A.C. 7:26D;
- New Jersey Default Impact to Ground Water Soil Screening Levels (IGWSSL) established in December 2008.
 Pursuant to NJDEP's Frequently Asked Questions for the Impact to Ground Water Pathway in Soil
 Remediation Standards, the default IGWSSL only pertain to soils within the unsaturated zone (i.e. above the
 water table); and
- New Jersey Class IIA Ground Water Quality Standards (GWQS) listed at N.J.A.C. 7:9C.

1.2 REPORT ORGANIZATION

This RI Report and RAWP presents the information specified in Sections 4.9 and 5.5 of the Technical Requirements for Site Remediation (N.J.A.C. 7:26E) and is organized as follows:

- Section 1: Introduction and overview of the SI/RI and RAWP;
- Section 2: Description of the site location and a summary of the site history;
- Section 3: Description of the physical setting of the site and subject area;
- Section 4: Summary of AOCs and historical investigations/remediations;
- Section 5: Technical overview for Woodard & Curran's assessments, field investigations, and associated findings;
- Section 6: Updated receptor evaluation;
- Section 7: Data reliability evaluation;
- Section 8: Conclusions and recommendations;
- Section 9: Narrative description of the RAWP;
- Section 10: Summary of variances; and
- Section 11: List of referenced documents.

This report has been prepared and/or reviewed and accepted by the Licensed Site Remediation Professional (LSRP) of record, Mark Pietrucha – LSRP Identification Number 573898. The NJDEP Program Interest Number for the Site is 016718 and the NJDEP Case No is 08-07-01-1547.

2. SITE LOCATION AND HISTORY

2.1 SITE LOCATION AND DESCRIPTION

The Site is a vacant property located at 1667 Davis Street in the City of Camden (Camden County), New Jersey. According to City of Camden tax mapping, the tax lot is identified as Block 1392, Lot 33. The Site covers approximately 3.9 acres. The center of the Site is located at approximately 39° 51' 24.47" north latitude and 75° 05' 49.88" east longitude (NJ State Plane Coordinates = 324,608.12 east; 397,563.58 north). The property is bound to the north and west by residential properties, to the south by Whitman Park, and to the east by Davis Street beyond which is Dr. Charles E. Brimm Medical Art School and industrial and commercial facilities.

Figure 1 presents the approximate Site location on the United States Geological Survey (USGS) Topographic Map, and Figure 2 presents the approximate Site boundary and locations of Site AOCs on available web based aerial imagery.

2.2 FORMER SITE USE

The Site was originally developed for use in the early 1920's as the City of Camden Municipal Hospital for Contagious Diseases. In the 1950's, the Site became the South Jersey Medical Research Foundation Laboratory and Coriell Institute for Medical Research (CIMR). Between the 1950's and 1980's, the original hospital buildings were demolished and replaced over the course of multiple phases with the laboratory buildings located at the Site through the summer of 2018, when all buildings and structures were demolished. The Site was purchased by Camden Laboratories, LP in 1989 and operated as a series of medical laboratories including Viro-Med Biosafety and Quality Bio-Tech until 2007 at which time the property was vacated.

2.3 CURRENT SITE USE

In order to facilitate remedial actions and future property redevelopment, all Site buildings were demolished in the summer/fall of 2018. The property is currently vacant and undeveloped.

3. PHYSICAL SETTING

3.1 TOPOGRAPHY AND DRAINAGE

As shown on Figure 1, the regional topography near the Site is relatively flat and slopes to the southeast with an average elevation of approximately 22 feet above mean sea level. Prior to demolition in 2018, the majority of the Site was covered with impervious surfaces including buildings, asphalt parking areas, and/or concrete walkways. Storm water runoff was controlled via a series of catch basins on the property and directed east, off-site toward the city stormwater management system. Currently, all buildings have been razed and the property is vegetated. The closest named surface water body, the Cooper River, is located approximately 0.5 miles to the east-northeast of the Site.

3.2 SOILS AND GEOLOGY

According to the Natural Resource Conservation Service (NRCS) Web Soil Survey¹ database for Camden County, New Jersey, the entire Site is comprised of Urban Land (UR), which includes surfaces covered by pavement, concrete, buildings, and other structures underlain by disturbed and natural soil material. Investigations conducted to date indicate that the shallow subsurface is generally characterized by silty sands and clay.

According to the geologic information obtained from the NJDEP GeoWeb website², the Site lies within the Coastal Plain and is underlain by the Cape May formation. The Cape May formation is defined as sand, pebble gravel, minor silt, clay, peat, and cobble gravel; very pale brown, yellow, reddish yellow, white, olive yellow, gray. As much as 200 feet thick on the Cape May peninsula, generally less than 50 feet thick elsewhere."

3.3 HYDROLOGY

Based on investigations conducted to date, ground water in the overburden is encountered at depths typically ranging from 15 to 16 feet below ground surface (bgs) and flows in a southerly direction. The closest named surface water body, Cooper River, is located approximately 0.5-miles to the east-northeast of the Site.

¹ www.http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey

² http://www.nj.gov/dep/gis/geowebsplash.htm

4. SUMMARY OF AOCS AND PREVIOUS INVESTIGATIONS/REMEDIATIONS

Environmental assessments, investigations, and/or remediations have been conducted by others at the Site since 1989. These historical assessments, investigations, and/or remediations were primarily related to the closure of three (3) fuel oil underground storage tanks (USTs) and soil impacts identified at the Site. A detailed description of the assessments, investigative activities and associated results were previously submitted to the NJDEP in the following reports:

- August 2008 Preliminary Assessment /Site Investigation (PA/SI) Report, prepared by CMX;
- August 2008 Remedial Action Work Plan (RAWP), prepared by CMX;
- October 2008 Remedial Action Report (RAR), prepared by CMX; and
- February 2009 Supplemental Site Investigation (SSI) Report, prepared by CMX.

Under the pre-LSRP case oversight program, NJDEP provided a response to the August 2008 PA/SI Report and RAWP in a Notice of Deficiency (NOD) dated December 3, 2008. These assessments, investigations, and/or remediations identified a total of 21 AOCs at the Site. The following narrative description summarizes the AOCs located within the Site and associated findings of investigations/remediations conducted by others. AOC locations are presented on Figure 2. A copy of the reports identified above along with the December 2008 NOD are provided in Appendix A of this report.

4.1 AOC-1: FORMER ABOVEGROUND STORAGE TANK

One (1) 275-gallon diesel aboveground storage tank (AST) was historically located south of Building 6/B. The AST was used to service an outdoor emergency generator. The AST was reportedly vandalized resulting in a diesel fuel spill to the surface. As a result, the NJDEP was contacted and the spill was assigned Case No. 97-02-21-1440-39. During the 2007 site inspection, CMX noted that the AST and generator were located on a concrete slab surrounded by asphalt. Based on this information, CMX recommended no further investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a Notice of Deficiency (NOD) on December 3, 2008. The NOD required investigations to be conducted to evaluate potential impacts associated with the vandalized AST. In December 2008 CMX advanced three soil borings to investigate the potential for subsurface impacts. Three soil samples were collected and analyzed in accordance with the analytical protocols specified in Table 2-1 of N.J.A.C. 7:26E at the time of sampling including Total Petroleum Hydrocarbons/Diesel Range Organics (TPH-DRO) with contingency Volatile Organic Compounds (VO/VOC) analysis for 25% of the samples with TPH-DRO reported at concentrations exceeding 1,000 mg/kg. TPH-DRO was reported at concentrations exceeding 1,000 mg/kg for two of the three samples; however, all targeted VOC compounds were not detected or reported at concentrations below their respective NJDEP Soil Remediation Standard (SRS) and/or the default IGWSSL. Based on this information, CMX proposed no further investigation of this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

The current analytical protocols for investigation of diesel fuel discharges specified in Table 2-1 of N.J.A.C. 7:26E require contingency analysis of naphthalene and 2-methylnaphthalene on 25% of soil samples where Extractable Petroleum Hydrocarbons (EPH) exceeds 1,000 mg/kg. Due to absence of naphthalene and 2-methylnaphthalene in the analytical protocol of previous soil sampling, additional soil investigations were conducted during the RI. These activities and associated findings are presented in Section 5.3 of this report.

4.2 AOC-2: FORMER UNDERGROUND STORAGE TANKS (USTS)

Three (3) No. 2 fuel oil USTs (AOC-2A, AOC-2B, and AOC-2C) were formerly located at the Site and utilized to fuel generators and/or boilers associated with facility operations. AOC-2A was a 6,000-gallon UST located northwest of Building B, AOC-2B was a 6,000-gallon UST located off the southern corner of Building C, and AOC-2C was a 2,000gallon UST located west of Building A. Based on a review of available documents, UST closure activities were conducted in 1989, at which time the facility systems were converted from mixed-use (fuel oil and natural gas) to entirely natural gas. According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., UST closure activities included the removal and off-site disposal of the UST systems and post-removal soil sampling. The tanks were reportedly found to be in good condition when removed. Five postremoval soil samples were collected from each excavation as follows: four soil samples were collected from the east. north, south and west ends of the UST excavation area; and, one post-excavation soil sample was collected from the bottom of the excavation area. All post-excavation soil samples were analyzed in accordance with N.J.A.C. 7:26E, Table 2-1 analytical protocol No. 2 fuel oil discharges in effected at the time of sampling (TPH with contingency VOC analysis). TPH was not detected or reported at concentrations below the NJDEP Health Based Criterion for Total Organic Contaminants (TOCs) at the time of sampling (10,000 mg/kg) and/or the 1,000 mg/kg threshold for contingency VO+10 analysis for all samples. Based on this information, CMX recommended no further investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. The NOD required additional investigations be conducted in AOC-2 to confirm the findings associated with the 1989 post-closure sampling results. CMX conducted additional investigations at each former UST location in December 2008. These activities and associated findings and presented in the AOC narrative sub-sections below.

4.2.1 AOC-2A: Former 6,000-Gallon Fuel Oil UST (Southwest of Building B)

CMX advanced four (4) soil borings along the centerline of the UST excavation to a maximum of 12 feet bgs. Soil samples were collected to match the frequency required at the time of UST closure described in N.J.A.C. 7:26E at the time the investigation was conducted (one sample for every five (5) linear feet of the UST). Based on this frequency and typical lengths for 6,000-gallon USTs (15 to 20 feet), CMX collected four (4) soil samples (Tank2-1 through Tank2-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. With the exception of soil sample Tank2-2, all the soil samples were collected at a depth of 11.5-12.0 feet bgs. Tank2-2 was collected at a depth of 9.5-10.0 feet bgs due to boring refusal encountered at 10.0 feet bgs. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four (4) soil samples collected; therefore, contingency VO+10 analysis was not performed. Based on this information, CMX proposed no further investigation of this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

Based on the information presented above, no further investigation is recommended for this AOC.

4.2.2 AOC-2B: Former 6,000-Gallon Fuel Oil UST (South of Building C)

CMX advanced four (4) soil borings along the centerline of the UST excavation to a maximum of 12 feet bgs. CMX collected soil samples to match the frequency required at the time of UST closure described in N.J.A.C. 7:26E at the time the investigation was conducted (one (1) sample for every five (5) linear feet of the UST). Based on this frequency and typical lengths for 6,000-gallon USTs (15 to 20 feet), CMX collected four (4) soil samples (Tank1-1 through Tank1-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. Soil samples were collected at 11.5-12.0 feet bgs. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of

sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four (4) soil samples collected; therefore, contingency VO+10 analysis was not performed. Based on this information, CMX proposed no further investigation of this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

Based on the information presented above, no further investigation is recommended for this AOC.

4.2.3 AOC-2C: Former 2,000-Gallon Fuel Oil UST (West of Building A)

CMX advanced four soil borings along the centerline of the UST excavation for Tank-3 to a maximum of twelve feet (12') bgs. CMX collected soil samples to match the frequency required at the time of UST closure described in N.J.A.C. 7:26E at the time the investigation was conducted (i.e. one sample for every five linear feet of the UST). Based on this frequency and typical lengths for 2,000-gallon USTs (i.e. 10 to 12 feet), CMX collected four soil samples (Tank3-1 through Tank3-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column; therefore, the soil samples were collected at the six-inch (6") interval 11.5-12.0' bgs. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four soil samples collected; therefore, contingency VO+10 analysis was not performed. Based on this information, CMX proposed no further investigation of this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

Based on the information presented above, no further investigation is recommended for this AOC.

4.3 AOC-3: STORAGE CONTAINERS

At the time of CMX's 2008 PA inspection, several storage containers were observed within the former freezer room of Building B including four 55-gallon drums of muriatic acid and five 55-gallon drums of caustic soda. Several empty 55-gallon drums, five-gallon containers and a one-gallon paint container were also observed within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Based on this information, CMX recommended no further investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that all storage containers should be removed and disposed off-site and disposal receipts provided.

Based on the information presented above, additional assessments were conducted as part of the RI. These activities and associated findings are presented in Section 5.2 of this report.

4.4 AOC-4: BUILDING C FLOOR DRAINS

Building C was the southernmost structure of the six (6) buildings previously located at the Site. This one-story building contained equipment for the former cleaning and sterilization of animal cages. At the time of CMX's 2008 PA inspection, all equipment appeared in good condition with no staining or cracks on the floor. Based on discussions with personnel, CMX concluded that the equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority (CCMUA) sewer. Based on this information, CMX recommended no investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-4.

Based on this information presented above, no further investigation is recommended for this AOC.

4.5 AOC-5: SUSPECTED SEPTIC SYSTEM (NORTH OF BUILDING 1/F)

Based on a review of available information, a cesspool was once utilized at the Site. According to information provided in 2008 by the prior owner of the property, Martin Manco, a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, Mr. Manco could not provide any additional details regarding the possible cesspool. Based on this information, additional assessments and/or investigation were conducted by CMX and discussed below.

In April 2008, CMX conducted a geophysical survey in the area of the suspected cesspool. An anomaly indicative of a 10,000-gallon subsurface tank was identified in the eastern portion of the Site adjacent to Building F. A second anomaly believed to be a discharge pipe was identified at a location directly north of the suspected septic tank. The first anomaly, believed to be the subsurface septic tank, and the suspected discharge pipe were situated approximately 15 feet to the east of the building. Based on these findings, CMX advanced two (2) soil borings (SB-6 and SB-7) in the vicinity of the suspected septic system. The soil boring locations were selected following completion of the geophysical survey described above. One (1) soil boring was advanced at the suspected downgradient side of the septic tank. An additional soil boring was advanced at the terminus of the discharge pipe. The soil borings were advanced to 16 feet bgs utilizing direct push drilling equipment. The soil borings were field screened with a photo-ionization detector (PID) for the presence of organic vapor. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch interval at the suspected invert of the septic tank (5.5-6.0 feet bgs) or immediately above the observed groundwater table (13.5-14.0 feet bgs). One soil sample was collected from each soil boring at a depth of 5.5-6.0 feet bgs and 13.5-14.0 feet bgs (SB-6 and SB-7, respectively). The soil samples were analyzed for Priority Pollutants (PP+40) and TPH by NJDEP Method OQA-QAM-025, Rev.6 (TPH-QAM). All PP+40 and TPH-QAM compounds were not detected or reported at concentrations below their respective most stringent NJDEP SRS and/or IGWSSL for samples SB-6 and SB-7. Based on this information, CMX recommended no further investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-5.

In order to confirm the absence/presence of the septic system, additional assessments and investigations were conducted during the RI. These investigations and associated findings are presented in Sections 5.1 through 5.3 of this report.

4.6 AOC-6: BUILDING 6/B DRYWELL

Building 6/B was formerly located in the central section of the Site and the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained offices and animal quarters on the first floor and laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. At the time of the CMX 2008 PA inspection, the pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to historical reports, the boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. Historical reports indicate that the drywell utilized for collection of Building B boiler blowdown was removed; however, no closure documentation was identified.

In April 2008, CMX advanced one (1) soil boring adjacent to the drywell. One (1) soil sample (SB-5) was collected from the boring and analyzed for TPH-QAM. TPH-QAM was reported at a concentration (22.8 mg/kg) well below the current NJDEP Health Based Criterion for TOCs (10,000 mg/kg). In addition, CMX installed a temporary well point (TWP-1) at this location and collected a grab ground water sample for analyses of VOC with a forward library search (VO+10) and base neutral (BN) compound with a forward library search (BN+15). All VO+10 and BN+15 compounds were not detected or reported at concentrations below their respective New Jersey Ground Water Quality Standard

(NJGWQS). Based on this information, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-6.

In order to comply with the protocols prescribed in the Technical Requirements for Site Remediation (N.J.A.C. 7:26E), in January 2009, CMX advanced a duplicate boring (SB-5 DUP) and collected one (1) additional soil sample (SB-5 DUP) to investigate this AOC. The soil boring was advanced to a maximum of 16 feet bgs utilizing direct push drilling equipment. The soil boring was field screened with a calibrated PID and logged. No staining or odors were observed in the soil boring column; however, slightly elevated PID readings were encountered at depths between 7-15 feet bgs. One soil sample was collected from the boring at the six-inch interval of greatest observed contamination based on PID readings (10.0-10.5 feet bgs). The soil sample was analyzed for PP+40. All targeted compounds were not detected or reported at concentrations below their respective most stringent direct contact SRS and/or IGWSSL. Based on this information, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report, prepared by CMX; however, there is no record of a response from NJDEP.

Based on the information presented above, no further investigation is recommended for this AOC.

4.7 AOC-7: INCINERATOR

According to historical reports, an incinerator was used for the disposal of dead laboratory animals. Reportedly, incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. CMX did not observe an incinerator during the site reconnaissance. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-7.

Based on the information presented above, no further investigation is recommended for this AOC.

4.8 AOC-8: TRANSFORMERS

Two (2) electric transformers were observed at the west exterior of the power house (Building 4/D). Previous reports prepared by other indicate the transformers were dry-type, air-cooled equipment and did not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. At the time of CMX's 2008 PA inspection, the transformers were in fair condition and situated on concrete. No staining or stressed vegetation was observed at the ground surface beneath any of these transformers. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-8.

Based on the information presented above, no further investigation is recommended for this AOC.

4.9 AOC-9: STAINING

During CMX's 2008 PA inspection staining was observed on concrete surfaces in three (3) buildings (Building 2/A, 4/D, and 1/F). Building 2/A was formerly located within the northern most section of the compound and comprised of a first floor and basement. Building 2/A contained a boiler room and water filtration tanks in the basement. Building 4/D was the western most structure and comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building 4/D. Building 1/F was the eastern most structure and consisted of a ground floor and

basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The ground floor contained administrative offices and an auditorium. This building contained former laboratories and offices on both floors. Below is a summary of findings associated with assessments conducted by CMX.

4.9.1 AOC-9A: Building 2/A Staining

During CMX's 2008 PA inspection, the pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information, with the exception of the Building 6/B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building 1/F and then to the CCMUA sewer. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9A.

Based on the information presented above, no further investigation is recommended for this AOC.

4.9.2 AOC-9B: Building 4/D Staining

Heavy staining of the concrete surface was noted beneath the generators; however, the floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report prepared by CMX.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9B.

Based on the information presented above, no further investigation is recommended for this AOC.

4.9.3 AOC-9C: Building 1/F Staining

Minor staining was observed on the concrete floor in the mechanical room during CMX's 2008 PA inspection; however, the floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9C.

Based on the information presented above, no further investigation is recommended for this AOC.

4.10 AOC-10: COMPRESSOR BLOWDOWN

According to historical reports, refrigeration compressors were previously located at the northeast exterior of Building 6/B on open ground showing some slight staining of surrounding soils. CMX indicated that no stained soils were observed in this area during the 2008 PA inspection. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-10.

Based on the information presented above, no further investigation is recommended for this AOC.

4.11 AOC-11: HYDRAULIC LIFT SYSTEM

A concrete pad that formerly contained an aboveground hydraulic lift was observed in the loading dock area at the southern side of Building 6/B. No evidence of a discharge from the hydraulic lift system was noted during CMX's 2008, PA inspection. The property owner at the time (Mr. Manco) indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities.

CMX advanced three (3) soil borings (SB-3 through SB-5) in April 2008 to investigate potential impacts associated with the hydraulic lift system. Two (2) soil borings were advanced along the southern perimeter of the concrete pad associated with the hydraulic lift system. An additional soil boring was advanced adjacent to a round anomaly of unidentified origin located to the southeast of the hydraulic lift system. Soil borings were advanced to a depth of sixteen 16 feet bgs utilizing direct push drilling equipment. Soil borings were field screened with a PID for the presence of organic vapor and logged. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, soil samples were collected from each boring the six-inch interval immediately above the observed groundwater table. Samples SB-3 and SB-5 were collected from a depth of 13.5 to 14.0 feet bgs. Sample SB-4 was collected from a depth of 14.5-15.0 feet bgs. In accordance with the analytical protocols for hydraulic oil specified in Table 2-1 of N.J.A.C. 7:26E at the time the investigation was conducted, all soil samples were analyzed for TPH-QAM with contingent Polyaromatic Hydrocarbon (PAH) analysis (where TPH-QAM is reported at a concentration exceeding 100 mg/kg). TPH-QAM was not detected or reported at concentrations below the NJDEP PAH contingency threshold of 100 mg/kg for samples SB-3 through SB-5; therefore, contingency PAH analysis was not performed.

In addition, one ground water grab sample was collected adjacent to SB-5. The ground water grab samples were collected via a temporary well point (TWP-1) and analyzed for VO+10 and BN+15. All targeted compounds were not detected or reported at concentrations below their applicable NJDEP GWQS. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-11.

As part of site demolition activities, the hydraulic lift was removed on January 17, 2019. Upon removal, a small area of staining (approximately 1-foot by 1-foot) was observed beneath the concrete structure surrounding the lift; therefore, additional assessments/investigations were conducted in AOC-11 as part of the RI. These investigations and associated findings are presented in Section 5.3 of this report.

4.12 AOC-12: NJDEP CASE NO. 97-02-21-1440-39

AOC-12 is co-located with AOC-1. The AST historically located south of Building 6/B (AOC-1) was reportedly vandalized resulting in a surface diesel fuel spill to the surrounding asphalt. As a result, the NJDEP was contacted and the spill was issued Case No. 97-02-21-1440-39. During the 2007 site inspection, CMX noted that the AST and generator were located on a concrete slab surrounded by asphalt. Based on this information, CMX recommended no further investigation of this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. The NOD required investigations be conducted to evaluate potential impacts associated with the vandalized AST. In December 2008

CMX advanced three soil borings to investigate the potential for subsurface impacts. Three soil samples were collected and analyzed in accordance with the analytical protocols specified in Table 2-1 of N.J.A.C. 7:26E at the time of sampling including TPH-DRO with contingency VOC analysis for 25% of the samples with TPH-DRO reported at concentrations exceeding 1,000 mg/kg. TPH-DRO was reported at concentrations exceeding 1,000 mg/kg for two of the three samples; however, all targeted VOC compounds were not detected or reported at concentrations below their respective NJDEP SRS and/or the default IGWSSL. Based on this information, CMX proposed no further investigation of this AOC. These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

The current analytical protocols for investigation of diesel fuel discharges specified in Table 2-1 of N.J.A.C. 7:26E require contingency analysis of naphthalene and 2-methylnaphthalene on 25% of soil samples where Extractable Petroleum Hydrocarbons (EPH) exceeds 1,000 mg/kg. Due to absence of naphthalene and 2-methylnaphthalene in the analytical protocol of previous soil sampling, additional soil investigations were conducted as part of the RI. These activities and associated findings are presented in Section 5.3 of this report.

4.13 AOC-13: NJDEP CASE NO. 98-11-20-1919-54

Based on the findings of the PA, CMX reported the Site was identified in the NJ Spills Database under NJDEP Case No. 98-11-20-1919-54. The EDR report indicated that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. The Camden County Department of Health (CCDOH) provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of the Viro Med Biosafety facility (with address 1667 Davis Street, Camden), on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. Based on these findings, CMX recommended no further investigation for this AOC. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-13.

Based on the information presented above, no further investigation is warranted for this AOC.

4.14 AOC-14: REGIONAL GROUND WATER CONTAMINATION

Previous reports and historical documents reviewed as part of CMX's August 2008 PA suggested chlorinated VOC impacts to ground water have migrated from the neighboring RF Products site to ground water beneath the Camden Laboratories Site. NJDEP directed ground water investigations to assess the north and east adjacent RF Products site as a potential source of impacted ground water within the Camden Parkside Wellfield. The NJDEP investigations indicated chlorinated solvents (specifically TCE) exceeded NJDEP GWQS beneath the RF Products site and the Camden Laboratory Site. NJDEP concluded that RF Products is a source of regional ground water contamination and the impacts have migrated to the Camden Laboratories Site property. Based on these findings, CMX recommended no further investigation for this AOC; however, CMX recommended that future site improvements will need to consider vapor intrusion mitigation measures. These findings were presented to the NJDEP in the August 2008 PA/SI Report.

In response to the August 2008 PA/SI Report, the NJDEP issued a NOD on December 3, 2008. In the December 2008 NOD, the NJDEP indicated that the matter had been provided to the NJDEP's geologist for consideration. In addition, the NJDEP requested a site map depicting all AOCs, sample locations, and construction details of the septic systems, dry well, and hydraulic lift.

In response to the December 2008 NOD, CMX reviewed available files and information generated through site assessments and/or investigations including but not limited to a geophysical investigation, soil and ground water

sampling, and files obtained from local and state agencies. Based on a review of this information, CMX concluded that chlorinated VOC impacts to site ground water were attributed to the RF Products site and not related to on-site operations. CMX recommended no further investigation of this AOC. These findings along with a site map depicting the information requested by the NJDEP was included in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

Based on recommendations provided by others, additional assessments were conducted for this AOC during the RI to confirm previous findings. These assessments and associated findings are presented in Section 5.2 of this report.

4.15 AOC-15 CONDUCTIVE AREA

The April 2008 geophysical survey performed by CMX identified a large conductive area measuring approximately 50 feet by 75 feet within the western grassed portion of the site. In an effort to evaluate the potential impacts associated with this feature, CMX advanced two (2) soil borings (SB-8 and SB-9) at the perimeter of the conductive area identified. Soil borings were advanced along the east and west flank of conductive area and extended to a depth of 16 feet bgs. The soil borings were field screened with a PID for the presence of organic vapor and logged. Ash-like material was encountered in each of the borings within the upper foot of the soil column. No indications of impact (i.e. odors, staining, elevated PID readings) were observed and groundwater was not encountered. A soil sample was collected from each soil boring at a depth of 0.5 to 1.0 feet bgs and 0.75 to 1.25 feet bgs to characterize the ash-like material (SB-8 and SB-9, respectively). Both soil samples were analyzed for PP+40 and TPH-QAM. Copper and lead were reported in one soil sample (S-8) at concentrations exceeding the NJDEP soil standards at the time of sampling (Residential Direct Contact Soil Cleanup Criteria [RDCSCC/NRDCSCC]). Copper was reported above the RDCSCC/NRDCSCC of 600 mg/kg in SB-8 at 1,380 mg/kg. Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg and the NRDCSCC of 600 mg/kg in S-8 at 667 mg/kg. All other targeted compounds were not detected or reported at concentrations below their respective most stringent NJDEP SCC for samples SB-8 and SB-9.

In June 2008, CMX re-mobilized to the site in an effort to further characterize the conductive ash-like material and determine the horizontal boundary and vertical limits of this material. CMX advanced sixteen (16) soil borings (AM-1 through AM-16). Soil borings AM-1 through AM-6 were advanced on the site. Soil borings AM-7 through AM-16 were advanced off-site on the adjacent property immediately to the south (Whitman Park). Ash-like material was encountered in eleven (11) of the sixteen (16) soil borings advanced. Based on conditions observed during the soil boring investigation, CMX concluded the majority of the ash-like material was located on the south adjacent Whitman Park property and extends off-site to the west beneath Hallowell Avenue and onto the site.

With the exception of soil borings AM-6 and AM-16, all soil borings were advanced to a depth of four (4) feet bgs. Since soil borings AM-6 and AM-16 were advanced in an area which exhibited a large change in topography, these borings were advance to a depth of eight (8) feet bgs. A total of sixteen (16) soil samples were collected and analyzed for copper and lead. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg). Copper and lead were reported at concentrations below their respective most stringent NJDEP SCC for all other samples collected. Based on this information, CMX concluded that the horizontal and vertical extent of copper and lead impacted ash material had been delineated and that the area of impacted material on-site was limited to an approximate 3,750 square-foot area. These findings were presented to the NJDEP in the August 2008 PA/SI Report. Concurrent with this submittal, CMX prepared and provided a RAWP to the NJDEP in August 2008. The RAWP detailed the proposed excavation and off-site disposal of impacted soil identified in AOC-15. These activities and associated findings are presented below.

In September 2008, the ash-like material was excavated and staged adjacent to the excavation on plastic. Ash-like material encountered ranged between 16 and 24 inches thick. The final excavation was extended vertically to three feet bgs, and approximately 167 tons of material were disposed offsite at an approved beneficial re-use facility. As the

final excavation was 3,750 square feet in size, CMX collected ten (10) sidewall samples (PE-1 through PE-10) and five (5) bottom samples (PE-11 through PE-15) to be analyzed for copper and lead. Copper and lead were not detected or reported at a concentration below their respective most stringent NJDEP DCSRS for all post-excavation samples. The excavation area was backfilled with certified clean fill material. Based on these findings, CMX recommended no further action of this AOC. In the December 2008 NOD, the NJDEP indicated that no further remediation was required for AOC-15.

Woodard & Curran conducted a review of analytical data provided in historical reports and determined while copper and lead had been remediated to concentrations below their respective RDCSRS, several lead concentrations reported for investigation and/or post-excavation soil samples exceed the current NJDEP IGWSSL of 90 mg/kg. Based on this information, additional assessments were conducted for this AOC during the RI. These assessments and associated findings are presented in Section 5.2 of this report.

4.16 AOC-16: MERCURY SPILL

In April 2004, the NJDEP measured elevated levels of mercury in air while installing an on-site weather station tower. Elevated levels of mercury were measured by the NJDEP's air monitoring equipment while excavating soils for the tower foundation. At the time, the NJDEP's opinion was that the mercury air readings identified in soil along the western perimeter of the NJDEP air monitoring station may be the result of a mercury surface spill; therefore, additional investigation of soils in this area was requested by NJDEP. These investigative activities were conducted by CMX between December 2008 and January 2009. A summary of these activities and associated findings are presented below.

CMX conducted a soil boring investigation of the potential mercury surface spill area between December 2008 and January 2009. CMX advanced sixteen (16) soil borings to depths ranging between four (4) feet bgs and twenty-five (25) feet bgs. Soil borings were field screened using a calibrated Lumex and/or Jerome mercury analyzer. Elevated mercury vapor readings were observed throughout a majority of the soil borings advanced; however, elevated mercury vapor readings diminished at the extent of each soil boring. CMX collected soil samples from each of the soil borings corresponding with elevated vapor mercury readings and/or visual indications of mercury contamination (i.e. dark purple staining). Where mercury vapor readings were recorded for multiple intervals, multiple soil samples were collected and analyzed. In addition, CMX collected soil samples from each soil boring at the six-inch interval where no indications of impact were identified in order to horizontally and vertically delineate the mercury contamination. Analytical results reported mercury at a concentration exceeding the RDCSRS of 23 mg/kg and/or the NRDCSRS of 65 mg/kg for subsurface soil samples M-1 (3,700 mg/kg), M-1A (2,100 mg/kg), M-2B (82 mg/kg), M-2D (81 mg/kg), M-5A (34 mg/kg) and M-6B (36 mg/kg). Mercury was not detected or reported at concentrations below the NJDEP SRS for all other soil samples collected. Based on this information, CMX concluded mercury impacts to soil in AOC-16 were delineated to the RDCSRS but not delineated of the default IGWSSL. CMX estimated that the area of mercury RDCSRS exceedance is twenty-four (24) feet in length by thirty-four (34) feet in width and extends to a depth of twentythree (23) feet bgs. The volume of mercury impacted soils is estimated to range from 500 to 700 cubic yards (approximately 750 to 1050 tons). These findings were presented to the NJDEP in the February 2009 SSI Report; however, there is no record of a response from NJDEP.

Based on the information presented above, additional investigations were conducted at this AOC during the RI. These investigations and associated findings are presented in Section 5.3 of this report.

4.17 AOC-17: UNKNOWN LIQUID IN SUMPS/VAULTS

During a December 6, 2016 site walk conducted by others, two (2) sub-grade, liquid-filled vaults/sumps in the basement levels of Building 1/F (Sump -1) and Building 6/B (Sump-2) were identified. In addition, during building demolition, a third sump (Sump-3) was identified with the footprint of Building 5. At one location (Sump-1) the sump lid was mounted

with large pumps. These units may have been part of the facility fire suppression system or may have been sump pumps to prevent groundwater infiltration into these building spaces.

Based on the information presented above, additional assessments and/or investigations were conducted for this AOC during the RI. These assessments/investigations and associated findings are presented in Section 5.2 of this report.

4.18 AOC-18: SOIL PILE

During the commencement of building demolition activities in 2018, a soil pile was observed in the western portion of the property. The soil pile measured approximately 25-feet (length) by 25-feet (width) by 8-feet (height) and consisted of primarily dark ground medium grain sands with some vegetation mixed in. Based on discussions with representatives of the current property owner, the source of the pile was unknown.

Based on the information presented above, additional assessments and/or investigations were conducted for this AOC during the RI. These assessments/investigations and associated findings are presented in Section 5.3 of this report.

5. TECHNICAL OVERVIEW

In an effort to characterize select AOCs and further characterize the nature and extent of soil impacts identified at the Site, Woodard & Curran conducted assessment and/or investigative activities from January 2018 through June 2019. Assessments included an evaluation of existing data and/or information related to select AOCs to determine compliance with NJDEP Rules, Regulations, and/or Guidance. Investigation activities included a geophysical survey, soil investigations, and ground water investigations. These activities were conducted in accordance with the NJDEP's Field Sampling Procedures Manual (FSPM), dated August 2005 and/or the NJDEP Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil, dated March 2015. A summary of these assessments and/or investigations and the associated findings are presented in the sections below.

5.1 GEOPHYSICAL INVESTIGATION

Prior to intrusive investigative activities, Master Locators (ML) performed a geophysical survey at the Site in February 2018. The purpose of the survey was to scan for and mark out all locatable utilities/anomalies within the property boundaries. More specifically, the purpose was to identify anomalies consistent with USTs and/or private utilities located on the Site.

ML utilized Electromagnetic (EM) and Ground Penetrating Radar (GPR) technology to perform the subsurface investigation with the following equipment:

- Profiler EMP-400 manufactured by GSSI;
- A6 Tracer manufactured by Aquatronics (split box);
- RD 8000 Digital Locator manufactured by Radiodetection; and
- Noggin SmartCart with 250MHz GPR antenna manufactured by Sensors and Software.

Profiler scans were completed throughout the scan area on the non-vegetated pathways and paved areas to depict relative conductivity. During data collection, the instrumentation must always remain level and close to the ground. Therefore, portions of the Site with heavy vegetation and debris at the ground surface were unable to be surveyed.

The Profiler is an EM induction tool that emits user selected frequencies ranging between 1,000 Hz to 16,000 Hz. The EM fields produced by these frequencies are measured for soil conductivity. These scans were georeferenced using an internal GPS antenna. All Profiler data was saved for post processing via Surfer Pro software.

Inductive EM scans were then performed with the A6 Tracer using a 118 kHz frequency. Inductive EM data was collected at 10' spacing in both the x and the y directions. The A6 Tracer scans were performed to identify any potential metallic objects within the scan area.

Electromagnetic scanning was performed to trace all conductive utilities which were visually evident within or adjacent to the scan area. This included both active and inactive methods of locating with the RD 8000 Digital Locator. Active and inductive scans were performed on various frequencies ranging from 8 kHz to 200 kHz. Passive scans were performed on a 60 Hz frequency.

GPR scans were performed with a 250 MHz antenna. GPR data was collected at 10' spacing in both the x and the y directions. During the scanning process, the GPR operator continuously monitored the imaging results displayed for indications of anomalies below the ground surface. Any anomalies detected were investigated further to identify the target, if possible.

As part of ML's work, all lines and other subsurface anomalies identified were marked out with paint in preparation of drilling activities. ML identified two (2) anomalies that required further investigation. The first area included a non-linear, metallic anomaly that was observed in the area northeast of Building 1/F. This anomaly was identified in an area consistent with the suspected septic system tank (AOC-5). A second non-linear, metallic anomaly was identified in close proximity to an unknown non-linear feature southwest of Building 5/C. This anomaly was identified in close proximately to a former Heating Oil UST (AOC-2B). A copy of ML's Engineering Report which documents the findings of the geophysical survey is provided in Appendix B.

Based on the information presented above, additional assessments and/or investigations were conducted. These activities and associated findings are discussed in Sections 5.2.1 (AOC-2B) and Section 5.3.2 (AOC-5) below.

5.2 ADDITIONAL ASSESSMENTS

As discussed in Section 4, based on a review of previous reports submitted to the NJDEP, additional assessments were conducted in the following AOCs:

- AOC-2B: Former 6,000-Gallon Fuel Oil UST (South of Building C);
- AOC-3: Storage Containers;
- AOC-14: Regional Groundwater Contamination;
- AOC-15: Conductive Area; and
- AOC-17: Unknown Liquids in Vaults.

These assessments and associated findings are presented in the sections below.

5.2.1 AOC-2B: Former 6,000-Gallon Fuel Oil UST (South of Building C)

During the site-wide geophysical survey, a non-linear metallic anomaly was identified southwest of Building 5/C. Because this anomaly was identified in close proximately to a former Heating Oil UST (AOC-2B) exploratory test pit activities were conducted. On January 17, 2019, several test pits were excavated in the area of the anomaly. The test pits were excavated to depths ranging from approximately eight (8) to ten (10) feet bgs. While several pieces of scrap metal were observed within the test pit areas, no UST was identified. Photos taken to document conditions during the test pit activities are provided in the photograph log in Appendix C.

Based on the information presented above, no further action is recommended for this AOC.

5.2.2 AOC-3: Storage Containers

Several chemical containers of various sizes, mostly empty but some containing liquid, were observed within the Site buildings and exterior grounds. The various containers were collected and properly disposed of by the demolition contractor (Ambient). In order to evaluate potential impacts associated with these materials, Woodard & Curran conducted a site inspection of the areas following removal. The inspection was conducted in December 2018 and included a visual observation of the areas following removal. At the time of Woodard & Curran's inspection, no visual evidence of staining or other impacts to the environment was observed.

Based on the information presented above, no additional investigation is recommended for this AOC.

5.2.3 AOC-14: Regional Groundwater Contamination

Previous reports suggest chlorinated VOC impacts to ground water have migrated from the neighboring RF Products site beneath the Camden Laboratories Site. Based on this information, Woodard & Curran conducted a review of files obtained from the NJDEP for the nearby former RF Products Site (PI No. 015474). A summary of key findings associated with this file review as they pertain to the Camden Labs property are presented below. Supporting documentation is provided in Appendix C.

- The NJDEP conducted an Unknown Source Investigation related to the Parkside Well Contamination in 2007. This investigation included the collection of one (1) ground water grab sample (RF-14) on the northeastern portion of the Camden Labs Property. Results from this sample identified TCE at a concentration of 13.77 ug/l.
- One ground water monitoring well (MW-23A) associated with the RF Products investigation was installed on the northeast portion of the Camden Labs property in August 2011. Subsequent ground water samples collected from MW-23A have not identified TCE (or any other targeted VOCs) at concentrations exceeding the NJDEP GWQS.
- While ground water sampling results for MW-23A have been non-detect for TCE, the iso-concentration contour
 maps provided in the RF Products RIR dated August 2013 suggest ground water impacts from the RF
 Products Site have migrated beneath the Camden Labs property.

This information coupled with on the iso-concentrations shown on figures provided in RF Products August 2015 RIR, suggest that ground water impacts related to the RF Products may extend beneath the northern portion of the Camden Labs Site.

Based on the information presented above, no further investigation is recommended for this AOC; however, should redevelopment include construction of a habitable structure, a vapor intrusion assessment and potentially vapor intrusion mitigation measures may be recommended. Regardless, redevelopment of the property should take into consideration potential impacts associated with vapor intrusion.

5.2.4 AOC-15: Conductive Area

As previously discussed, a review of historical data indicates that soil excavation activities conducted in AOC-15 have effectively remediated areas around soil samples with reported lead and/or copper results at concentrations exceeding the NJDEP RDCSRS; however, these remedial activities did not address some soil samples that contained lead at concentrations exceeding the NJDEP IGWSSL (90 mg/kg). The SESOIL model was used to calculate an AOC-Specific Impact to Ground Water Soil Remediation Standard (IGWSRS) for lead in accordance with the NJDEP "Using the SESOIL Transport Model to Assess the Impact to Ground Water pathway" guidance document (SESOIL guidance). SESOIL is a one-dimensional vertical transport model used to determine long-term fate and transport of Contaminants of Concern (COCs) through various vadose zone processes. SEVIEW 7.1, developed by Environmental Software Consultants, Inc., was used to apply the SESOIL model to soil sample data for AOC-15.

SEVIEW 7.1 uses five files for input parameters into the SESOIL model. Climate, chemical, soil, wash load, and application files provide very specific properties to configure a Conceptual Site Model. For the purposes of this RI, and based on the SESOIL guidance, the sediment wash-load inputs were not used in the evaluation.

The pre-loaded SEVIEW 7.1 climate files contain monthly climate data such as air temperature, cloud cover, relative humidity, albedo, precipitation, etc. These data are based on National Oceanic and Atmosphere Administration (NOAA) 30-year averages. The climate file for Camden, New Jersey was used as the input for the SESOIL model and was not altered from default SEVIEW values.

Chemical properties are provided in the NJDEP "Chemical Properties for Calculation of Impact to Ground Water Soil Remediation Standards" document (Chemical Properties Table). In accordance with the SESOIL guidance, the water solubility was set to 100,000 milligrams per liter (mg/l) and Henry's Law constant and diffusion coefficients were set to zero. The soil adsorption for lead was set to 900 L/kg based on the Chemical Properties Table.

Soil data files used in SEVIEW 7.1 include the parameters of bulk density, intrinsic permeability, soil pore disconnectedness, effective porosity, and organic carbon content. The default SESOIL soil type (sand) was used for the AOC. The soil bulk density was set to 1.5 grams per cubic centimeter, the cation exchange capacity was set to zero, soil pH was kept at 7.0, and the Freundlich exponent was set to 1 as required by SESOIL guidance. In addition,

intrinsic permeability, soil pore disconnectedness, and effective porosity were changed to reflect the characteristics of sand provided by SESOIL guidance.

The SEVIEW 7.1 application file contains the necessary input parameters to describe the soil profile and contaminant load for the SESOIL model. The soil profile is determined by the load area (source area), the site latitude, the number of layers, the layer thickness, the number of sub layers per layer, and the selection of an instantaneous or continuous load. One-foot sub layers were used based on the SESOIL guidance and the release type was set to instantaneous. Sixteen one-foot sublayers were used to represent the average depth to ground water of 16 feet bgs. Post-excavation soil sampling results were evaluated as shown in Appendix D (Table D1), to identify the maximum soil concentration corresponding to each model sublayer. The maximum soil concentration of lead in the 1 to 2 feet bgs sublayer was found to be 150 mg/kg. Concentrations above and below the 1 to 2 feet bgs sublayer were found to be below the default IGWSSL of 90 mg/kg; therefore, model input concentrations for all other sublayers were set to zero mg/kg.

The SESOIL model was run for a 100-year test analysis period in accordance with the requirement for immobile chemical presented in the SESOIL guidance. The model results show that lead will not reach the water table within 100 years, therefore, no exceedance of the leachate criterion will occur, and the observed soil concentration profile does not pose an Impact to Ground Water threat. The observed concentration of 150 mg/kg can be used as an alternative AOC-Specific Impact to Ground Water Soil Remediation standard for the 1 to 2 feet bgs interval. SESOIL Output files are provided in Appendix D.

Based on the information presented above, no further action is recommended for this AOC.

5.2.5 AOC-17: Unknown Liquids in Vaults

During a December 6, 2016 site walk conducted by others, two sub-grade, liquid-filled vaults/sumps were observed in the basement levels of Building 1/F (Sump -1) and Building 6/B (Sump-2). In addition, during building demolition, a third sump (Sump-3) was identified with the footprint of Building 5. In order to evaluate potential impacts, if any, Woodard & Curran conducted additional assessments in January 2019. These assessments are discussed below.

On January 17, 2019, the liquid contents of all three (3) sumps was removed by Monarch via vacuum truck. Following removal of liquids, the sumps were inspected by Woodard & Curran personnel. Sump-1 contained a small amount of debris in the bottom and Sump-2 and 3 were almost entirely filled with soil and other debris. Upon removal, all three (3) sumps were inspected for integrity and underlying soils evaluated for evidence of a discharge. A photograph log of this inspection is provided in Appendix E and observations summarized below.

- Sump-1 was almost entirely encased in concrete. The sump appeared in good condition with no evidence of a discharge to the underlying soils.
- Sump-2 was entirely encased in concrete. The sump appeared in good condition with no evidence of a discharge to the underlying soils.
- Sump-3 was not encased in concrete; however, the sump appeared in good condition with no evidence of a discharge.

Based on the information presented above, no further action is recommended for this AOC.

5.3 SOIL INVESTIGATION ACTIVITIES AND RESULTS

In an effort to characterize select AOCs and further characterize the nature and extent of soil impacts identified at the Site, Woodard & Curran conducted soil investigation activities from January 2018 through June 2019. Soil borings advanced as part of this SI and RI were advanced by Enviroprobe Services, Inc (Enviroprobe) using track-mounted direct push drill rig and extended to various depths up to 25 feet bgs. Soil borings were continuously logged and when applicable, screened for the presence of organic vapors using PID and/or mercury vapors a Jerome mercury vapor

analyzer. Readings and indications of staining or odors observed in the soil column, if any, were recorded. In addition, some shallow soil borings were advanced using hand tools (i.e., hand auger and trowel) to depths of up to 2 feet during the SI/RI. All soil samples collected were sent to SGS Accutest Laboratories, Inc (SGS Accutest) for analysis. Sample locations were marked out and/or recorded in the field using Global Positioning System (GPS) location equipment. Soil boring logs which include descriptions of subsurface soil conditions and recorded PID readings are provided in Appendix F.

The soil investigations conducted as part of this phase of work were conducted at the following AOCs:

- AOC-1: Former Aboveground Storage Tank/AOC-12: NJDEP Case No. 97-02-21-1440-39;
- AOC-5: Suspected Septic System (North of Building 1/F);
- AOC-11: Hydraulic Lift System;
- AOC-16: Mercury Spill; and
- AOC-18: Soil Pile.

The investigative activities and associated findings are presented in the sections below.

5.3.1 AOC-1: Former Aboveground Storage Tank/AOC-12: NJDEP Case No. 97-02-21-1440-39

Due to absence of naphthalene and 2-methylnaphthalene in the analytical protocol of previous soil sampling conducted by CMX in December 2008, additional soil sampling activities were conducted by Woodard & Curran to satisfy the analytical requirements for diesel discharges specified in N.J.A.C. 7:26E Table 2-1. Two (2) soil borings (WC-S-2 and WC-S-3) were advanced on April 19, 2019 using a hand auger. The soil borings were collocated with prior soil borings installed by CMX during the December 2008 soil sampling event. The soil borings were extended to a depth of approximately four (4) feet bgs and screened for the presence of organic vapors using a PID. No elevated PID readings were recorded and no visual impacts (i.e., staining) were observed. Therefore, two (2) soil samples (WC-S-2 and WC-S-3) were collected at the six-inch interval (0.0 to 0.5-feet bgs) corresponding to the prior soil samples collected in 2008. In accordance with Table 2-1 of N.J.A.C. 7:26E, the soil samples were analyzed for Category 2 EPH with contingency naphthalene and 2-methylnaphthalene analysis on 25% of the soil samples where EPH exceeds 1,000 mg/kg. Results from the sampling event are presented on Table 1, depicted on Figure 3 and summarized below.

• EPH was reported at a concentration of 72.3 mg/kg (WC-S-2) and 207 mg/kg (WC-S-3); therefore, contingency naphthalene and 2-methylnaphthalene analysis was not required.

Based on the information presented above, no further action is recommended for this AOC.

5.3.2 AOC-5: Suspected Septic System (North of Building 1/F)

On February 5, 2018, Woodard & Curran mobilized to the Site with its subcontractor, NorthStar Environmental Services (NorthStar), to excavate test pits at AOC-5. The purpose of test pit exploration was to confirm the absence or presence of a septic system tank northeast of Building 1/F (AOC-5). Several test pits were excavated in the area of the suspected septic system tank. Overlying soils were stripped using a small backhoe and staged immediately adjacent to the test pit area. Soils were continuously screened for the presence of organic vapors using a PID. No elevated readings were observed.

While no septic holding tank was discovered, an abandoned 10-inch sewer line was identified. In addition, a 4-inch sewer line that appeared to discharge off-site was also identified. Approximately 40 feet of piping associated with these features were identified. Once overlying soils were removed, remaining soils around the subsurface features were excavated using hand tools to minimize disruption to the utilities.

In order to evaluate potential impacts associated with these features, four soil samples (S-1 through S-4) were collected. In accordance with Section 3.6.2 of the NJDEP's Technical Guidance for Site Investigation of Soil, Remedial

Investigation of Soil and Remedial Action Verification Sampling for Soil (Version 1.2), soil samples were collected every fifteen (15) feet at the six-inch interval beneath the piping and biased toward joints and/or other potential discharge areas (i.e., cracks in pipe). The samples were analyzed for Category 2 EPH, USEPA Target Compound List/Target Analyte List (TCL/TCL+30), and pH. Results from the sampling event are presented on Table 2, depicted on Figure 4 and summarized below.

- Aluminum was reported at a concentration exceeding the IGWSSL (6,000 mg/kg) in all samples with concentrations ranging between 8,240 mg/kg (S-2 (3.5-4)) and 13,300 mg/kg (S-1(4-4.5)); and
- Manganese was reported at a concentration exceeding the IGWSSL (65 mg/kg) in all samples with concentrations ranging between 89.1 mg/kg (S-1(4-4.5)) and 264 mg/kg (S-3 (4-4.5)).

The NJDEP FAQs for the Impact to Ground Water Pathway Guidance Document states that "Soil standards, by law, must be based on health considerations. The health based GWQS are used as the endpoint from which to back-calculate the IGWSRS. The GWQS for Aluminum, Manganese, Silver and Zinc are secondary, that is they are not based on health considerations, but primarily on aesthetic considerations such as taste, odor and appearance. Additionally, these elements may be found as background contaminants. Therefore the Department has decided that the IGW pathway does not need to be addressed for these contaminants unless there is cause to believe that their presence is due to a site discharge. The direct contact pathways must still be addressed." Aluminum and manganese are not believed to be related to a discharge on-site.

Based on the information presented above, no further action is recommended for this AOC.

5.3.3 AOC-11: Hydraulic Lift System

As previously discussed, a small area of staining (approximately 1-foot by 1-foot) was observed beneath the concrete structure surrounding the lift during demolition. On January 17, 2019, the small area of stained soil was scraped and staged on site for characterization and disposal. Following removal of soil, one surface soil sample (HL-1) was collected. In accordance with the analytical protocols for hydraulic oil specified in Table 2-1 of N.J.A.C. 7:26E, the soil sample was analyzed for Category 2 EPH with contingency PAH analysis on 25% of the soil samples where EPH exceeds 1,000 mg/kg. Results from the sampling event are presented on Table 3, depicted on Figure 3 and summarized below.

- EPH was reported at a concentration of 1,050 mg/kg, therefore contingency PAH analysis was conducted.
- No PAHs were detected in soil sample HL-1.

Based on the information presented above, no further action is recommended for this AOC.

5.3.4 AOC-16: Mercury Spill

On February 5, 2018, soil sampling activities were conducted in AOC-16 in an effort to define the horizontal and vertical extent of previously identified mercury exceedances in soil. Five (5) soil borings (M-8, M-9, M-10, M-11, and M-12) were installed outbound of previously identified exceedances. Soil borings were advanced using direct push drilling methods to a maximum depth of 20 feet bgs. All soil borings were continuously screened for the presence of mercury vapors with a Jerome mercury analyzer and logged by Woodard & Currans on-site scientist using the Burmister soil classification system. Soil samples were collected from the six (6)-inch interval exhibiting the highest mercury analyzer reading. In the event no mercury readings were observed, soil samples were collected from the six (6)-inch interval corresponding to previously identified exceedances and/or a depth selected in an effort to define the horizontal and vertical extent of previously identified mercury exceedances. A total of eight (8) soil samples (M-8(1.5-2.0), M-8(18.0-18.5), M-9(18.0-18.5), M-10(1.5-2.0), M-10(18.0-18.5), M-11(18.0-18.5), M-12(1.5-2.0), M-12(18.0-18.5)) were collected and analyzed for mercury. Results from the sampling event are presented on Table 4, depicted on Figure 5 and summarized below.

With the exception of one soil sample (M-9(18.0-18.5)), mercury was not-detected or reported at a concentration below the NJDEP SRS and/or IGWSSL. Mercury was reported at a concentration exceeding the NJDEP IGWSSL of 0.1 mg/kg in soil sample M-9(18.0-18.5); however, the reported mercury concentration was below the NJDEP RDC and NRDCSRS. Based on the results, contingency analysis for mercury using SPLP methods was activated for sample M-9(18.0-18.5) and M-10(1.5-2.0). Using the NJDEP SPLP Spreadsheet (Version 3.1), a site specific IGWSRS was calculated for mercury. The SPLP calculator spreadsheet is provided in Appendix G and results presented below.

Parameter	Default IGWSSL (mg/kg)	Site-Specific IGWSRS (mg/kg)
Mercury	0.1	0.7

No reported mercury concentrations exceeded the Site Specific IGWSRS for mercury for AOC-16 samples collected during the February 2018 soil sampling event.

Based on the findings discussed above, the nature and extent of mercury exceedances identified in AOC-16 have been defined and a RA will be required. The proposed remedial action for AOC-16 is presented in Section 9 of this report.

5.3.5 AOC-18: Soil Pile

As previously discussed, an unknown soil pile was identified on the western portion of the Site. The soil pile was containerized in a 20-yard roll-off and disposed offsite by the demolition contractor (Ambient) in April 2019. In order to evaluate potential impacts associated with pile, Woodard & Curran conducted SI soil sampling of the area following removal on April 19, 2019. Soil sampling was conducted in accordance with Section 3.6.5 of the NJDEPs Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil, which states that for storage and staging areas over a permeable cover, "sample frequency should be one per 900 square feet of surface area to characterize soils below a storage or staging area up to 300 feet in perimeter with a minimum of one sample." Based on an area of 625-ft², one soil sample was collected (AOC-18-1). The soil sample was collected at the surface (0.0-0.5 ft bgs) using decontaminated hand tools and analyzed for Category 2 EPH, TCL/TAL+30, and pH. Results from the sampling event are presented on Table 5, depicted on Figure 6 and summarized below.

With the exception of aluminum, lead, and manganese, all targeted compounds were reported at concentrations below the NJDEP RDC/NRDC SRS and/or IGWSSL. Aluminum, lead, and manganese were reported above the NJDEP IGWSSL but below their respective RDC/NRDC SRS. Based on the results, contingency analysis for aluminum, lead, and manganese using SPLP methods were activated for sample AOC-18-1. Results of the SPLP analysis are summarized on Table 5 and discussed below.

As shown on Table 5, leachate results for aluminum, lead, and manganese were all below their applicable NJDEP Leachate Criterion. Based on these results, a site specific IGWSRS for aluminum, lead, and manganese has been developed. These standards are summarized on the table below.

Parameter	Default IGWSSL (mg/kg)	Site-Specific IGWSRS (mg/kg)
Aluminum	6,000	7,280
Lead	90	190
Manganese	65	181

No reported aluminum, lead or mercury concentrations exceeded of the Site Specific IGWSRS for aluminum, lead, and manganese for AOC-18 soil samples collected during the April 2019 soil sampling event.

Based on the findings discussed above, Woodard & Curran recommends no further investigation for AOC-18.

5.4 GROUNDWATER INVESTIGATION ACTIVITIES AND RESULTS

A groundwater investigation was conducted which included the installation of monitoring wells and collection of ground water samples for laboratory analysis to evaluate the potential for impacts to ground water from AOC-16 impacted soils. These activities are discussed in the sections below.

5.4.1 Monitoring Well Installation

On August 6, 2018, by Enviroprobe, a New Jersey Licensed Well Driller, mobilized to the Site to install three (3) ground water monitoring wells at the highest reported concentration of mercury in soils at AOC-16 (MW-1) and in the suspected downgradient direction of AOC-16 (MW-2 and MW-3). Prior to installation, monitoring well permits were procured from the NJDEP Bureau of Water Allocation and Well Permitting.

Ground water monitoring wells were installed using hollow stem auger (HAS) drilling methods. All wells were installed to a depth of 24 feet bgs and constructed with 10 feet of 2-inch, 10-slot PVC screen and 2-inch Schedule-40 PVC riser to grade. Wells were completed with flush mount protective casings at the surface. Following completion, all monitoring wells were developed for approximately one hour or until purge water ran clear. All development water was directed to 55-gallon drums and staged on-site for characterization and off-site disposal. Shortly after completion, the newly installed monitoring wells were surveyed by a New Jersey Licensed Surveyor (Dennis W. Sklar, Inc.) and Form B's prepared.

Monitoring well locations are depicted on Figure 9. Soil boring logs are provided in Appendix F and copies of monitoring well permits, well records, monitoring well construction details and surveyor Form B's are provided in Appendix H. Disposal documentation for investigative derived waste (IDW) is provided in Appendix I.

5.4.2 Ground Water Gauging and Sampling

Ground water samples were collected in August 2018 and again in October 2018. Ground water samples were collected utilizing the conventional purge and sample methodology (i.e., volume averaging). Prior to sampling, depth to water was measured at each well and used to obtain well volumes and an updated indication of ground water flow direction. Groundwater flow for the August and October 2018 events is shown on Figures 7 and 8, respectively. As shown on Figures 7 and 8, the ground water flow direction trends toward the southeast.

During sampling, efforts were made to minimize drawdown and avoid a cascading effect within the screen zone. All purge water was directed to 55-gallon drums and staged on-site for characterization and off-site disposal. Field parameters including dissolved oxygen (DO), pH, specific conductivity, turbidity, salinity, and temperature were measured and recorded prior to purging, after purging, and prior to sampling. Following the evacuation of three well volumes, ground water samples were collected using a disposable bailer and transferred directly to the laboratory provided glassware. Disposal documentation and field sampling data sheets for the conventional sampling events sampling events are provided in Appendix I and J, respectively.

Ground water samples were submitted to SGS Accutest for mercury analysis. Mercury was not-detected or reported at a concentration below the NJDEP GWQS of 2 ug/l for all ground water samples. Ground water sampling results for the August and October 2018 sampling events are summarized on Table 6, depicted on Figure 9 and discussed below.

Based on the information presented above, no further investigation of ground water is recommended. Therefore, in the event that the ground water monitoring wells are no longer needed they should be properly abandoned by a New Jersey Licensed Well Driller.

6. RECEPTOR EVALUATION

In accordance with N.J.A.C. 7:26E-1.12 a Receptor Evaluation (RE) was conducted as part of this RI. The RE included a land use assessment, ground water assessment, vapor intrusion assessment and Ecological Evaluation (EE). The following sections provide a summary of the RE completed in conjunction with the RI. Supporting documentation for the RE is provided in Appendix K.

6.1 LAND USE ASSESSMENT

Woodard & Curran conducted a land use evaluation of the Site and adjacent subject area in accordance with N.J.A.C. 7:26E-1.13. The land use at the site and within 200 feet of the site was evaluated by identifying tax parcels within the designated search radius and reviewing property class designations (e.g. residential, commercial, industrial, etc.) for each parcel.

The Site is located at 1667 Davis Street, in the City of Camden, Camden County, New Jersey. The Site is currently vacant and undeveloped as all buildings were razed in the Summer/Fall of 2018. The property consists of vegetated areas and is entirely fenced. 44 properties were identified within 200 feet of the site. 36 were residential properties, two were publicly owned properties (one park and one school), two are commercial properties and four are vacant properties. A map (RE Figure 1) which presents the location of the Site and surrounding land uses and a table summarizing land use within 200 feet of the Site is provided in Appendix K.

6.2 GROUND WATER ASSESSMENT

Woodard & Curran conducted a ground water assessment in accordance with N.J.A.C. 7:26E-1.14. Ground water investigations conducted to characterize onsite AOCs to date did not identify any constituents at concentrations exceeding the NJDEP Ground Water Quality Standards (GWQS). Therefore, no further assessment of ground water receptors is required at this time.

6.3 VAPOR INTRUSION ASSESSMENT

Woodard & Curran conducted a vapor intrusion assessment in accordance with N.J.A.C. 7:26E-1.15. Ground water investigations conducted to characterize onsite AOCs to date did not identify any constituents at concentrations exceeding the NJDEP Vapor Intrusion Ground Water Screening Levels (VIGWSL). Therefore, no further assessment of vapor intrusion receptors is required at this time.

6.4 ECOLOGICAL EVALUATION

An EE was conducted in accordance with N.J.A.C.7:26E-1.16 and NJDEP Ecological Evaluation Technical Guidance. This EE was performed in order to evaluate the potential for adverse ecological effects on wildlife and plants resulting from Site related contamination. During the EE, the site is examined for the co-occurrence of the following.

- Environmentally sensitive natural resources (ESNRs) on, adjacent to, or potentially impacted by the Site;
- The presence of COPECs at the Site or AOC and in the ESNRs; and
- The presence of a contaminant migration pathway from the site to the ESNR, or evidence of contaminated material having been placed directly into an ESNR.

If a co-occurrence of the three conditions above is identified following completion of the EE, additional ecological investigation is required pursuant to N.J.A.C. 7:26E-4.8.

In order to determine if environmentally sensitive areas are located on or directly adjacent to the Site, Woodard & Curran reviewed pertinent NJDEP Geoweb databases, data from New Jersey Geographic Information Network

(NJGIN), and data from NJDEP's GIS website³. As shown on RE Figure 2 in Appendix K, no environmentally sensitive areas were identified on or within 200-feet of the site. Based on these findings, no further assessment of ecological receptors is required at this time.

³ (http://www.state.nj.us/dep/gis/lists.html)

7. RELIABILITY OF DATA

7.1 DATA USABILITY ASSESSMENT

A Data Usability Assessment (DUA) was performed to confirm that applicable remediation standards have been achieved with respect to data quality and use. The DUA considered the NJDEP Quality Assurance goals outlined in N.J.A.C. 7:26E-2 in evaluating the data derived during the various phases of the project. The purpose of the DUA is to evaluate the quality of the dataset and to determine its usability in the subsequent representativeness evaluation. A review of the data sets was performed to confirm that appropriate sampling procedures and laboratory analyses were conducted in conjunction with the investigation of the Site. The SGS Accutest laboratory reports are provided in Appendix L.

7.1.1 Field Data Usability Assessment

The field component of the DUA evaluates the sampling method, sample preservation, sample handling, and holding times to establish compliance with applicable methods and protocols and thereby confirm that the samples analyzed at the laboratory are representative of the sampling point.

Field sampling was conducted in accordance with procedures presented in the NJDEP's Field Sampling Procedures Manual (2005). Soil samples were collected from excavations and/or soil borings using dedicated sampling shovels and placed directly into laboratory-provided glass jars. Soils collected were logged and field screened using a calibrated PID or Jerome mercury vapor meter, as appropriate. All aqueous samples were collected using laboratory provided glassware vials with appropriate preservatives. All soil and ground water samples were properly labeled at the time of collection.

Samples were preserved as required for the analytical method requested and stored in a cooler on ice prior to delivery to the laboratory under chain of custody. All samples for contaminant analysis were submitted to a New Jersey certified laboratory (SGS Accutest) with proper chain-of-custody. Samples were submitted to the laboratory within forty-eight hours of collection. All samples were extracted and analyzed by the laboratory within the method specified hold times.

7.1.2 Analytical Data Usability Assessment

The analytical component of this DUA is intended to evaluate whether analytical data points are scientifically valid and defensible to demonstrate the absence of a release, delineate the extent of contamination at the Site, and adequately characterize potential risks. The DUA assesses whether the data have a sufficient level of precision, accuracy, and sensitivity to inform the decision-making processes applicable to the RI.

Precision refers to the reproducibility of repetitive measurements and is assessed using the relative percent difference (RPD) between a field sample and its field duplicate or laboratory duplicate sample, a matrix spike (MS) and its duplicate (MSD), or a laboratory control sample (LCS)—also sometimes referred to as a "blank spike" (BS) or "matrix blank spike" (MBS)—and its duplicate (MBSD).

Accuracy refers to the agreement between observed value and an accepted reference or true value. It is typically evaluated using spikes (LCS, surrogate spikes, and MS) and blanks (trip, field, and method) or any other standard subjected to the entire analytical process.

Sensitivity refers to the ability of the analytical methods to detect compounds at low concentrations. This is generally evaluated by comparing the achieved laboratory reporting limits (RL) and method detection limits (MDL) to applicable regulatory standards. A review of the SDGs indicates that RLs and MDLs are generally below applicable New Jersey remediation standards and default screening levels. Where RLs exceed a standard or screening level the data have been flagged on tables to caution the user.

A review of sampling data collected during the completion of the investigation activities and contained in the laboratory analytical reports indicates that the laboratory analytical data are usable in support of decision-making at the Site. Data with elevated RLs were qualified but no data were rejected. The laboratory analytical reports are provided in Appendix L.

7.2 REPRESENTATIVENESS EVALUATION

A Representativeness Evaluation was performed to evaluate and demonstrate the adequacy of the data sets used to support the investigation implemented at the Site.

7.2.1 Conceptual Site Model

The subject Site and adjacent parcels are developed in a manner consistent with the subject area's mixed use residential, recreation, commercial and light industrial setting. The nature and extent of known COCs include mercury found within the soil at the Site. The following subsections provide a summary of impacts to environmental media identified based on the findings of investigations conducted to date.

7.2.2 Soil

As part of this investigation, Woodard & Curran evaluated soil conditions at the Site. With the exception of AOC-16 (mercury area) results for all soil samples collected and analyzed were reported at concentrations below the applicable NJDEP IGWSSL and/or RDC/NRDC SRS. Mercury has been identified in soil in AOC-16 at concentrations exceeding the NJDEP IGWSSL and/or RDC/NRDC SRS; however, the mercury impacted soils have been delineated on-site.

7.2.3 Ground Water

No ground water impacts related to historical operations at the Site have been identified.

7.2.4 Sampling Procedures

Sampling procedures were consistent with those outlined in the August 2005 NJDEP Field Sampling Procedures Manual (2005).

7.2.5 Significant Events or Seasonal Variations

No significant events or seasonal variations occurred that would affect the data collected to assess Site contamination.

7.2.6 Analytical Parameters

Samples collected to characterize the contamination at the Site were analyzed for specific parameters based on the findings of prior investigations conducted at the Site, information presented in available guidance documents and regulations, as well as Woodard & Curran's experience performing similar investigations on other sites.

7.2.7 Sample Number and Spatial Distribution

The number and spatial distribution of samples was generally consistent with the requirements outlined in N.J.A.C 7:26E and applicable NJDEP guidance documents.

7.2.8 Completeness

Pursuant to the Department's Policy Statement dated June 2013, the RI is complete as the following objectives have been met.

- The nature and extent of contamination has been identified:
- An evaluation of potential impacts to receptors has been completed based on the findings of investigations conducted to date; and
- The need for a Remedial Action (RA) has been determined and data has been collected which will be helpful with selection possible remedial actions.

7.2.9 Inconsistency and Uncertainty

The results of the sampling program conducted have identified conditions that are consistent with the conceptual site model developed for the investigation and remediation areas. As such, no inconsistencies or uncertainties were noted.

7.2.10 Information Considered Unrepresentative

All data obtained as part of this investigation is considered to be representative of conditions observed at the Site. No unrepresentative conditions were noted during the investigation.

8. CONCLUSIONS AND RECOMMENDATIONS

8.1 AOC-1: FORMER AST / AOC-12: NJDEP CASE NO. 97-02-21-1440-39

One (1) 275-gallon diesel aboveground storage tank (AST) was historically located south of Building 6/B. The AST was reportedly vandalized resulting in a diesel fuel spill to the surrounding asphalt surface. As a result, the NJDEP was contacted and the spill was issued Case No. 97-02-21-1440-39. In December 2008 CMX advanced three (3) soil borings to investigate the potential for subsurface impacts. Three soil samples were collected and analyzed in accordance with the analytical protocols specified in Table 2-1 of N.J.A.C. 7:26E at the time of sampling (TPH-DRO with contingent VOC analysis). Two of the three samples exceeded the contingency TPH-DRO threshold of 1,000 mg/kg for VOC analysis; however, all VOC compounds were not detected or reported at concentrations below their respective NJDEP SRS and IGWSSL.

Due to absence of naphthalene and 2-methylnaphthalene in the analytical protocol of previous soil sampling conducted by CMX in December 2008, additional soil sampling activities were conducted by Woodard & Curran to satisfy the current analytical protocols for diesel discharges specified in Table 2-1 in N.J.A.C. 7:26E. Two (2) soil borings (WC-S-2 and WC-S-3) were advanced on April 19, 2019 using a hand auger. The soil borings were collocated with prior soil borings installed by CMX during the December 2008 soil sampling event. The soil borings were extended to a depth of approximately four (4) feet bgs and screened for the presence of organic vapors using a PID. No elevated PID readings were recorded and no visual impacts (i.e., staining) were observed. Therefore, two (2) soil samples (WC-S-2 and WC-S-3) were collected at the six-inch interval (0.0 to 0.5-feet bgs) corresponding to the historical soil samples collected in 2008. In accordance with Table 2-1 of N.J.A.C. 7:26E, the soil samples were analyzed for Category 2 EPH with contingency naphthalene and 2-methylnaphthalene analysis on 25% of the soil samples where EPH exceeds 1,000 mg/kg. EPH was reported at a concentration of 72.3 mg/kg (WC-S-2) and 207 mg/kg (WC-S-3), therefore contingency naphthalene and 2-methylnaphthalene analysis was not required.

Based on the information presented above, no further action is recommended for AOC-1.

8.2 AOC-2: FORMER UNDERGROUND STORAGE TANKS (USTS)

Three (3) No. 2 fuel oil USTs (former AOC-2A, AOC-2B, and AOC-2C) were formerly located at the Site and utilized to fuel generators and/or boilers associated with facility operations. AOC-2A was a 6,000-gallon UST located northwest of Building B, AOC-2B was a 6,000-gallon UST located off the southern corner of Building C, AOC-2C was a 2,000-gallon UST located west of Building A. Based on a review of available documents, UST closure activities were conducted in 1989, at which time the facility systems were converted from mixed-use (fuel oil and natural gas) to entirely natural gas. According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., USTs closure activities included the removal and off-site disposal of the UST systems and post-removal soil sampling. The tanks were reportedly found to be in good condition when removed. Five (5) post-removal soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. All post-excavation soil samples were analyzed in accordance with N.J.A.C. 7:26E, Table 2-1 analytical protocol No. 2 fuel oil discharges in effected at the time of sampling (TPH with contingency VOC analysis). TPH was not detected or reported at concentrations below the NJDEP Health Based Criterion for TOCs at the time of sampling (10,000 mg/kg) and/or the 1,000 mg/kg threshold for contingency VO+10 analysis.

CMX conducted additional investigations at each former UST location in December 2008. These activities and associated findings and presented in the sections below.

8.2.1 AOC-2A: Former 6,000-Gallon Fuel Oil UST (Southwest of Building B)

CMX advanced four (4) soil borings along the centerline of the UST excavation and collected four (4) soil samples (Tank2-1 through Tank2-4) from soil borings. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four (4) soil samples collected; therefore, contingency VO+10 analysis was not performed.

Based on the information presented above, no further action is recommended for AOC-2A.

8.2.2 AOC-2B: Former 6,000-Gallon Fuel Oil UST (South of Building C)

CMX advanced four (4) soil borings along the centerline of the UST excavation and collected four (4) soil samples (Tank1-1 through Tank1-4) from soil borings. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four (4) soil samples collected; therefore, contingency VO+10 analysis was not performed.

Based on the information presented above, no further action is recommended for AOC-2B.

8.2.3 AOC-2C: Former 2,000-Gallon Fuel Oil UST (West of Building A)

CMX advanced four (4) soil borings along the centerline of the UST excavation and collected four (4) soil samples (Tank3-1 through Tank3-4) from soil borings. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. Pursuant to the analytical protocols for No. 2 fuel oil discharges specified in Table 2-1 of N.J.A.C. 7:26E in effect at the time of sampling, all soil samples were analyzed for TPH-DRO, with contingency VO+10 analysis to be performed for 25% of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was not detected in any of the four (4) soil samples collected; therefore, contingency VO+10 analysis was not performed.

Based on the information presented above, no further action is recommended for AOC-2C.

8.3 AOC-3: STORAGE CONTAINERS

Several chemical containers of various sizes, mostly empty but some containing liquid, were observed within the Site buildings and exterior grounds. The various containers were collected and properly disposed of by the demolition contractor (Ambient). Following removal, Woodard & Curran conducted a visual inspection of the areas in December 2018. At the time of Woodard & Curran's inspection, no visual evidence of staining or other impacts to the environment was observed.

Based on the information presented above, no further action is recommended for AOC-3.

8.4 AOC-4: BUILDING C FLOOR DRAINS

Floor drains were identified by others in Building 5/C. This building contained equipment for the former cleaning and sterilization of animal cages. At the time of CMX's 2008 PA inspection, all equipment appeared in good condition with no staining or cracks on the floor. Based on discussions with personnel, CMX concluded that the equipment drains to a floor drain system which discharges to the CCMUA sewer. Based on this information, CMX recommended no investigation of this AOC. In the December 2008, the NJDEP indicated that no further investigation was warranted for AOC-4.

Based on the information presented above, no further action is recommended for AOC-4.

8.5 AOC-5: SUSPECTED SEPTIC SYSTEM (NORTH OF BUILDING 1/F)

Based on a review of available information, a cesspool was believed to have been once utilized at the Site and located north of Building 1/F. In April 2008, CMX conducted a geophysical survey in the area of the suspected cesspool. An anomaly indicative of an approximate 10,000-gallon subsurface tank was identified in the eastern portion of the site adjacent to Building F. Based on these findings, CMX advanced two (2) soil borings (SB-6 and SB-7) in the vicinity of the suspected septic system. The soil borings were field screened with a PID for the presence of organic vapor. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch interval at the suspected invert of the septic tank (5.5-6.0 feet bgs) or immediately above the observed groundwater table (13.5-14.0 feet bgs). The soil samples were analyzed for PP+40 and TPH-QAM. All PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP SRS for samples SB-6 and SB-7. Based on this information, CMX recommended no further investigation of this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-5.

In order to confirm the absence/presence of the septic system, additional assessments and investigations were conducted in February 2018. Several large test pits were excavated in the area of the suspected septic tank. While no septic holding tank was discovered, an abandoned 10-inch sewer line was identified. In addition, a 4-inch sewer line that appeared to be directed off-site was also identified. In order to evaluate potential impacts associated with these features, four soil samples (S-1 through S-4) were collected. In accordance with Section 3.6.2 of the NJDEP's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil and Remedial Action Verification Sampling for Soil (Version 1.2), soil samples were collected every fifteen (15) feet at the six-inch interval beneath the piping and biased toward joints and/or other potential discharge areas (i.e., cracks in pipe). The samples analyzed for Category 2 EPH, TCL/TAL+30, and pH. Aluminum was reported at a concentration exceeding the IGWSSL (6,000 mg/kg) in all samples with concentrations ranging between 8,240 mg/kg (S-2 (3.5-4)) and 13,300 mg/kg (S-1(4-4.5)). Manganese was reported at a concentration exceeding the IGWSSL (65 mg/kg) in all samples with concentrations ranging between 89.1 mg/kg (S-1(4-4.5)) and 264 mg/kg (S-3 (4-4.5)). All other targeted compounds were not detected or reported at concentrations below their respective SRS and IGWSSL.

The NJDEP FAQs for the Impact to Ground Water Pathway Guidance Document states that "Soil standards, by law, must be based on health considerations. The health based GWQS are used as the endpoint from which to back-calculate the IGWSRS. The GWQS for Aluminum, Manganese, Silver and Zinc are secondary, that is they are not based on health considerations, but primarily on aesthetic considerations such as taste, odor and appearance. Additionally, these elements may be found as background contaminants. Therefore the Department has decided that the IGW pathway does not need to be addressed for these contaminants unless there is cause to believe that their presence is due to a site discharge. The direct contact pathways must still be addressed." Aluminum and manganese are not believed to be related to a discharge on-site.

Based on the information presented above, no further action is recommended for AOC-5.

8.6 AOC-6: BUILDING 6/B DRYWELL

A drywell was formerly located east of Building 6/B. In April 2008, CMX advanced one (1) soil boring adjacent to the drywell. One (1) soil sample (SB-5) was collected from the boring and analyzed for TPH-QAM. TPH-QAM was reported at a concentration (22.8 mg/kg) well below the current NJDEP Health Based Criterion for TOCs (10,000 mg/kg). In addition, CMX installed a temporary well point (TWP-1) at this location and collected a grab ground water sample for VO+10 and BN+15 analyses. All VO+10 and BN+15 compounds were reported as non-detect or at concentrations below their respective GWQS. Based on this information, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-6.

In order to comply with the protocols prescribed in N.J.A.C. 7:26E, in January 2009, CMX advanced a duplicate boring (SB-5 DUP) and collected one (1) additional soil sample (SB-5 DUP) to investigate this AOC. The soil boring was field screened with a calibrated PID and logged. No staining or odors were observed in the soil boring column; however slightly elevated PID readings were encountered at depths between seven feet (7') and fifteen feet (15') bgs. One (1) sample was collected from the boring at the six-inch (6") interval of greatest observed contamination based on PID readings (10.0-10.5 feet bgs). The soil sample was analyzed for PP+40. All targeted compounds were not detected or reported at concentrations below their respective SRS and IGWSSL.

Based on the information presented above, no further action is recommended for AOC-6

8.7 AOC-7: INCINERATOR

According to historical reports, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Reportedly, incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. CMX did not observe an incinerator during the site reconnaissance. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-7.

Based on the information presented above, no further action is recommended for AOC-7.

8.8 AOC-8: TRANSFORMERS

Two (2) electric transformers were observed at the west exterior of the power house (Building 4/D). Previous reports prepared by others indicate the transformers were dry-type, air-cooled equipment and did not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. At the time of CMX's 2008 PA inspection, the transformers were in fair condition and situated on concrete. No staining or stressed vegetation was observed at the ground surface beneath any of these transformers. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-8.

Based on the information presented above, no further action is recommended for AOC-8.

8.9 AOC-9: STAINING

Staining was observed by others on concrete surfaces in three (3) of the former buildings (Building 2/A, 4/D, and 1/F). Below is a summary of findings associated with assessments conducted by CMX.

8.9.1 AOC-9A: Building 2/A Staining

During CMX's 2008 PA inspection, Building 2/A contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building 1/F and then to the CCMUA sewer. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9A.

Based on the information presented above, no further action is recommended for AOC-9A.

8.9.2 AOC-9B: Building 4/D Staining

During CMX's 2008 PA inspection. two (2) emergency gas powered generators were observed within Building 4/D. Heavy staining of the concrete surface was noted beneath the generators; however, the floors appeared to be in good

condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9B.

Based on the information presented above, no further action is recommended for AOC-9B.

8.9.3 AOC-9C: Building 1/F Staining

During CMX's 2008 PA inspection, minor staining observed on the concrete floor in the Building 1/F mechanical room; however, the floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-9C.

Based on the information presented above, no further action is recommended for AOC-9C.

8.10 AOC-10: COMPRESSOR BLOWDOWN

According to historical reports, refrigeration compressors were previously located at the northeast exterior of Building 6/B "on open ground and show some slight staining of surrounding soils." CMX indicated that no stained soils were observed in this area during the 2008 PA inspection. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-10.

Based on the information presented above, no further action is recommended for AOC-10.

8.11 AOC-11: HYDRAULIC LIFT SYSTEM

A concrete pad that formerly contained an above-ground hydraulic lift was observed in the loading dock area at the southern side of Building 6/B. No evidence of a discharge from the hydraulic lift system was noted during CMX's 2008, PA. The hydraulic lift system tank was reportedly removed in November 2007. In order to evaluate potential impacts associated with the lift, CMX advanced three (3) soil borings (SB-3 through SB-5) in April 2008 to investigate the hydraulic lift system. Soil borings were field screened with a PID for the presence of organic vapor and logged. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval immediately above the observed groundwater table. In accordance with the analytical protocols for hydraulic oil specified in Table 2-1 of N.J.A.C. 7:26E at the time the investigation was conducted, all soil samples were analyzed for TPH-QAM with contingent PAH analysis (where TPH-QAM is reported at a concentration exceeding 100 mg/kg). TPH-QAM was not detected or reported at concentrations below the NJDEP PAH contingency threshold of 100 mg/kg for samples SB-3 through SB-5; therefore, contingency PAH analysis was not performed.

In addition, one ground water grab sample was collected adjacent to SB-5. The ground water grab sample was collected via a temporary well point (TWP-1) and analyzed for VO+10 and BN+15. All targeted compounds were not detected or reported as non-detect or at concentrations below their applicable NJDEP GWQS. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-11.

During demolition activities, a small area of staining (approximately 1-foot by 1-foot) was observed beneath the concrete structure surrounding the lift in January 2019. The small area of stained soil was scraped and disposed offsite. One surface soil sample (HL-1) was collected. In accordance with the analytical protocols for hydraulic oil specified in Table 2-1 of N.J.A.C. 7:26E, the soil sample was analyzed for Category 2 EPH with contingency PAH analysis on 25% of the soil samples where EPH exceeds 1,000 mg/kg. EPH was reported at a concentration of 1,050 mg/kg. No PAHs were detected in soil sample HL-1.

Based on the information presented above, no further action is recommended for AOC-11.

8.12 AOC-13: NJDEP CASE NO. 98-11-20-1919-54

Based on the findings of the PA, CMX reported that the Site was identified in the NJ Spills Database under NJDEP Case No. 98-11-20-1919-54. The EDR report indicated that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. Based on these findings, CMX recommended no further investigation for this AOC. In the December 2008 NOD, the NJDEP indicated that no further investigation was warranted for AOC-13.

Based on the information presented above, no further action is recommended for AOC-13.

8.13 AOC-14: REGIONAL GROUND WATER CONTAMINATION

Previous reports reviewed as part of CMX's August 2008 PA regulatory review, suggested chlorinated VOC impacts to ground water have migrated from the neighboring RF Products site beneath the Camden Laboratories Site. NJDEP directed ground water investigations to assess the north and east adjacent RF Products site as a potential source of impacted ground water within the Camden Parkside Wellfield. The NJDEP investigations indicated chlorinated solvents (specifically TCE) exceeded NJDEP Ground Water Quality Standards (GWQS) beneath the RF Products site and the Camden Laboratory Site. NJDEP concluded that RF Products is a source of regional ground water contamination and the impacts have migrated to the Camden Laboratories Site property. Based on these findings, CMX recommended no further investigation for this AOC; however, CMX recommended that future site improvements will need to consider vapor intrusion mitigation measures.

In the December 2008 NOD, the NJDEP indicated that the matter had been provided to the NJDEP's geologist for consideration. In addition, the NJDEP requested a site map depicting all AOCs, sample locations, and construction details of the septic systems, dry well, and hydraulic lift.

In response to the December 2008 NOD, CMX reviewed available files and information generated through site assessments and/or investigations including but not limited to a geophysical investigation, soil and ground water sampling, and files obtained from local and state agencies. Based on a review of this information, CMX concluded that chlorinated VOC impacts to site ground water were attributed to the RF Products site and not related to on-site operations. As such, CMX recommended no further investigation of this AOC.

Woodard & Curran conducted a supplemental review of files obtained from the NJDEP for the former RF Products Site (PI No. 015474). A summary of key findings associated with this file review as they pertain to the Camden Labs property are presented below.

- The NJDEP conducted an Unknown Source Investigation related to the Parkside Well Contamination in 2007. This investigation included the collection of one (1) ground water grab sample (RF-14) on the northeastern portion of the Camden Labs Property. Results from this sample identified TCE at a concentration of 13.77 ug/l.
- One ground water monitoring well (MW-23A) associated with the RF Products investigation was installed on the northeast portion of the Camden Labs property in August 2011. Subsequent ground water samples collected from MW-23A have not identified TCE (or any other targeted VOCs) at concentrations exceeding the NJDEP GWQS.

While ground water sampling results for MW-23A have been non-detect for TCE, the iso-concentration contour
maps provided in the RF Products RIR dated August 2013 suggest ground water impacts from the RF
Products Site have migrated beneath the Camden Labs property.

This information coupled with on the iso-concentrations shown on figures provided in RF Products August 2015 RIR, suggest that ground water impacts related to the RF Products may extend beneath the northern portion of the Camden Labs Site.

Based on the information presented above, no further investigation is recommended for this AOC; however, should redevelopment include construction of a habitable structure, a vapor intrusion assessment and potentially vapor intrusion mitigation measures may be recommended. Regardless, redevelopment of the property should take into consideration potential impacts associated with vapor intrusion.

8.14 AOC-15 CONDUCTIVE AREA

The April 2008 geophysical survey performed by CMX identified a large conductive area measuring approximately 50 feet by 75 feet within the western grassed portion of the site. Subsequent soil sampling in AOC-15 identified the presence of copper and lead at concentrations exceeding the applicable NJDEP SRS.

In June 2008, CMX re-mobilized to the site in an effort to further characterize the conductive ash-like material and determine the horizontal boundary and vertical limits of this material. CMX advanced sixteen (16) soil borings (AM-1 through AM-16). Soil borings AM-1 through AM-6 were advanced on the site. Soil borings AM-7 through AM-16 were advanced off site on the adjacent property immediately to the south (Whitman Park). Ash-like material was encountered in eleven (11) of the sixteen (16) soil borings advanced. Based on conditions observed during the soil boring investigation, CMX concluded the majority of the ash-like material was located on the south adjacent Whitman Park property and extends off-site to the west beneath Hallowell Avenue and onto the site.

With the exception of soil borings AM-6 and AM-16, all soil borings were advanced to a depth of four (4) feet bgs. Since soil borings AM-6 and AM-16 were advanced in an area which exhibited a large change in topography, these borings were advance to a depth of eight (8) feet bgs. A total of sixteen (16) soil samples were collected and analyzed for copper and lead. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg). Copper and lead were reported at concentrations below their respective most stringent NJDEP SCC for all other samples collected. Based on this information, CMX concluded that the horizontal and vertical extent of copper and lead impacted ash material had been delineated and that the area of impacted material on-site was limited to an approximate 3,750 square foot area on-site. These findings were presented to the NJDEP in the August 2008 PA/SI Report, prepared by CMX. Concurrent with this submittal, CMX prepared and provided a RAWP to the NJDEP in August 2008. The RAWP detailed the proposed excavation and off-site disposal of impacted soil identified in AOC-15. These activities and associated findings are presented below.

In September 2008, the ash-like material was excavated and staged adjacent to the excavation on plastic. Ash-like material encountered ranged between 16 and 24 inches thick. The final excavation was extended vertically to three feet below ground surface, and approximately 167 tons of material was disposed of offsite at an approved beneficial re-use facility. As the final excavation was 3,750 square feet in size, CMX collected ten (10) sidewall samples (PE-1 through PE-10) and five (5) bottom samples (PE-11 through PE-15) to be analyzed for copper and lead. Copper and lead were not detected or reported at a concentration below their respective most stringent NJDEP DCSRS for all post-excavation samples. The excavation area was backfilled with certified clean fill material. Based on these findings, CMX recommended no further action of this AOC. In the December 2008 NOD, the NJDEP indicated that no further remediation was required for AOC-15.

Woodard & Curran conducted a review of analytical data provided in historical reports and determined while copper and lead had been remediated to concentrations below their respective RDCSRS, several lead samples exceed the

NJDEP IGWSSL of 90 mg/kg. Based on this information, Woodard & Curran developed an AOC-Specific Impact to Ground Water Soil Remediation Standard for lead in accordance with the NJDEP "Using the SESOIL Transport Model to Assess the Impact to Ground Water pathway" guidance document (SESOIL guidance). The model results show that lead will not reach the water table within 100 years, therefore, no exceedance of the leachate criterion (LC) will occur and the observed soil concentration profile does not pose an Impact to Ground Water threat. The observed concentration of 150 mg/kg can be used as an alternative AOC-Specific Impact to Ground Water Soil Remediation standard for the 1 to 2 feet bgs interval.

Based on the information presented above, no further action is recommended for AOC-15.

8.15 AOC-16: MERCURY SPILL

Soil

In April 2004, the NJDEP measured elevated levels of mercury in air while installing the on-site weather station tower. Elevated levels of mercury were measured by the NJDEP's air monitoring equipment while excavating soils for the tower foundation. CMX conducted a soil boring investigation of the potential mercury surface spill area between December 2008 and January 2009. CMX advanced sixteen (16) soil borings to depths ranging between four (4) feet bgs and twenty-five (25) feet bgs. CMX collected soil samples from each of the soil borings corresponding with elevated vapor mercury readings and/or visual indications of mercury contamination (i.e. dark purple staining). Where mercury vapor readings were recorded for multiple intervals, multiple soil samples were collected and analyzed. In addition, CMX collected soil samples from each soil boring at the six-inch interval where no indications of impact were identified in order to horizontally and vertically delineate the mercury contamination. Analytical results reported mercury at a concentration exceeding the RDCSRS of 23 mg/kg and/or the NRDCSRS of 65 mg/kg for subsurface soil samples M-1 (3,700 mg/kg), M-1A (2,100 mg/kg), M-2B (82 mg/kg), M-2D (81 mg/kg), M-5A (34 mg/kg) and M-6B (36 mg/kg). Mercury was not detected or reported at concentrations below the NJDEP RDCSRS for all other soil samples collected. Based on this information, CMX concluded mercury impacts to soil in AOC-16 were delineated to the RDCSRS but not delineated of the default IGWSSL.

In February 2018, soil sampling activities were conducted in AOC-16 by Woodard & Curran in an effort to define the horizontal and vertical extent of previously identified mercury exceedances in soil. Five (5) soil borings (M-8, M-9, M-10, M-11, and M-12) were advanced outbound of previously identified exceedances. A total of eight (8) soil samples (M-8(1.5-2.0), M-8(18.0-18.5), M-9(18.0-18.5), M-10(1.5-2.0), M-10(18.0-18.5), M-11(18.0-18.5), M-12(1.5-2.0), M-12(18.0-18.5)) were collected and analyzed for mercury. With the exception of one soil sample (M-9(18.0-18.5)), mercury was not-detected or reported at a concentration below the NJDEP SRS and/or IGWSSL. Mercury was reported at a concentration exceeding the NJDEP IGWSSL of 0.1 mg/kg in soil sample M-9(18.0-18.5); however, the reported mercury concentration was below the NJDEP RDCSRS and/or NRDCSRS. Based on these results, contingency analysis for mercury using SPLP methods were activated for sample M-9(18.0-18.5) and M-10(1.5-2.0). Using the NJDEP SPLP Spreadsheet (Version 3.1), a site specific IGWSRS was calculated for mercury and results shown below.

Parameter	Default IGWSSL (mg/kg)	Site-Specific IGWSRS (mg/kg)
Mercury	0.1	0.7

No reported mercury concentrations exceeded the Site Specific IGWSRS for mercury for AOC-16 samples collected during the February 2018 soil sampling event.

Based on the findings discussed above, the nature and extent of mercury exceedances identified in AOC-16 have been defined. The horizontal extent of mercury exceedances in AOC-16 are defined by the following:

Western Extent – Delineation soil sample (M-11) results at or below the NJDEP SRS and/or IGWSRS;

- Northern Extent Delineation soil sample (M-12) results at or below the NJDEP SRS and/or IGWSRS;
- Eastern Extent Delineation soil sample (M-10) results at or below the NJDEP SRS and/or IGWSRS; and
- Southern Extent Delineation soil sample (M-8) results at or below the NJDEP SRS and/or IGWSRS.

The vertical extent of mercury exceedances in soil generally extent to depths ranging from 18 feet bgs to 22.5 feet bgs and have been defined by several soil samples including: M-1-C, M-2E, M-3D, M-4-B, M-5-B, M-6D, and M-9.

It should be noted, while mercury concentrations above the IGWSRS have historically been identified in soil below the water table (15.5-16'), in accordance with N.J.A.C. 7:26E-4.2(a)3:

"For soil contamination associated with a site-related area of concern, delineate the horizontal and vertical extent of all soil contamination in the unsaturated zone which contains contaminants above the impact to ground water soil remediation standard without regard to the property boundary."

Based on the information discussed above, soil RA will be required for AOC-16. The proposed remedial action for AOC-16 is presented in Section 9 of this report.

Ground Water

In August 2018, three (3) ground water monitoring wells at the highest reported concentration of mercury in soils at AOC-16 (MW-1) and in the suspected downgradient direction of AOC-16 (MW-2 and MW-3). Following installation, two (2) rounds of ground water samples were collected (August and October 2018). Mercury was not-detected or reported at a concentration below the NJDEP GWQS of 2 ug/l for all ground water samples.

Based on the information presented above, no further investigation of ground water is recommended. If the ground water monitoring wells are no longer needed, they should be properly abandoned by a New Jersey Licensed Well Driller.

8.16 AOC-17: UNKNOWN LIQUID IN SUMPS/VAULTS

During a December 6, 2016 site walk conducted by others, two (2) sub-grade, liquid-filled vaults/sumps in the basement levels of Building 1/F (Sump -1) and Building 6/B (Sump-2). In addition, during building demolition, a third sump (Sump-3) was identified with the footprint of Building 5. In order to evaluate potential impacts, if any, Woodard & Curran conducted additional assessments in January 2009. On January 17, 2019, the liquid contents of all three (3) sumps was removed by Monarch via vacuum truck. Following removal of liquids, the sumps were inspected by Woodard & Curran personnel. Sump-1 contained a small amount of debris in the bottom and Sump-2 and 3 were almost entirely filled with soil and other debris. Upon removal, all three (3) sumps were inspected for integrity and underlying soils evaluated for evidence of a discharge and observations summarized below.

- Sump-1 was almost entirely encased in concrete. The sump appeared in good condition with no evidence of a discharge to the underlying soils.
- Sump-2 was entirely encased in concrete. The sump appeared in good condition with no evidence of a discharge to the underlying soils.
- Sump-3 was not encased in concrete; however, the sump appeared in good condition with no evidence of a discharge.

Based on the information presented above, no further action is recommended for AOC-17.

8.17 AOC-18: SOIL PILE

During the commencement of building demolition activities in 2018, a soil pile was observed in the western portion of the property. The soil pile was containerized in a 20-yard roll-off and disposed offsite by the demolition contractor

(Ambient) in April 2019. In order to evaluate potential impacts associated with pile, Woodard & Curran conducted SI soil sampling of the area following removal on April 19, 2019. Soil sampling was conducted in accordance with Section 3.6.5 of the NJDEPs Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil, which states that for storage and staging areas over a permeable cover, "sample frequency should be one per 900 square feet of surface area to characterize soils below a storage or staging area up to 300 feet in perimeter with a minimum of one sample." Based on an area of 625-ft², one soil sample was collected (AOC-18-1). The soil sample was collected at the surface (0.0-0.5 ft bgs) using decontaminated hand tools and analyzed for Category 2 EPH, TCL/TAL+30, and pH.

With the exception of aluminum, lead, and manganese, all targeted compounds were reported at concentrations below the NJDEP RDC/NRDC SRS and/or IGWSSL. Aluminum, lead, and manganese were reported above the NJDEP IGWSSL but below their respective RDC/NRDC SRS. Based on the results, contingency analysis for aluminum, lead, and manganese using SPLP methods were activated for sample AOC-18-1. Aluminum, lead, and manganese were all below their applicable NJDEP Leachate Criterion. Based on these results, a site specific IGWSRS for aluminum, lead, and manganese has been developed. These standards are summarized on the table below.

Parameter	Default IGWSSL (mg/kg)	Site-Specific IGWSRS (mg/kg)		
Aluminum	6,000	7,280		
Lead	90	190		
Manganese	65	181		

No reported aluminum, lead or mercury concentrations exceeded of the Site Specific IGWSRS for aluminum, lead, and manganese for AOC-18 soil samples collected during the April 2019 soil sampling event.

Based on the findings discussed above, Woodard & Curran recommends no further action for AOC-18.

9. REMEDIAL ACTION WORK PLAN

The following paragraphs provide a narrative description of the proposed remedial strategy to address mercury impacted soils at AOC-16. The proposed remedial strategies to address the mercury impacted soil were developed based on the findings of assessments and investigations conducted to date.

9.1 EXCAVATION OF CONTAMINATED SOILS IN AOC-16

CRA has elected to remediate mercury impacted soils at AOC-16 by excavation with offsite disposal. As shown on Figure 5 the aerial extent of mercury exceedances is approximately 5,400 square feet and defined by the following:

- Western Extent Delineation soil sample (M-11) results at or below the NJDEP SRS and/or IGWSRS;
- Northern Extent Delineation soil sample (M-12) results at or below the NJDEP SRS and/or IGWSRS;
- Eastern Extent Delineation soil sample (M-10) results at or below the NJDEP SRS and/or IGWSRS; and
- Southern Extent Delineation soil sample (M-8) results at or below the NJDEP SRS and/or IGWSRS.

The vertical extent of mercury exceedances requiring excavation extends to an approximate depth of 20 feet bgs and is defined by several soil samples including: M-1-C, M-2E, M-3D, M-4-B, M-5-B, M-6D, and M-9.

Based on the dimensions discussed above approximately 4,000 cubic yards of mercury impacted soil will be excavated from this AOC, staged on-site, characterized for disposal facility approvals and transported off-site disposal. Alternately, soils to be removed may be characterized prior to excavation and directly loaded for off-site disposal.

9.2 POST-EXCAVATION SOIL SAMPLING

In accordance with the NJDEPs Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil dated March 2015, post-excavation soil samples will be collected at a frequency of one soil sample for every 30 linear feet of excavation side-wall and one soil sample for every 900-square feet of excavation bottom area. Post-excavation soil samples will be analyzed for mercury. Analytical results will be compared to direct contact soil remediation standards and impact to ground water soil screening levels/calculated impact to ground water soil remediation standards.

9.3 EXCAVATION RESTORATION

Upon confirmation of excavation of mercury impacted soils the excavation will be backfilled. Backfill material utilized in AOC-16 will meet the requirements for clean fill or licensed quarry materials described in the NJDEP Alternative and Clean Fill Guidance for SRP sites.

9.4 PERMITTING AND PLANS

9.4.1 Health and Safety Plan

A site-specific Health and Safety Plan (HASP) will be developed by the selected remedial action contractor. The HASP, at a minimum, will be prepared in accordance with applicable federal, state and local requirements and will outline the health and safety procedures and equipment required for the work activities. The HASP will also include site control measures, engineering controls and work practices, air monitoring procedures, decontamination and residuals management procedures, and emergency response information.

9.4.2 Soil Erosion and Sediment Control

Soil erosion and sediment control (SESC) measures will be employed as necessary during construction activities. The SESC measures will be employed by the remedial action contractor at the time of construction in accordance with a Camden County Soil Conservation District approved SESC Certification. Specific procedures will be established in concert with the remedial action contractor.

9.4.3 Dust Control

Dust control measures will be employed as necessary during excavation activities through soil wetting or other approved techniques. Dust control measures will include procedures to prevent spreading of potentially contaminated soils by construction and transport equipment. Specific procedures will be established in concert with the remedial action contractor.

9.4.4 Site Security Plan

If needed, a site security plan will be prepared in conjunction with the remedial efforts discussed in this report. The remedial action contractor will be responsible for making sure that the work areas are secured during non-working hours. At a minimum, installation of temporary construction fencing around open excavations will be implemented for site security purposes.

9.5 REMEDIAL ACTION REPORT

Following completion of the remedial action field activities described in this RAWP, a Remedial Action Report (RAR) will be prepared for submittal to NJDEP. The RAR will be prepared in accordance with N.J.A.C. 7:26. The RAR will present the results of the remedial activities and include the following information.

- Summary of remedial investigation results;
- A summary of the remedial actions completed, including documentation of any field changes or other deviations from the RAWP;
- List of the remediation standards applied;
- Tables and figures that summarize pre- and post-remediation data:
- Detailed description of site restoration activities;
- Evaluation of post-remediation compliance status; and
- A summary of actual remediation costs.

9.6 REMEDIAL ACTION IMPLEMENTATION/SCHEDULE

Based on discussions with CRA's representatives we understand that remedial activities will be conducted in Spring 2020.

10. VARIANCES

No variances were encountered as part of this phase of remedial activities.

11. REFERENCES

Historical Reports and Readily Available Resources:

August 2008 Preliminary Assessment Report, prepared by CMX;

August 2008 Site Investigation Report, prepared by CMX;

August 2008 Remedial Action Work Plan, prepared by CMX;

October 2008 Remedial Action Report, prepared by CMX; and

February 2009 Supplemental Site Investigation (SSI) Report, prepared by CMX.

NJDEP Notice of Deficiency (NOD) dated December 3, 2008.

Natural Resource Conservation Service Soil Survey website. http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.

NJ Geological Survey. 2009. Kirkwood-Cohansey Water-table Aguifer.

NJDEP GeoWeb website. http://www.nj.gov/dep/gis/geowebsplash.htm.

US Geological Survey. Mineral Resources On-Line Spatial Data: http://mrdata.usgs.gov/

Regulations and Guidance:

NJDEP. N.J.A.C. 7:26D Remediation Standards; last amended September 18, 2017.

NJDEP. N.J.A.C. 7:26C Administrative Requirements for the Remediation of Contaminated Sites; last amended August 6, 2018.

NJDEP. N.J.A.C. 7:26E Technical Requirements for Site Remediation; last amended August 6, 2018.

NJDEP. Field Sampling Procedures Manual; dated August 2005.

NJDEP. December 29, 2011, Version 2.0. Alternative and Clean Fill Guidance for SRP sites.

NJDEP. Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil; dated March 2015 – Version 1.2.

NJDEP. Ecological Evaluation Technical Guidance; dated August 2018 – Version 2.0.

NJDEP. Development of Site-Specific Impact to Ground Water Soil Remediation Standards using the Synthetic Precipitation Leaching Procedure; dated November 2013 – Version 3.0.

TABLES

Table 1 - Summary of Soil Sampling Results for AOC-1/12. Camden Labs; Camden, NJ.

AOC						
Sample Name Laboratory ID	NJDE	P SRS	NJDEP IGW	WC-S-2 JC86710-1	WC-S-3 JC86710-2	
Sample Date	NRDC	RDC	SSL/SRS	4/19/2019	4/19/2019	
Extractable Hydrocarbons (mg/kg)						
EPH (>C28-C40)	NE	NE	NE	58.1	165	
EPH (C9-C28)	NE	NE	NE	14.2	42.3	
Total (NJDEP EPH)	SS SF	RC (1)	17000 (2)	72.3	207	
General Chemistry						
Solids (%)	-	-	-	89.6	90.2	

NJ-NRDCSRS - NJDEP Non-Residential Direct Contact Soil Remediation Standard

NJ-RDCSRS - NJDEP Residential Direct Contact Soil Remediation Standard

NJ-IGWSSL - NJDEP Default Impact to Groundwater Soil Screening Level

RL - Reporting Limit

MDL - Method Detection Limit

1. NJDEP Category 2 EPH Standards

2. NJDEP Category 2 EPH Product Determination

Bold/Boxed = Result exceeds NJ-IGWSSL

Highlight = Result exceeds NJ-RDCSRS

Highlight = Result exceeds NJ-NRDCSRS

Table 2 - Summary of Soil Sampling Results for AOC-5. Camden Labs; Camden, NJ.

AOC:			The Contract of the Contract o		AO	C-5	
SAMPLE ID:		NJDEP	-	S-1(4-4.5)	S-2(3.5-4)	S-3(4-4.5)	S-4(4-4.5)
SAMPLE DEPTH (ft bgs)	SF		IGW	4-4.5	3.5-4	4-4.5	4-4.5
LAB ID:	NRDC	RDC	SSL/SRS	JC60250-1	JC60250-2	JC60250-3	JC60250-4
COLLECTION DATE:	MADO	1150	COLIGINO	2/5/2018	2/5/2018	2/5/2018	2/5/2018
VOCs (mg/kg)							
Acetone	NE	70000	19	0.0091 U	0.014	0.01	0.0099
Benzene	5	2	0.005	0.00046 U	0.00045 U	0.0005 U	0.00047 U
Bromochloromethane	NE	NE	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Bromodichloromethane	3	1	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Bromoform	280	81	0.03	0.0046 U	0.0045 U	0.005 U	0.0047 U
Bromomethane	59	25	0.04	0.0046 U	0.0045 U	0.005 U	0.0047 U
Butanone (2-)	44000	3100	0.9	0.0091 U	0.009 U	0.0099 U	0.0093 U
Carbon Disulfide	110000	7800	6	0.0018 U	0.0018 U	0.002 U	0.0019 U
Carbon Tetrachloride	4	2	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Chlorobenzene	7400	510	0.6	0.0018 U	0.0018 U	0.002 U	0.0019 U
Chloroethane	1100	220	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Chloroform	2	0.6	0.4	0.0018 U	0.0018 U	0.002 U	0.0019 U
Chloromethane	12	4	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Cyclohexane	NE	NE	NE	0.0018 U	0.0018 U	0.002 U	0.0019 U
Dibromo-3-chloropropane (1,2-)	0.2	0.08	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Dibromochloromethane	8	3	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Dibromoethane (1,2-)	0.04	0.008	0.005	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichlorobenzene (1,2-)	59000	5300	17	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichlorobenzene (1,3-)	59000	5300	19	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichlorobenzene (1,4-)	13	5	2	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichlorodifluoromethane	230000	490	39	0.0046 U	0.0045 U	0.005 U	0.0047 U
Dichloroethane (1,1-)	24	8	0.2	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichloroethane (1,2-)	3	0.9	0.005	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichloroethene (1,1-)	150	11	0.008	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichloroethene (cis-1,2-)	560	230	0.3	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichloroethene (trans-1,2-)	720	300	0.6	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Dichloropropane (1,2-)	5	2	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Dichloropropene (cis-1,3-)	7	2	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Dichloropropene (trans-1,3-)	7	2	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Ethylbenzene	110000	7800	13	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Freon 11	340000	23000	34	0.0046 U	0.0045 U	0.005 U	0.0047 U
Freon 113	NE	NE	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Hexanone (2-)	NE	NE	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Isopropylbenzene	NE	NE	NE	0.0018 U	0.0018 U	0.002 U	0.0019 U
Methyl Acetate	NE	78000	22	0.0046 U	0.0045 U	0.005 U	0.0047 U
Methyl-2-pentanone (4-)	NE	NE	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Methylcyclohexane	NE	NE	NE	0.0018 U	0.0018 U	0.002 U	0.0019 U
Methylene Chloride	230	46	0.01	0.0031 J	0.0054	0.0044 J	0.0051
Methyl-t-Butyl Ether	320	110	0.2	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Styrene	260	90	3	0.0018 U	0.0018 U	0.002 U	0.0019 U
Tetrachloroethane (1,1,2,2-)	3	1	0.007	0.0018 U	0.0018 U	0.002 U	0.0019 U
Tetrachloroethene	1500	43	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Toluene	91000	6300	7	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Trichlorobenzene (1,2,3-)	NE	NE	NE	0.0046 U	0.0045 U	0.005 U	0.0047 U
Trichlorobenzene (1,2,4-)	820	73	0.7	0.0046 U	0.0045 U	0.005 U	0.0047 U
Trichloroethane (1,1,1-)	NE	160000	0.3	0.0018 U	0.0018 U	0.002 U	0.0019 U
Toluene Trichlorobenzene (1,2,3-) Trichlorobenzene (1,2,4-)	91000 NE 820	6300 NE 73	7 NE 0.7	0.00091 U 0.0046 U 0.0046 U	0.0009 U 0.0045 U 0.0045 U	0.00099 U 0.005 U 0.005 U	0.00093 U 0.0047 U 0.0047 U

Table 2 - Summary of Soil Sampling Results for AOC-5. Camden Labs; Camden, NJ.

SAMPLE ID:		NJDEP	,	S-1(4-4.5)	S-2(3.5-4)	S-3(4-4.5)	S-4(4-4.5)
SAMPLE DEPTH (ft bgs)	SF	RS	IGW	4-4.5	3.5-4	4-4.5	4-4.5
LAB ID:	NRDC	RDC	SSL/SRS	JC60250-1	JC60250-2	JC60250-3	JC60250-4
COLLECTION DATE:				2/5/2018	2/5/2018	2/5/2018	2/5/2018
Trichloroethane (1,1,2-)	6	2	0.02	0.0018 U	0.0018 U	0.002 U	0.0019 U
Trichloroethene	10	3	0.01	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Vinyl Chloride	2	0.7	0.005	0.0018 U	0.0018 U	0.002 U	0.0019 U
Xylene (o-)	170000	12000	19	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Xylenes (m&p)	170000	12000	19	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Xylenes (Total)	170000	12000	19	0.00091 U	0.0009 U	0.00099 U	0.00093 U
Total Alkanes	NE	NE	NE	ND	ND	ND	ND
Total TIC, Volatile	NE	NE	NE	ND	ND	ND	ND
SVOCs (mg/kg)							
3&4-Methylphenol	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Acenaphthene	37000	3400	110	0.037 U	0.034 U	0.037 U	0.038 U
Acenaphthylene	300000	NE	NE	0.037 U	0.034 U	0.037 U	0.038 U
Acetophenone	5	2	3	0.19 U	0.17 U	0.18 U	0.19 U
Anthracene	30000	17000	2400	0.037 U	0.034 U	0.037 U	0.038 U
Atrazine	2400	210	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Benzaldehyde	68000	6100	NE	0.19 U	0.17 U	0.18 U	0.19 U
Benzo[a]anthracene	17	5	8.0	0.021 J	0.042	0.024 J	0.085
Benzo[a]pyrene	2	0.5	0.2	0.037 U	0.034 J	0.023 J	0.077
Benzo[b]fluoranthene	17	5	2	0.023 J	0.044	0.028 J	0.099
Benzo[g,h,i]perylene	30000	380000	NE	0.037 U	0.034 U	0.037 U	0.043
Benzo[k]fluoranthene	170	45	25	0.037 U	0.021 J	0.037 U	0.041
Biphenyl (1,1'-)	240	61	140	0.075 U	0.067 U	0.073 U	0.076 U
Bis(2-Chloroethoxy)methane	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Bis(2-Chloroethyl)Ether	2	0.4	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Bis(2-Chloroisopropyl)ether	67	23	5	0.075 U	0.067 U	0.073 U	0.076 U
Bis(2-Ethylhexyl)phthalate	140	35	1200	0.075 U	0.067 U	0.073 U	0.076 U
Bromophenyl-phenylether (4-)	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Butylbenzylphthalate	14000	1200	230	0.075 U	0.067 U	0.073 U	0.076 U
Caprolactam	340000	31000	12	0.075 U	0.067 U	0.073 U	0.076 U
Carbazole	96	24	NE	0.075 U	0.067 U	0.073 U	0.076 U
Chloro-3-methylphenol (4-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Chloroaniline (4-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Chloronaphthalene (2-)	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Chlorophenol (2-)	2200	310	0.8	0.075 U	0.067 U	0.073 U	0.076 U
Chlorophenyl-phenylether (4-)	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Chrysene	1700	450	80	0.021 J	0.038	0.023 J	0.089
Dibenzo[a,h]Anthracene	2	0.5	0.8	0.037 U	0.034 U	0.037 U	0.038 U
Dibenzofuran	NE	NE	NE	0.075 U	0.067 U	0.073 U	0.076 U
Dichlorobenzidine (3,3'-)	4	1	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Dichlorophenol (2,4-)	2100	180	0.2	0.19 U	0.17 U	0.18 U	0.19 U
Diethylphthalate	550000	49000	88	0.075 U	0.067 U	0.073 U	0.076 U
Dimethylphenol (2,4-)	14000	1200	1	0.19 U	0.17 U	0.18 U	0.19 U
Dimethylphthalate	NE	NE 0400	NE	0.075 U	0.067 U	0.073 U	0.076 U
Di-n-butylphthalate	68000	6100	760	0.075 U	0.067 U	0.073 U	0.076 U
Dinitro-2-methylphenol (4,6-)	68	6	0.3	0.19 U	0.17 U	0.18 U	0.19 U
Dinitrophenol (2,4-)	1400	120	0.3	0.19 U	0.17 U	0.18 U	0.19 U
Dinitrotoluene (2,4-)	3	0.7	NE	0.037 U	0.034 U	0.037 U	0.038 U

Table 2 - Summary of Soil Sampling Results for AOC-5. Camden Labs; Camden, NJ.

SAMPLE ID:		NJDEP		S-1(4-4.5)	S-2(3.5-4)	S-3(4-4.5)	S-4(4-4.5)
SAMPLE DEPTH (ft bgs)	SF	RS	IGW	4-4.5	3.5-4	4-4.5	4-4.5
LAB ID:	NRDC	RDC	SSL/SRS	JC60250-1	JC60250-2	JC60250-3	JC60250-4
COLLECTION DATE:				2/5/2018	2/5/2018	2/5/2018	2/5/2018
Dinitrotoluene (2,6-)	3	0.7	NE	0.037 U	0.034 U	0.037 U	0.038 U
Di-n-octylphthalate	27000	2400	3300	0.075 U	0.067 U	0.073 U	0.076 U
Dioxane (1,4-)	NE	NE	NE	0.037 U	0.034 U	0.037 U	0.038 U
Fluoranthene	24000	2300	1300	0.033 J	0.072	0.04	0.16
Fluorene	24000	2300	170	0.037 U	0.034 U	0.037 U	0.038 U
Hexachlorobenzene	1	0.3	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Hexachlorobutadiene	25	6	0.9	0.037 U	0.034 U	0.037 U	0.038 U
Hexachlorocyclopentadiene	110	45	320	0.37 U	0.34 U	0.37 U	0.38 U
Hexachloroethane	48	12	0.2	0.19 U	0.17 U	0.18 U	0.19 U
Indeno[1,2,3-cd]pyrene	17	5	7	0.037 U	0.022 J	0.037 U	0.048
Isophorone	2000	510	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Methylnaphthalene (2-)	2400	230	8	0.037 U	0.034 U	0.037 U	0.038 U
Methylphenol (2-)	3400	310	NE	0.075 U	0.067 U	0.073 U	0.076 U
Naphthalene	17	6	25	0.037 U	0.034 U	0.037 U	0.038 U
Nitroaniline (2-)	23000	39	NE	0.19 U	0.17 U	0.18 U	0.19 U
Nitroaniline (3-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Nitroaniline (4-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Nitrobenzene	14	5	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Nitrophenol (2-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Nitrophenol (4-)	NE	NE	NE	0.37 U	0.34 U	0.37 U	0.38 U
Nitroso-Di-N-Propylamine (N-)	0.3	0.2	0.2	0.075 U	0.067 U	0.073 U	0.076 U
Nitrosodiphenylamine (N-)	390	99	0.4	0.19 U	0.17 U	0.18 U	0.19 U
Pentachlorophenol	3	0.9	0.3	0.15 U	0.13 U	0.15 U	0.15 U
Phenanthrene	300000	NE	NE	0.016 J	0.041	0.022 J	0.11
Phenol	210000	18000	8	0.075 U	0.067 U	0.073 U	0.076 U
Pyrene	18000	1700	840	0.031 J	0.063	0.037	0.14
Tetrachlorobenzene (1,2,4,5-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Tetrachlorophenol (2,3,4,6-)	NE	NE	NE	0.19 U	0.17 U	0.18 U	0.19 U
Trichlorophenol (2,4,5-)	68000	6100	68	0.19 U	0.17 U	0.18 U	0.19 U
Trichlorophenol (2,4,6-)	74	19	0.2	0.19 U	0.17 U	0.18 U	0.19 U
Total Alkanes	NE	NE	NE	ND	ND	ND	ND
Total TIC, Semi-Volatile	NE	NE	NE	ND	ND	ND	ND
Metals (mg/kg)							
Aluminum	NE	78000	6000	13300	8240	8270	8320
Antimony	450	31	6	2.2 U	2.3 U	2.2 U	2.2 U
Arsenic	19	19	19	7.7	6.7	8	7.9
Barium	59000	16000	2100	35.6	59.5	42.2	48.2
Beryllium	140	16	0.7	0.54	0.61	0.58	0.49
Cadmium	78	78	2	0.56 U	0.57 U	0.55 U	0.56 U
Calcium	NE	NE	NE	842	736	550 U	979
Chromium	20	240	NE	25.2	14	15.6	17.7
Cobalt	590	1600	90	5.6 U	5.7 U	9.1	5.6 U
Copper	45000	3100	11000	7.6	8.3	11.3	11.8
Iron	NE	NE	NE	21200	11000	12000	12000
Lead	800	400	90	25.9	32.6	40	64.6
Magnesium	NE	NE	NE	1790	1140	1110	1170
Manganese	5900	11000	65	89.1	166	264	120

Table 2 - Summary of Soil Sampling Results for AOC-5. Camden Labs; Camden, NJ.

SAMPLE ID:		NJDEP		S-1(4-4.5)	S-2(3.5-4)	S-3(4-4.5)	S-4(4-4.5)
SAMPLE DEPTH (ft bgs)	SF		IGW	4-4.5	3.5-4	4-4.5	4-4.5
LAB ID:	NRDC	RDC	SSL/SRS	JC60250-1	JC60250-2	JC60250-3	JC60250-4
COLLECTION DATE:	0.5		0.1	2/5/2018	2/5/2018	2/5/2018	2/5/2018
Mercury	65	23	0.1	0.037 U	0.035 U	0.053	0.081
Nickel	23000	1600	48 NE	7.5	7.2	10.3	6.7
Potassium	NE 5700	NE	NE	1840	1100 U	1100 U	1530
Selenium	5700	390	11	2.2 U	2.3 U	2.2 U	2.2 U
Silver	5700	390	1 NE	0.61	0.57 U	0.55 U	0.56 U
Sodium Thallium	NE NE	NE NE	NE 3	1100 U 1.1 U	1100 U 1.1 U	1100 U 1.1 U	1100 U 1.1 U
Vanadium	1100	78	NE	32.1	18.2	21.2	26.3
Zinc	110000	23000	930	33.4	38.6	41.9	42.2
ZIIIC	110000	23000	330	33.4	30.0	41.5	42.2
NJDEP EPH (mg/kg)							
EPH (>C28-C40)	NE	NE	NE	7.7 U	17.6	17.4	19.3
EPH (C9-C28)	NE	NE	NE	7.7 U	7.2 U	6.7 U	7.6 U
Total EPH (C9-C40)	SS SF	RC (1)	17000 (2)	7.7 U	17.6	17.4	19.3
PCBs (mg/kg)							
Aroclor-1248	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1016	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1221	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1232	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1242	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1254	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1260	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1262	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Aroclor-1268	1	0.2	0.2	0.036 U	0.037 U	0.035 U	0.035 U
Herbicides (mg/kg)							
2,4,5-T	NE	NE	NE	0.0036 U	0.0036 U	0.0035 U	0.0037 U
2,4-D	NE	NE	NE	0.018 U	0.018 U	0.018 U	0.018 U
Silvex	NE	NE	NE	0.0036 U	0.0036 U	0.0035 U	0.0037 U
Pesticides (mg/kg)							
4,4'-DDD	13	3	4	0.0063	0.00074 U	0.0057	0.0007 U
4,4'-DDE	9	2	18	0.09	0.11	0.21	0.34
4,4'-DDT	8	2	11	0.037	0.058	0.19	0.19
Aldrin	0.2	0.04	0.2	0.00071 U	0.00074 U	0.00069 U	0.0007 U
alpha-BHC	0.5	0.1	0.002	0.00071 U	0.00074 U	0.00069 U	0.0007 U
beta-BHC	2	0.4	0.002	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Chlordane	1	0.2	0.05	0.0089	0.0031	0.00069 U	0.04
Chlordane (cis-)	NE	NE	NE	0.0051	0.0018	0.00069 U	0.023
delta-BHC	NE	NE	NE	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Dieldrin	0.2	0.04	0.003	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endosulfan I	6800	470	4	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endosulfan II	6800	470	4	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endosulfan sulfate	6800	470	2	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endrin	340	23	1	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endrin aldehyde	NE	NE	NE	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Endrin Ketone	NE	NE	NE	0.00071 U	0.00074 U	0.00069 U	0.0007 U

Table 2 - Summary of Soil Sampling Results for AOC-5. Camden Labs; Camden, NJ.

SAMPLE ID:		NJDEP		S-1(4-4.5)	S-2(3.5-4)	S-3(4-4.5)	S-4(4-4.5)
SAMPLE DEPTH (ft bgs)	SF	RS	IGW	4-4.5	3.5-4	4-4.5	4-4.5
LAB ID:	NRDC	RDC	SSL/SRS	JC60250-1	JC60250-2	JC60250-3	JC60250-4
COLLECTION DATE:				2/5/2018	2/5/2018	2/5/2018	2/5/2018
gamma-BHC (Lindane)	2	0.4	0.002	0.00071 U	0.00074 U	0.00069 U	0.0007 U
gamma-Chlordane	NE	NE	NE	0.0038	0.0016	0.00069 U	0.017
Heptachlor	0.7	0.1	0.5	0.00071 U	0.00074 U	0.00069 U	0.0007 U
Heptachlor epoxide	0.3	0.07	0.01	0.00071 U	0.00074 U	0.00069 U	0.0037
Methoxychlor	5700	390	160	0.0014 U	0.0015 U	0.0014 U	0.0014 U
Toxaphene	3	0.6	0.3	0.018 U	0.019 U	0.017 U	0.017 U
Cyanide (mg/kg)							
Cyanide, Total	680	47	20	0.22 U	0.15 U	0.15 U	0.19 U
General Chemistry (su)							
рН	NE	NE	NE	6.01	6.41	4.72	6.04

NJDEP NRDC SRS - NJDEP Non-Residential Direct Contact Soil Remediation Standard

NJDEP RDC SRS - NJDEP Residential Direct Contact Soil Remediation Standard

NJDEP IGW SSL - NJDEP Default Impact to Groundwater Soil Screening Level

RL - Reporting Limit

MDL - Method Detection Limit

ND - Not Detected

J - Estimated Value, result >MDL and <RL

Bold/Italics = Result exceeds NJ-IGWSSL

Boxed = Result exceeds NJDEP RDC SRS

Highlight = Result exceeds NJDEP NRDC SRS

Shaded = RL exceeds one or more standards.

- 1. NJDEP Category 2 EPH Standards
- 2. NJDEP Category 2 EPH Product Determination

Table 3 - Summary of Soil Sampling Results for AOC-11. Camden Labs; Camden, NJ.

AOC			, , , , , , , , , , , , , , , , , , , ,	AOC-11	
Sample Name				HL-1	
Laboratory ID		P SRS	NJDEP IGW	JC81600-1	
Sample Date	NRDC	RDC	SSL/SRS	1/17/2019	
Extractable Hydrocarbons (mg/kg)					
EPH (>C28-C40)	-	-	-	218	
EPH (C9-C28)	-	-	-	832	
Total EPH (C9-C40)	-	-	-	1050	
Total (NJDEP EPH)	-	-	-	1050	
Polyaromatic Hydrocarbon Compou	ınds				
Acenaphthene	37000	3400	110	0.14 U	
Acenaphthylene	300000	NA	NA	0.14 U	
Anthracene	30000	17000	2400	0.14 U	
Benzo(a)anthracene	17	5	0.8	0.14 U	
Benzo(a)pyrene	2	0.5	0.2	0.14 U	
Benzo(b)fluoranthene	17	5	2	0.14 U	
Benzo(g,h,i)perylene	30000	380000	NA	0.14 U	
Benzo(k)fluoranthene	170	45	25	0.14 U	
Chrysene	1700	450	80	0.14 U	
Dibenzo(a,h)anthracene	2	0.5	0.8	0.14 U	
Fluoranthene	24000	2300	1300	0.14 U	
Fluorene	24000	2300	170	0.14 U	
Indeno(1,2,3-cd)pyrene	17	5	7	0.14 U	
Naphthalene	17	6	25	0.14 U	
Phenanthrene	300000	NA	NA	0.14 U	
Pyrene	18000	1700	840	0.14 U	
General Chemistry					
Solids (%)	-	-	-	87.9	

NJ-NRDCSRS - NJDEP Non-Residential Direct Contact Soil Remediation Standard

NJ-RDCSRS - NJDEP Residential Direct Contact Soil Remediation Standard

NJ-IGWSSL - NJDEP Default Impact to Groundwater Soil Screening Level

RL - Reporting Limit

MDL - Method Detection Limit

NA - Not Analyzed

J - Estimated Value, result >MDL and <RL

Bold/Boxed = Result exceeds NJ-IGWSSL

Highlight = Result exceeds NJ-RDCSRS

Highlight = Result exceeds NJ-NRDCSRS

Table 4. Summary of Soil Sampling Results for AOC-16. Camden Labs; Camden, New Jersey.

SAMPLE ID:		New Jersey		M-8(1.5-2.0)	M-8(18.0-18.5)	M-9(18.0-18.5)	M-10(1.5-2.0)	M-10(18.0-18.5)	M-11(18.0-18.5)	M-12(1.5-2.0)	M-12(18.0-18.5)	
SAMPLE DEPTH (ft bgs)			ital Protection	1.5-2.0	18.0-18.5	18.0-18.5	1.5-2.0	18.0-18.5	18.0-18.5	1.5-2.0	18.0-18.5	
LAB ID:	NRDC	RDC	IGW	JC60251-1	JC60251-2	JC60251-3	JC60251-4	JC60251-5	JC60251-6	JC60251-7	JC60251-8	
COLLECTION DATE:	SRS	SRS	SSL/SRS	2/5/2018	2/5/2018	2/5/2018	2/5/2018	2/5/2018	2/5/2018	2/5/2018	2/5/2018	
Metals (Report in mg/kg)												
Mercury	65	23	0.68†	0.037 U	0.039 U	0.68	0.048	0.039 U	0.038 U	0.039 U	0.035 U	
General Chemistry (Reportd in S.U.) pH	NE	NE	NE									
SPLP Metals (Reported in ug/l) Mercury		40 (3)				0.68	0.2 U					
SPLP Parameters												
Dry Weight, SPLP Leachate (kg)	NE	NE	NE			0.08266	0.08655					
Leachate Volume (I)	NE	NE	NE			2.009	2.005					
pH, Extraction Post-Filtration (su)	NE	NE	NE			8.22	6.22					
Sample Weight (kg)	NE	NE	NE			0.1004	0.1003					

NRDC SRS - NJDEP Non-Residential Direct Contact Soil Remediation Standard

RDC SRS - NJDEP Residential Direct Contact Soil Remediation Standard

IGW SSL/SRS - NJDEP Default Impact to Groundwater Soil Screening Level or Soil Remediation Standard

RL - Reporting Limit

MDL - Method Detection Limit

U - Not Detected

J - Estimated Value, result >MDL and <RL

† - Site Specific IGW Soil Remediation Standard

-- - Compound not analyzed.

Bold/Boxed = Result exceeds NJ-IGWSSL

Highlight = Result exceeds NJ-RDCSRS

ighlight = Result exceeds NJ-NRDCSRS

Table 5 - Summary of Soil Sampling Results for AOC-18. Camden Labs; Camden, NJ.

Table 5 - Summary of Soil Sampling	Results for	AUC-18. Cal	maen Labs; Camo							
AOC Sample Name				AOC-18						
Sample Name Laboratory ID	NIDE	P SRS	NJDEP IGW	AOC-18-1 JC86710-3						
Sample Date	NRDC	RDC	SSL/SRS	4/19/2019						
	HILDO	KDO	COLIDIO							
Extractable Hydrocarbons (mg/kg)										
EPH (>C28-C40)	-	-	-	71.7						
EPH (C9-C28)	-	-	-	16.1						
Total EPH (C9-C40)	-	-	-	87.8						
Total (NJDEP EPH)	-	-	-	87.8						
Volatile Organic Compounds (mg/kg)										
1,1,1-Trichloroethane	NA	160000	0.3	0.0022 U						
1,1,2,2-Tetrachloroethane	3	1	0.007	0.0022 U						
1,1,2-Trichloroethane	6	2	0.02	0.0022 U						
1,1-Dichloroethane	24	8	0.02	0.0022 0 0.0011 U						
1,1-Dichloroethene	150	11	0.2							
1,2,3-Trichlorobenzene	150		0.000	0.0011 U						
	990	- 72	- 0.7	0.0055 U						
1,2,4-Trichlorobenzene	820	73	0.7	0.0055 U						
1,2-Dibromo-3-chloropropane	0.2	0.08	0.005	0.0022 U						
1,2-Dibromoethane	0.04	0.008	0.005	0.0011 U						
1,2-Dichlorobenzene	59000	5300	17	0.0011 U						
1,2-Dichloroethane	3	0.9	0.005	0.0011 U						
1,2-Dichloropropane	5	2	0.005	0.0022 U						
1,3-Dichlorobenzene	59000	5300	19	0.0011 U						
1,4-Dichlorobenzene	13	5	2	0.0011 U						
2-Butanone (MEK)	44000	3100	0.9	0.011 U						
2-Hexanone	-	-	-	0.0055 U						
4-Methyl-2-pentanone(MIBK)	-	-	-	0.0055 U						
Acetone	NA	70000	19	0.011 U						
Benzene	5	2	0.005	0.00055 U						
Bromochloromethane	-	-	-	0.0055 U						
Bromodichloromethane	3	1	0.005	0.0022 U						
Bromoform	280	81	0.03	0.0055 U						
Bromomethane	59	25	0.04	0.0055 U						
Carbon disulfide	110000	7800	6	0.0022 U						
Carbon tetrachloride	4	2	0.005	0.0022 U						
Chlorobenzene	7400	510	0.6	0.0022 U						
Chloroethane	1100	220	NA	0.0055 U						
Chloroform	2	0.6	0.4	0.0022 U						
Chloromethane	12	4	NA	0.0055 U						
cis-1,2-Dichloroethene	560	230	0.3	0.0011 U						
cis-1,3-Dichloropropene	7	2	0.005	0.0022 U						
Cyclohexane	-	<u>-</u>	-	0.0022 U						
Dibromochloromethane	8	3	0.005	0.0022 U						
Dichlorodifluoromethane	230000	490	39	0.0055 U						
Ethylbenzene	110000	7800	13	0.0033 U 0.0011 U						
Freon 113	1 10000	1000	13	0.0055 U						
	-	-	-	0.0055 U 0.0022 U						
Isopropylbenzene	- NIA	70000	-							
Methyl Acetate	NA 330	78000	22	0.0055 U						
Methyl Tert Butyl Ether	320	110	0.2	0.0011 U						
Methylcyclohexane	-	-	-	0.0022 U						
Methylene chloride	230	46	0.01	0.0055 U						

Table 5 - Summary of Soil Sampling Results for AOC-18. Camden Labs; Camden, NJ.

Table 5 - Summary of Soil Sampling AOC	Results 101	AUC-10. Ca	muen Labs, Came	AOC-18
Sample Name				AOC-18-1
Laboratory ID	NJDE	P SRS	NJDEP IGW	JC86710-3
Sample Date	NRDC	RDC	SSL/SRS	4/19/2019
Styrene	260	90	3	0.0022 U
Tetrachloroethene	1500	43	0.005	0.0022 U
Toluene	91000	6300	7	0.0022 0 0.0011 U
trans-1,2-Dichloroethene	720	300	0.6	0.0011 U
trans-1,3-Dichloropropene	7	2	0.005	0.0022 U
Trichloroethene	10	3	0.003	0.0022 0 0.0011 U
Trichlorofluoromethane	340000	23000	34	0.0055 U
Vinyl chloride	2	0.7	0.005	0.0022 U
•	170000	12000	19	0.0022 0 0.0011 U
Xylene (total)	170000	12000	19	0
Total TIC, Volatile	-	-	-	U
Semi-Volatile Organic Compounds	(ma/ka)			
1,1'-Biphenyl	240	61	140	0.073 U
1,2,4,5-Tetrachlorobenzene	-	-	-	0.18 U
1,4-Dioxane	_	_	-	0.036 U
2,2'-Oxybis(1-chloropropane)	67	23	5	0.073 U
2,3,4,6-Tetrachlorophenol	-	-	<u>-</u>	0.18 U
2,4,5-Trichlorophenol	68000	6100	68	0.18 U
2,4,6-Trichlorophenol	74	19	0.2	0.18 U
2,4-Dichlorophenol	2100	180	0.2	0.18 U
2,4-Dimethylphenol	14000	1200	1	0.18 U
2,4-Dinitrophenol	1400	120	0.3	0.18 U
2,4-Dinitrotoluene	3	0.7	NA	0.036 U
2,6-Dinitrotoluene	3	0.7	NA	0.036 U
2-Chloronaphthalene	-	-	-	0.073 U
2-Chlorophenol	2200	310	0.8	0.073 U
2-Methylnaphthalene	2400	230	8	0.036 U
2-Methylphenol	3400	310	NA	0.073 U
2-Nitroaniline	23000	39	NA	0.18 U
2-Nitrophenol	-	-	-	0.18 U
3&4-Methylphenol	-	-	-	0.073 U
3,3'-Dichlorobenzidine	4	1	0.2	0.073 U
3-Nitroaniline	-	-	-	0.18 U
4,6-Dinitro-o-cresol	68	6	0.3	0.18 U
4-Bromophenyl phenyl ether	-	-	-	0.073 U
4-Chloro-3-methyl phenol	-	-	-	0.18 U
4-Chloroaniline	-	-	-	0.18 U
4-Chlorophenyl phenyl ether	-	-	-	0.073 U
4-Nitroaniline	-	-	-	0.18 U
4-Nitrophenol	-	-	-	0.36 U
Acenaphthene	37000	3400	110	0.036 U
Acenaphthylene	300000	NA	NA	0.036 U
Acetophenone	5	2	3	0.18 U
Anthracene	30000	17000	2400	0.036 U
Atrazine	2400	210	0.2	0.073 U
Benzaldehyde	68000	6100	NA	0.18 U
Benzo(a)anthracene	17	5	0.8	0.0714
Benzo(a)pyrene	2	0.5	0.2	0.091

Table 5 - Summary of Soil Sampling Results for AOC-18. Camden Labs; Camden, NJ.

Table 5 - Summary of Soil Sampli	ing Results for	AUG-10. Gai	inden Labs, Came	AOC-18	
Sample Name				AOC-18-1	
Laboratory ID	NJDE	P SRS	NJDEP IGW	JC86710-3	
Sample Date	NRDC	RDC	SSL/SRS	4/19/2019	
Benzo(b)fluoranthene	17	5	2	0.128	
Benzo(g,h,i)perylene	30000	380000	NA	0.0644	
Benzo(k)fluoranthene	170	45	25	0.0455	
bis(2-Chloroethoxy)methane	-	-	-	0.073 U	
bis(2-Chloroethyl)ether	2	0.4	0.2	0.073 U	
bis(2-Ethylhexyl)phthalate	140	35	1200	0.073 U	
Butyl benzyl phthalate	14000	1200	230	0.073 U	
Caprolactam	340000	31000	12	0.073 U	
Carbazole	96	24	NA	0.0090 J	
Chrysene	1700	450	80	0.0962	
Di-n-butyl phthalate	68000	6100	760	0.073 U	
Di-n-octyl phthalate	27000	2400	3300	0.073 U	
Dibenzo(a,h)anthracene	2	0.5	0.8	0.0170 J	
Dibenzofuran	-	-	-	0.073 U	
Diethyl phthalate	550000	49000	88	0.073 U	
Dimethyl phthalate	-	-	-	0.073 U	
Fluoranthene	24000	2300	1300	0.146	
Fluorene	24000	2300	170	0.036 U	
Hexachlorobenzene	1	0.3	0.2	0.073 U	
Hexachlorobutadiene	25	6	0.9	0.036 U	
Hexachlorocyclopentadiene	110	45	320	0.36 U	
Hexachloroethane	48	12	0.2	0.18 U	
Indeno(1,2,3-cd)pyrene	17	5	7	0.0565	
Isophorone	2000	510	0.2	0.073 U	
N-Nitroso-di-n-propylamine	0.3	0.2	0.2	0.073 U	
N-Nitrosodiphenylamine	390	99	0.4	0.18 U	
Naphthalene	17	6	25	0.036 U	
Nitrobenzene	14	5	0.2	0.073 U	
Pentachlorophenol	3	0.9	0.3	0.15 U	
Phenanthrene	300000	NA	NA	0.0756	
Phenol	210000	18000	8	0.073 U	
Pyrene	18000	1700	840	0.155	
Total TIC, Semi-Volatile	-	-	-	0.17 J	
,					
Pesticides (mg/kg)	4.4	•	,	0.0004	
4,4'-DDD	13	3	4	0.0061	
4,4'-DDE	9	2	18	0.212	
4,4'-DDT	8	2	11	0.0604	
Aldrin	0.2	0.04	0.2	0.00074 U	
alpha-BHC	0.5	0.1	0.002	0.00074 U	
alpha-Chlordane	1	0.2	0.05	0.00074 U	
beta-BHC	2	0.4	0.002	0.00074 U	
Chlordane (alpha and gamma)	1	0.2	0.05	0.00074 U	
delta-BHC	-	<u>-</u>	_	0.00074 U	
Dieldrin	0.2	0.04	0.003	0.00074 U	
Endosulfan sulfate	6800	470	2	0.00074 U	
Endosulfan-l	6800	470	4	0.00074 U	
Endosulfan-II	6800	470	4	0.00074 U	

Table 5 - Summary of Soil Sampling Results for AOC-18. Camden Labs; Camden, NJ.

AOC	itesuits ioi	Ασσ-10. σα	maen Labs, Game	AOC-18		
Sample Name				AOC-18-1		
Laboratory ID	NJDEP SRS		NJDEP IGW	JC86710-3		
Sample Date	NRDC	RDC	SSL/SRS	4/19/2019		
Endrin	340	23	1	0.00074 U		
Endrin aldehyde	-	-	-	0.00074 U		
Endrin ketone	-	-	-	0.00074 U		
gamma-BHC (Lindane)	2	0.4	0.002	0.00074 U		
gamma-Chlordane	1	0.2	0.05	0.00074 U		
Heptachlor	0.7	0.1	0.5	0.00074 U		
Heptachlor epoxide	0.3	0.07	0.01	0.00074 U		
Methoxychlor	5700	390	160	0.0015 U		
Toxaphene	3	0.6	0.3	0.018 U		
Polychlorinated Biphenys (mg/kg)						
Aroclor 1016	1	0.2	0.2	0.037 U		
Aroclor 1221	1	0.2	0.2	0.037 U		
Aroclor 1232	1	0.2	0.2	0.037 U		
Aroclor 1242	1	0.2	0.2	0.037 U		
Aroclor 1248	1	0.2	0.2	0.037 U		
Aroclor 1254	1	0.2	0.2	0.037 U		
Aroclor 1260	1	0.2	0.2	0.037 U		
Aroclor 1262	1	0.2	0.2	0.037 U		
Aroclor 1268	1	0.2	0.2	0.037 U		
Total PCBs	-	-	-	ND		
Total Metals (mg/kg)						
Aluminum	NA	78000	7280†	7280		
Antimony	450	31	6	2.3 U		
Arsenic	19	19	19	10		
Barium	59000	16000	2100	79.8		
Beryllium	140	16	0.7	0.55		
Cadmium	78	78	2	0.57 U		
Calcium	-	-	-	1470		
Chromium	-	-	-	19		
Cobalt	590	1600	90	5.7 U		
Copper	45000	3100	11000	17.8		
Iron	-	-	-	12600		
Lead	800	400	190†	190		
Magnesium	-	-	-	1120		
Manganese	5900	11000	181†	181		
Mercury	65	23	0.1	0.064		
Nickel	23000	1600	48	9		
Potassium	-	-	-	1220		
Selenium	5700	390	11	2.3 U		
Silver	5700	390	1	0.57 U		
Sodium	-	-	-	1100 U		
Thallium	-	-	3	1.1 U		
Vanadium	1100	78	NA	25.4		
Zinc	110000	23000	930	94.9		

Table 5 - Summary of Soil Sampling Results for AOC-18. Camden Labs; Camden, NJ.

AOC				AOC-18	
Sample Name Laboratory ID	N.IDE	P SRS	NJDEP IGW	AOC-18-1 JC86710-3	
Sample Date	NRDC RDC		SSL/SRS	4/19/2019	
SPLP Analysis					
pH, SPLP Leachate (su)	-	-	-	8.01	
Volume, SPLP Leachate (I)	-	-	-	2.011	
Weight, SPLP Leachate (kg)	-	-	-	0.1006	
Dry Weight, SPLP Leachate (kg)	-	-	-	0.08719	
Aluminum (ug/)		4000*		1640	
Lead (ug/l)		100*		50 U	
Manganese (ug/l)		1000*		29.4	
General Chemistry					
Cyanide (mg/kg)	680	47	20	0.28 U	
pH (S.T.U.)	-	-	-	6.03	
Solids (%)	-	-	-	86.7	

NJ-NRDCSRS - NJDEP Non-Residential Direct Contact Soil Remediation Standard

NJ-RDCSRS - NJDEP Residential Direct Contact Soil Remediation Standard

NJ-IGWSSL - NJDEP Default Impact to Groundwater Soil Screening Level

RL - Reporting Limit

MDL - Method Detection Limit

NA - Not Analyzed

J - Estimated Value, result >MDL and <RL

† - Site Specific IGW SRS

* NJDEP Leachate Criterion.

Bold/Boxed = Result exceeds NJ-IGWSSL

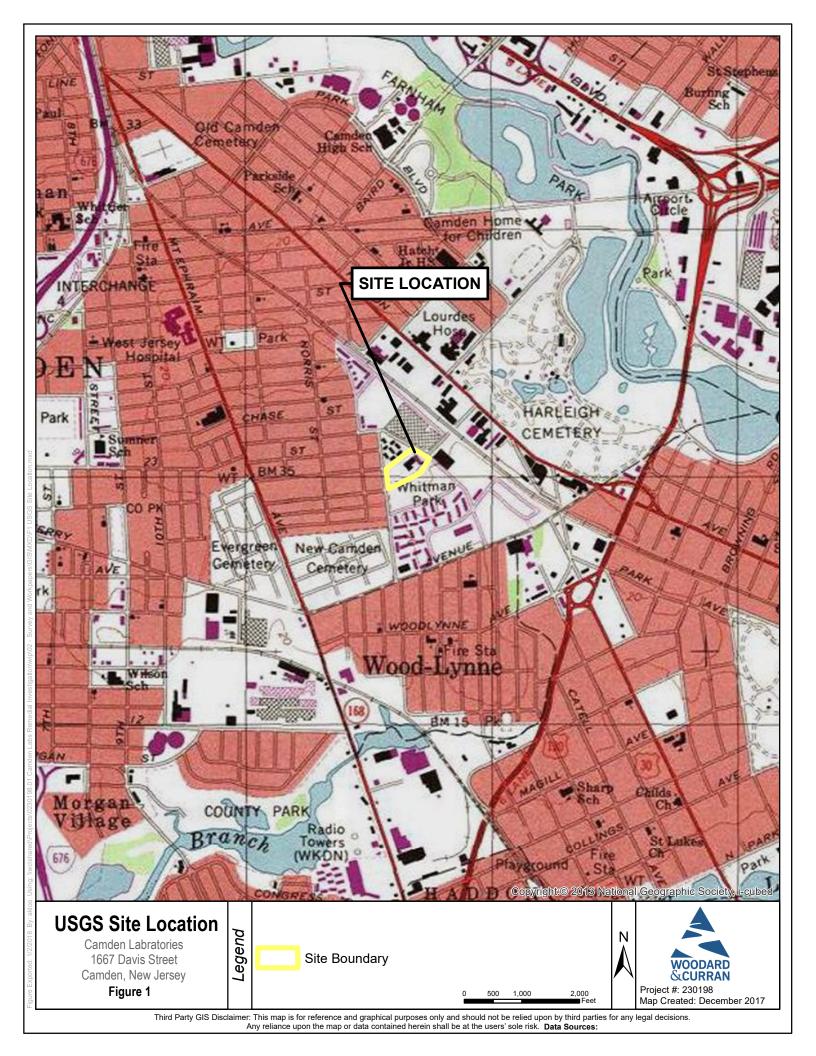
Highlight = Result exceeds NJ-RDCSRS

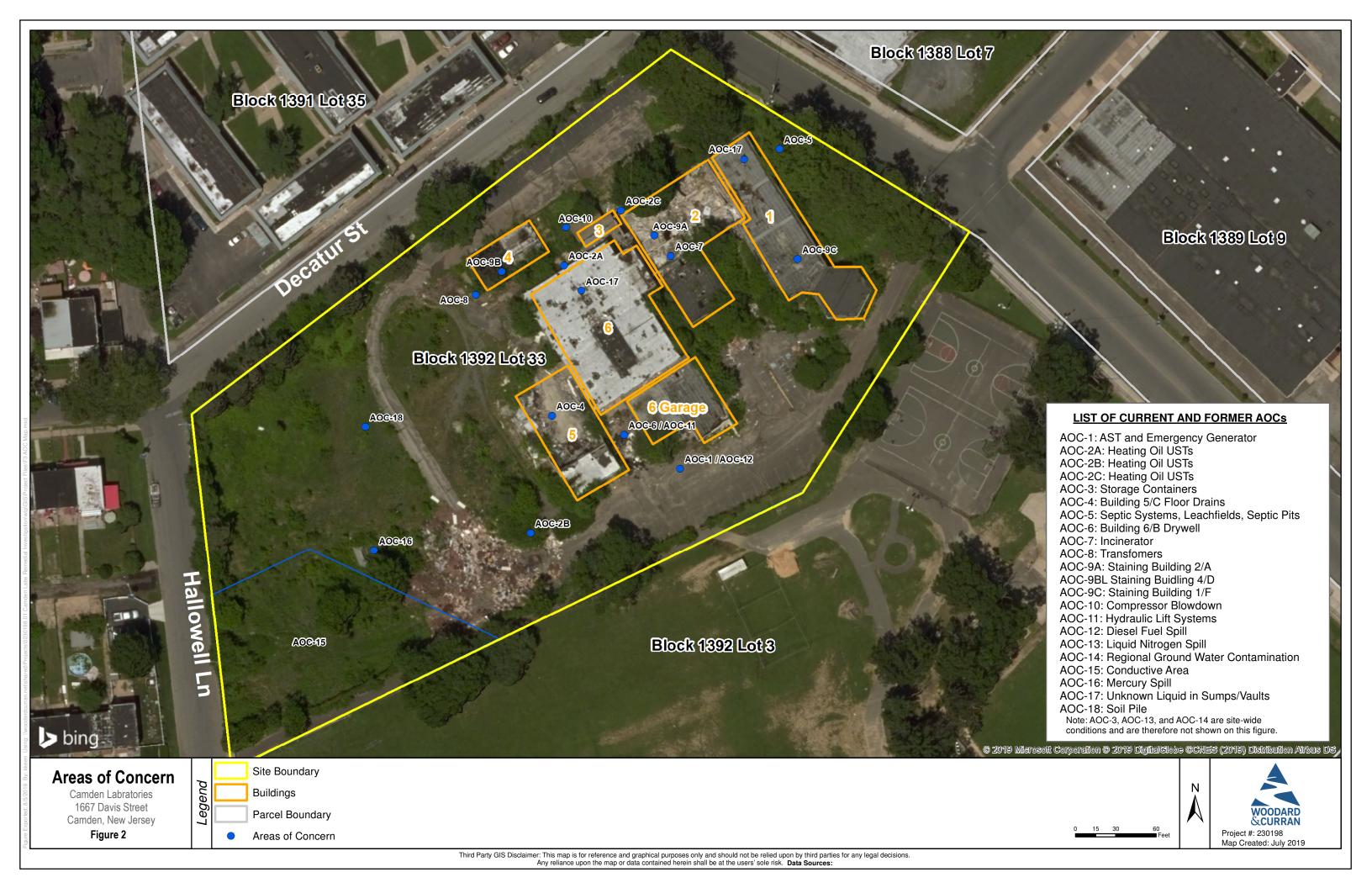
Highlight = Result exceeds NJ-NRDCSRS

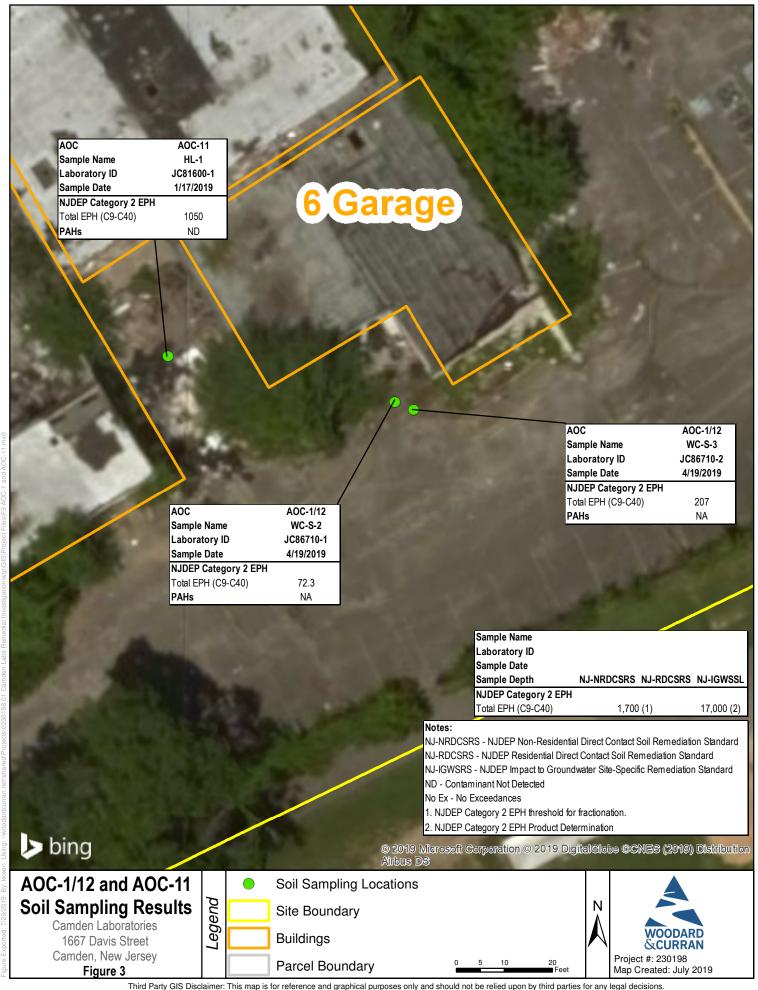
Table 6. Summary of Ground Water Sampling Results - Former Camden Labs; Camden, NJ.

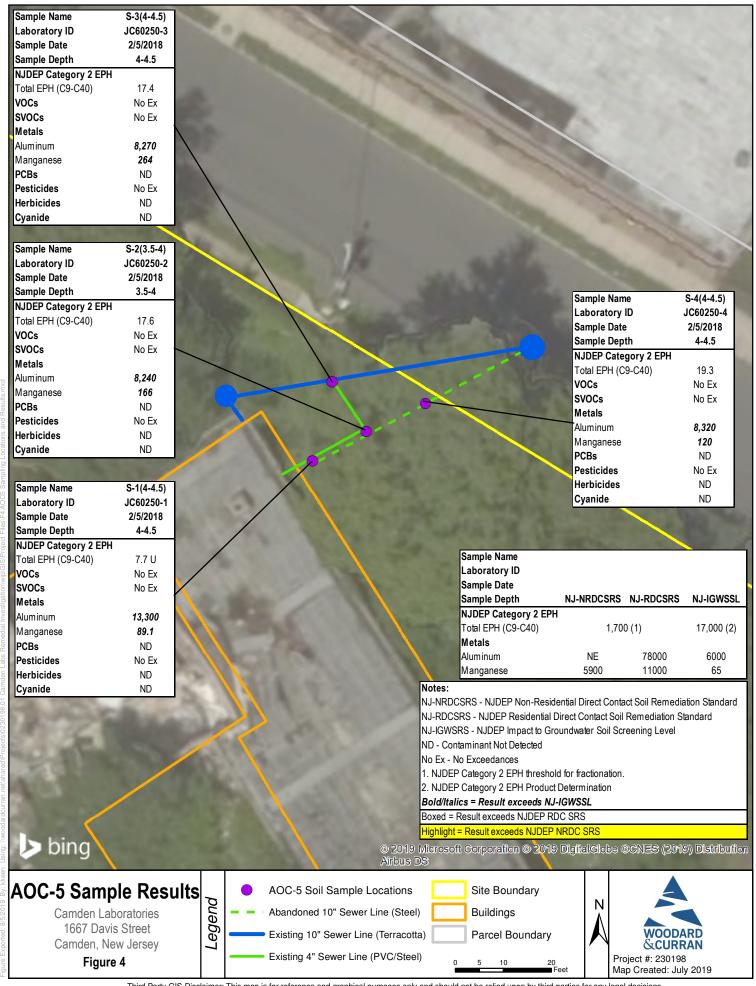
Sample ID:	NJDEP	MW-1		MW-2		MW-3	
Lab Sample ID:	GWQS	JC72686-3	JC75106-1	JC72686-2	JC75106-2	JC72686-1	JC75106-3
Date Sampled:		8/28/2018	10/2/2018	8/28/2018	10/2/2018	8/28/2018	10/2/2018
Metals Analysis (Results Reported in ug/l)							
Mercury	2	0.20 J	0.20 J	0.20 J	0.20 J	0.21	0.87

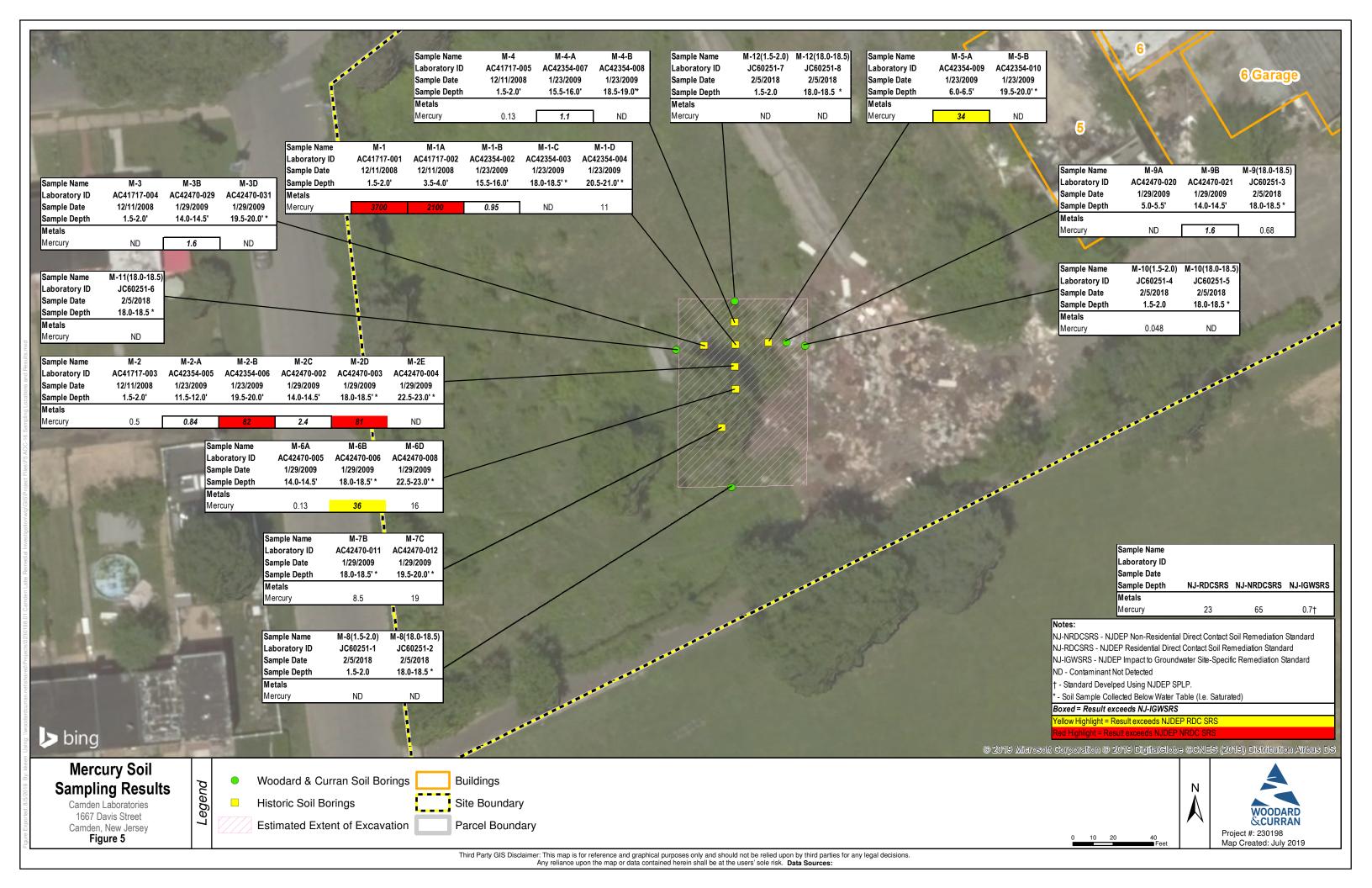
NJDEP - New Jersey Department of Environmental Protection.

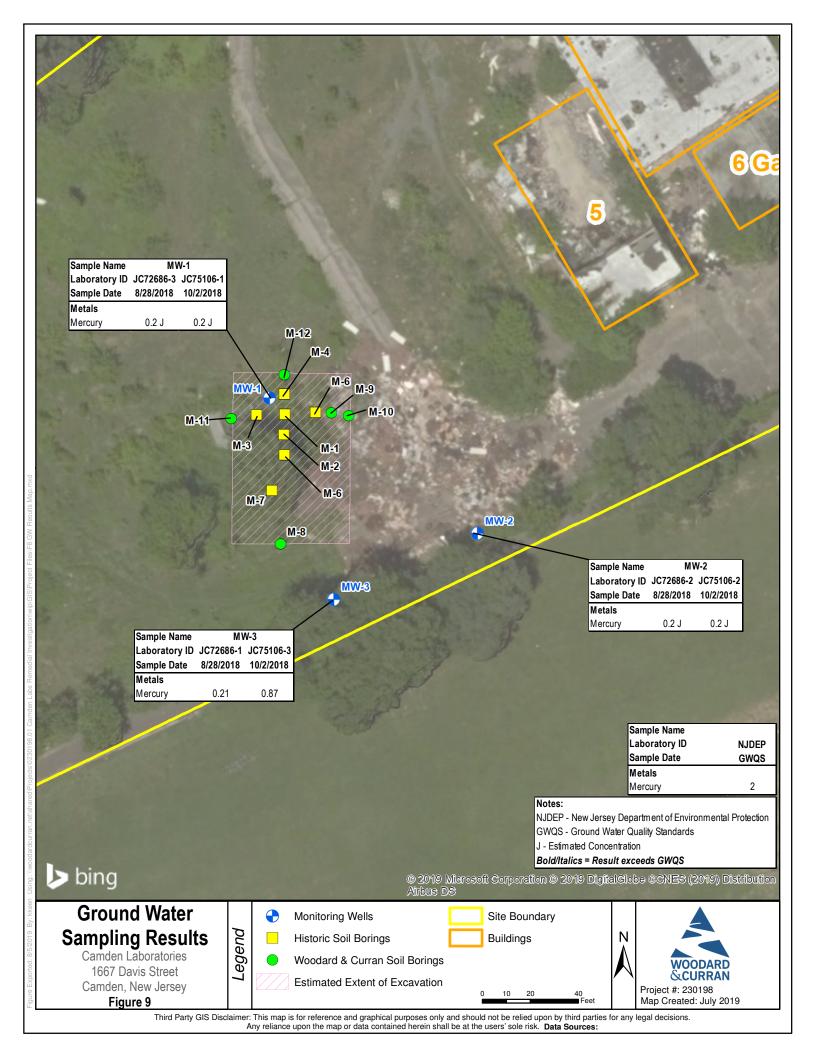

GWQS - Ground Water Quality Standard.


ug/l - Micrograms per liter.


J - Estimated Concentration.




FIGURES



APPENDIX A: SUPPORTING DOCUMENTS

070235804

PRELIMINARY ASSESSMENT REPORT

FOR

Camden Laboratories Property

1667 Davis Street
Block 1392 Lot 33
City of Camden
Camden County, New Jersey

Prepared For:

Camden Laboratories LP

PO Box 2614 West Chester, PA 19308

Prepared By:

CMX

1101 Laurel Oak Road Suite 160 Voorhees, NJ 08043-7346

August 2008

CERTIFICATION

N.J.A.C. 7:26-1.2 et. seq.

Any person making a submission to the Department required by this chapter and pursuant to N.J.A.C. 7:26E, will include the following signature and notarized certification, for each technical submittal. Additionally, the certification will indicate the case name and address, case number, type of documents submitted, e.g. Remedial Action Report, for each technical submittal.

TYPE OF DOCUMENT: <u>Preliminary Assessment Report</u>

CASE NAME: <u>Camden Laboratories Property</u>

CASE ADDRESS: <u>1667 Davis Street, City of Camden, Camden County</u>

CASE NUMBER: Not Applicable

The following certification will be signed by:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For a partnership or sole proprietorship, by a general partner of the proprietor, respectively, or:
- 3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.
- 4. For persons other than 1 through 3 above, by the person with legal responsibility for the Site.

"I certify, under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

SIGNATURE	DATE	
NOTARY SIGNATURE	DATE	

Preliminary Assessment Summary

CMX has conducted a Preliminary Assessment (PA) of the Camden Laboratories Property, 1667 Davis Street, consisting of Block 1392, Lot 33, in the City of Camden, Camden County, New Jersey. CMX completed this PA pursuant to the New Jersey Administrative Code (N.J.A.C.) 7:26E-3.1 through 3.2 [a.k.a., the New Jersey Department of Environmental Protection (NJDEP) <u>Technical Requirements for Site Remediation</u> or "Tech Rules"]. CMX completed this PA on behalf of Camden Laboratories LP, PO Box 2614, West Chester, Pennsylvania. CMX has utilized the NJDEP Site Remediation Program (SRP) PA Report form as the body of this report. Where necessary, CMX has attached supplementary appendices. A list of these appendices is provided in the following pages.

Based on the findings of this PA, CMX has determined that there are fourteen (14) areas of concern (AOCs) at the subject site:

Bulk Storage Tanks and Appurtenances

Above Ground Storage Tanks (AOC-1) – One (1) 275-gallon AST which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt. CMX recommends no investigation of this AOC.

Underground Storage Tanks (AOC-2A/AOC-2B/AOC-2C) – EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the UST database (Facility ID 016718). Two (2) 6,000-gallon heating oil USTs (AOC-2A and AOC-2B) and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. Mr. Manco confirmed the closure and removal of three (3) UST's in 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed.

According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's (AOC-2A/AOC-2B) and one (1) 2,000 gallon UST (AOC-2B) containing No. 2 heating oil were closed and removed at the site in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for TPH. TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis.

Based on our review of the post-excavation soil sample analytical results, no exceedances of current NJDEP soil cleanup were identified. CMX recommends no investigation of this AOC.

Storage and Staging Areas

Storage Containers (AOC-3) – Four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint container were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Mr. Manco informed CMX that all of the

containers were going to be removed from the property in the near future. CMX recommends no investigation of this AOC; however the containers should be removed and disposed of in accordance with applicable waste regulations.

Drainage Systems

Building C Floor Drains (AOC-4) – Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommends no investigation of this AOC.

Septic Systems, Leachfields or Seepage Pits (AOC-5) – According to the ERI PA report, "available information indicates that a cesspool was once in use at the Site. There is a concern that contaminants may have been discharged to the cesspool. It is recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii." Mr. Manco acknowledged that a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. CMX recommends investigation of this AOC.

Building B Drywell (AOC-6) – Building B is located in the central section of the existing structures and was the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to the BCM environmental assessment correspondence, Building B boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. ERI indicated that the drywell utilized for collection of Building B boiler blowdown was removed in their PA report. CMX recommends investigation of this AOC.

Discharge and Disposal Areas

Incinerator (AOC-7) – According to the BCM environmental assessment correspondence, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported offsite for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site. CMX did not observe an incinerator during the site reconnaissance. CMX recommends no investigation of this AOC.

Other Areas of Concern

Transformers (AOC-8) – Two (2) electric transformers were observed at the west exterior of the power house (Building D). According to the BCM environmental assessment report, these transformers are of the dry construction type and do not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. The transformers were in fair

condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers. CMX recommends no investigation of this AOC.

Building A Staining (AOC-9A) – Building A is located within the northern most section of the existing building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommends no investigation of this AOC.

Building D Staining (AOC-9B) – Building D is the western most structure and is comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building D. Heavy staining of the concrete surface was noted beneath the generators. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. CMX recommends no investigation of this AOC.

Building F Staining (AOC-9C) – Building F is the eastern most structure and consists of ground floor and basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. CMX recommends no investigation of this AOC.

Compressor Blowdown (AOC-10) – According to the BCM environmental assessment correspondence, refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils." In addition, ERI indicated that stained soils identified at the exterior of Building B were removed in their PA report. CMX did not observe stained soils in this area during the site reconnaissance. CMX recommends no investigation of this AOC.

Site Specific Areas of Concern

Hydraulic Lift System (AOC-11) – A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. No evidence of a discharge from the hydraulic lift system was noted. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. According to the BCM environmental assessment correspondence, at the time of the BCM site reconnaissance the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry." In addition, based on their PA, ERI concluded that "a hydraulic lift was observed at the loading docks at the Site. The 1988 assessment indicated that the tank was leaking. There is a concern that contaminants may have discharged to soils at the Site." CMX recommends investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID

2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997. The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

A file completion memo dated October 25, 2007 regarding Case No. 97-0221-1440-39 was provided by the Camden County Department of Health. According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." CMX recommends investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. CMX recommends no investigation of this AOC.

Regional Ground Water Contamination (AOC-14) – EDR reported that the north adjacent RF Products property disposed degreasing solvents through drains. In order to determine the potential for impact to the site from the PF Products property, CMX reviewed available NJDEP records for RF Products on July 2, 2008. Based on a review of available records, RF Products has been identified as a source of a ground water contamination within the region. Ground water contamination has been identified on the Camden Laboratories property and has been attributed to migration of contaminants originating from RF Products. CMX recommends no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

AOC locations are included on Figure 3 (Appendix K).

In summary, CMX recommends Site Investigation (SI) activities pursuant to NJDEP Tech Rules, N.J.A.C. 7:26E-3.3, as applicable, for four (4) of the fourteen (14) AOCs.

List of Appendices

Appendix A – History of Ownership/Description of Site and Operations

Appendix B - Environmental Database Search

Appendix C - Sanborn Fire Insurance Maps

Appendix D - Federal, State and Local Government Records Review

Appendix E - Historical Aerial Photographs

Appendix F - Historical Topographic Maps

Appendix G - McRae's Industrial Directory Search

Appendix H – Site Inspection Photographs

Appendix I – Previous Investigations

Appendix J – Areas of Concern

Appendix K - Site Maps

New Jersey Department of Environmental Protection Site Remediation Program

PRELIMINARY ASSESSMENT REPORT

This form has been created to assist in completing a Preliminary Assessment in accordance with the Technical Requirements for Site Remediation, N.J.A.C. 7:26E. It must be completed in detail and supplemented with narratives where directed. This form takes the Preliminary Assessment requirements of the Technical Rules and puts them into a question and answer format. It is the foundation for completing an environmental investigation of a site as a means towards obtaining a no-further-action approval from the Department; as well as a means toward meeting the minimum requirements of the due diligence requirements of the innocent purchaser defense as defined by N.J.S.A. 58:10-23.11g

INFORMATION IN THE REPORT SHALL BE USED AS THE INITIAL BASIS FOR ASSESSING POTENTIAL ENVIRONMENTAL CONCERNS. THIS FORM MUST BE CERTIFIED IN ACCORDANCE WITH N.J.A.C. 7:26E-1.5. SUBMIT ONE ORIGINAL CERTIFIED COPY OF THIS FORM UNLESS IT IS ACCOMPANIED BY A SITE INVESTIGATION REPORT AND A PROPOSED REMEDIAL INVESTIGATION WORKPLAN IN WHICH CASE 3 COPIES SHALL BE SUBMITTED.

This form should be used as a foundation for completing a preliminary assessment report in accordance with N.J.A.C.7: 26E, the Technical Requirements for Site Remediation, subchapter 3.1 and 3.2. The purpose of a preliminary assessment is to identify the presence of any potentially contaminated areas of concern. And if the information gathered to complete this form identifies any potentially contaminated areas of concern, then there is a need to complete a site investigation pursuant to N.J.A.C. 7:26E-3.3 through 3.13. If this is the case, then continue with the remedial activities and submit the preliminary assessment report with a complete site investigation report and a proposal based on the findings of the site investigation. **Note: A Preliminary Assessment Report does not include the results of a site investigation.**

The Department will accept mimeograph copies or computer-generated copies of this form provided the copies are legible and all questions listed on this form are included.

The application must be notarized.

Should you encounter any problem in completing this form, we recommend that you discuss the matter with your assigned Case Manager for active cases or a representative from the Department if completing the form in anticipation of a future submittal to the NJDEP. Submitting incorrect or insufficient data may cause processing delays and possible postponement of your transaction.

Please call (609) 633-0708 or your assigned case manager between the hours of 8:30 a.m. and 4:30 p.m. to request assistance.

PLEASE PRINT OR TYPE

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF REMEDIATION SUPPORT P.O. Box 435, TRENTON, NJ 08625-0435

PRELIMINARY ASSESSMENT REPORT

Answer all questions. Should you encounter any problems in completing this form, we recommend that you discuss the matter with a representative from the Site Remediation Program. Submitting incorrect or insufficient data may cause processing delays and possible postponement of your transaction

Date: June 26, 2008

ndustrial Establishment/Site NameCamden Laboratories Property					
Address	1667 Davis Street				
City or Town _	Camden		Zip Code <u>0810</u>)4	
Municipality	Camden	County	Camden		
Block (s)	1392	Lots (s)	33		
Site Remediat	Slock (s) Lots (s) 33 Site Remediation Program Case Number or EPA Identification Number 08-07-01-1547-19				

1. Present a history of ownership and operations at the industrial establishment, in tabular form, from the time the site was naturally vegetated or utilized as farmland in accordance with N.J.A.C. 7:26E-3.1(c)1.ii. (attach additional sheets as necessary)

Ownership History - Block 1392, Lot 33;			
Name of Property Owner	From	То	
Camden Laboratories	May 1, 1989	Present	
Coriell Institute for Medical Research (South Jersey Medical Research Foundation)	June 26, 1965	May 1, 1989	
City of Camden	Unknown	June 26, 1965	

- 2A. In accordance with N.J.A.C. 7:26E-3.1(c)1.i, provide a clear and concise description of the past industrial/commercial operation(s) conducted on site by each owner and operator. To the extent available the site history shall include an evaluation of the following sources of information:
 - (1) Sanborn Fire Insurance Maps; (2) MacRae's Industrial Directory, New Jersey Industrial Directory, New Jersey Manufacturers Directory; (3) Title and Deed; (4) Site plans and facility as-built drawings; (5) federal, state, county and local government files; (6) The Department Geographic Information System. (7) and any additional sources which may be available for a specific site.

Site history is frequently an item where preliminary assessments are incomplete. The Industrial Site Recovery Act requires that a diligent inquiry be made, researching the site history back to January 1, 1932. Common answers to this question have included: "Unknown", or "We are only a tenant on the site and have no knowledge of prior site history". Neither of these answers satisfies the requirement for a due diligent inquiry.

To avoid having a PA found incomplete by the Department due to insufficient information, the site history must be researched. The following are ways of obtaining information regarding site history: title searches; contacting the local and county health officials and municipal agencies (for example, local fire and police departments, and local planning, zoning, adjustment boards) requesting any information these public agencies may have on the specific location; and, interviewing long time neighbors of the industrial establishment. Tenants should always request information from the landlord. The applicant should always document any attempts to locate this information to support a claim that a diligent inquiry has been conducted. The Preliminary Assessment report should not be submitted until all parties contacted for information have responded to the request for information and the information obtained has been reviewed. If the prior site history demonstrates that the current building was built on vacant unimproved property, it should be reported as such. If the site has been, or is now the subject of a site remediation, any prior cases should always be referenced.

Provide the page or appendix number where the site history may be found. Appendix A

Provide a listing of the resources utilized to compile the site history and as appropriate copies of any maps or information, which will assist the Department in evaluating your conclusions.

Name of Resource	Date of document reviewed	Appendix # if providing copies
RealQuest® Report	Various	Appendix A
Environmental Data Resources Database Search	November 13, 2007	Appendix B
Sanborn Fire Insurance Maps	Various	Appendix C
Regulatory Agency Records	Various	Appendix D
Historical Aerial Photographs	Various	Appendix E
Historical Topographic Maps	Various	Appendix F
McRae's Industrial Directory	Various	Appendix G
Previous Investigation Reports	Various	Appendix I
Site Maps	Various	Appendix K

2B. Include a detailed description of the most recent operations subject to this preliminary assessment.

Provide the page or appendix # where the description of the most recent operations may be found. <u>Appendix A</u>

3. Hazardous Substance/Waste Inventory: N.J.A.C. 7:26E-3.1(c)1.iii. List <u>all</u> raw materials, finished- products, formulations and hazardous substances, hazardous wastes, hazardous constituents and pollutants, including intermediates and by-products that <u>are or were historically present</u> on the site. Note: If past usage included farming, pesticides may be a concern and should be included in this list. (Attach additional sheets if necessary).

Material Name	CAS # if known	Typical annual usage (gallons/lbs.)	Storage method (i.e. Drum, tank, jars)
Diesel Fuel	Unknown	Unknown	275-gallon AST
No.2 Heating Oil	Unknown	Unknown	6,000-gallon UST
No.2 Heating Oil	Unknown	Unknown	6,000-gallon UST
No.2 Heating Oil	Unknown	Unknown	2,000-gallon UST
Muriatic Acid	Unknown	Unknown	Four (4) 55-gallon drums
Caustic Soda	Unknown	Unknown	Five (5) 55-gallon drums

4 A. In accordance with N.J.A.C. 7:26E-3.1(c)1iv provide a summary of all <u>current and historic</u> wastewater discharges of **Sanitary and/or Industrial Waste** and/or sanitary sludge. Present and past production processes, including dates and their respective water use shall be identified and evaluated, including ultimate and potential discharge and disposal points and how and where materials are or were received on-site. All discharge and disposal points shall be clearly depicted on a scaled site map. Information required under this item is intended to identify potential discharges to any on-site disposal system, such as a septic system or lagoon or drywell. For example to complete the following table information may include: From 1955 To 1960, Discharge Type - Sanitary and Industrial, Discharge Location - On-Site Septic System: From 1960 To Present, Discharge Type - Sanitary and Industrial, Discharge Location - Public Treatments Works.

Site Information

Discharge Period		Discharge Period Discharge Type	
From	То		
1923	1950	Sanitary Waste	On-site Septic System
1950	Present	Sanitary Waste	Camden Sewer System

4B. In accordance with N.J.A.C 7:26E-3.1(c)iv provide a narrative of disposal processes for all historic and current process waste streams and disposal points. (Attach additional sheets if necessary)

Not applicable

5. This question requires the applicant to conduct a diligent inquiry into the current and historic operations at the site to identify all of the potential areas of concern, which formerly or currently exists at the industrial establishment as defined in N.J.A.C. 7:26E-1.8.

Diligent inquiry as defined in N.J.A.C.7:26E-1.8 states:

- A. Conducting a diligent search of all documents which are reasonably likely to contain information related to the object of the inquiry, which documents are in such person's possession, custody or control, or in the possession, custody or control of any other person from whom the person conducting the search has a legal right to obtain such documents; and
- B. Making reasonable inquiries of current and former employees and agents whose duties include or included any responsibility for hazardous substances, hazardous wastes, hazardous constituents, or pollutants, and any other current and former employees or agents who may have knowledge or documents relevant to the inquiry.

In accordance with N.J.A.C. 7:26E3.1(c)1.v., a narrative shall be provided for each area of

environmental concern describing the **(A)** Type; **(B)** Age; **(C)** Dimensions of each container/area; **(D)** Chemical Content; **(E)** Volume; **(F)** Construction materials; **(G)** Location; **(H)** Integrity (i.e., tank test reports, description of drum storage pad); and **(I)** Inventory control records, unless a Department-approved leak detection system, pursuant to N.J.A.C. 7:1E or 7:14B, has always been in place and there is no discharge history. If sampling is not proposed for any identified area of environmental concern, please explain why it is believed that the area of environmental concern does not contain contaminants above the applicable remediation standards. Submit all necessary documentation to verify this belief. The required narrative need not describe the sampling to be completed; however, it should state that sampling will be completed in accordance with the appropriate section of N.J.A.C.7:26E.

Detailed descriptions of all sampling completed in each area of concern shall be described as part of a Site Investigation Report in accordance with N.J.A.C.7:26E-3.13.

Please indicate if any of the potential areas of environmental concern listed below in #5A through #5G, as defined in N.J.A.C. 7:26E-1.8, formerly or currently exist at the industrial establishment by indicating Yes or No in the appropriate space as provided.

For the Location Reference Keyed to Site Map, use either a unique number or a unique letter identification for each area of concern and be consistent throughout each phase of the remediation, referring to the same identification provided herein. Note: If the industrial establishment has multiple locations for one type of area of concern (example: underground storage tanks [UST] are located in 3 separate areas of the facility), each area must be discussed separately and given a separate identification. For example: Area A-1 a 1,000 gallon gasoline UST, Area A-2 a 10,000 gallon heating oil UST and Area A-3 a 500 gallon TCE UST should all be listed on the site maps and have separate narratives provided for each area discussing required information A-I listed above for each UST area.

<u>Provide the required narrative as an appendix to this report.</u> Do not try to provide a narrative in the space provided

I hereby certify that a diligent inquiry has been conducted to identify all current and historical potential areas of environmental concern and based on the diligent inquiry the areas of environmental concern identified below in question 5A through 5G are the only areas of environmental concern believed to exist at the above referenced industrial establishment.

The signator	v on the	certification	page shall	initial here.	

A. Bulk Storage Tanks and Appurtenances, including, without limitation:

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Aboveground Storage Tanks and Associated Piping	Yes	AOC-1	Appendix J
Underground Storage tanks and Associated Piping	Yes	AOC-2A/AOC- 2B/AOC-2C	Appendix J
Silos	No	Not Applicable	Not Applicable
Rail Cars	No	Not Applicable	Not Applicable
Loading and unloading areas	No	Not Applicable	Not Applicable
Piping, above ground and below	No	Not Applicable	Not Applicable

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
ground pumping stations, sumps and pits			

B. Storage and Staging Areas, including

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Storage pads including drum and/or waste storage	No	Not Applicable	Not Applicable
Surface impoundments and lagoons	No	Not Applicable	Not Applicable
Dumpsters	No	Not Applicable	Not Applicable
Chemical storage cabinets or closets	Yes	AOC-3	Appendix J

C. Drainage systems and areas including without limitation

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Floor drains, trenches and piping and sumps	Yes	AOC-4	Appendix J
Process area sinks and piping which receive process waste	No	Not Applicable	Not Applicable
Roof leaders when process operations vent to the roof	No	Not Applicable	Not Applicable
Drainage swales & culverts	No	Not Applicable	Not Applicable
Storm sewer collection systems	No	Not Applicable	Not Applicable
Storm water detention ponds and fire ponds	No	Not Applicable	Not Applicable
Surface water bodies	No	Not Applicable	Not Applicable
Septic systems leachfields or seepage pits	Yes	AOC-5	Appendix J
Drywells and sumps	Yes	AOC-6	Appendix J

D. Discharge and disposal areas, including, without limitation:

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Areas of discharge per N.J.A.C. 7:1E	No	Not Applicable	Not Applicable
Waste piles as defined by N.J.A.C 7:26	No	Not Applicable	Not Applicable
Waste water collection systems	No	Not Applicable	Not Applicable

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
including septic systems,			
seepage pits, & dry wells.			
Landfills or landfarms	No	Not Applicable	Not Applicable
Sprayfields	No	Not Applicable	Not Applicable
Incinerators	Yes	AOC-7	Appendix J
Historic Fill or any other Fill material	No	Not Applicable	Not Applicable
Open Pipe discharges	No	Not Applicable	Not Applicable

E. Other areas of concern, including, without limitation:

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Electrical Transformers & Capacitors	Yes	AOC-8	Appendix J
Hazardous material storage or handling areas	No	Not Applicable	Not Applicable
Waste Treatment areas	No	Not Applicable	Not Applicable
Discolored or spill areas	Yes	AOC-9A/AOC- 9B/AOC-9C	Appendix J
Open areas away from production areas	No	Not Applicable	Not Applicable
Areas of stressed vegetation	No	Not Applicable	Not Applicable
Underground piping including industrial process sewers	No	Not Applicable	Not Applicable
Compressor vent discharges	Yes	AOC-10	Appendix J
Non-contact cooling water discharges	No	Not Applicable	Not Applicable
Areas which receive flood or storm water from potentially contaminated areas	No	Not Applicable	Not Applicable
Active or Inactive production wells	No	Not Applicable	Not Applicable

F. Building interior areas with a potential for discharge to the environment, including, without limitation:

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Loading or Transfer areas	No	Not Applicable	Not Applicable
Waste Treatment areas	No	Not Applicable	Not Applicable
Boiler rooms	No	Not Applicable	Not Applicable
Air vents and ducts	No	Not Applicable	Not Applicable
Hazardous material storage or handling areas	No	Not Applicable	Not Applicable

G. Any other site-specific area of concern.

Area of Concern	Currently or Formerly Exists at the Site Yes/No	Location Referenced to the Site Map	Appendix Number
Hydraulic Lift System	Yes	AOC-11	Appendix J
NJ SPILLS Database Listing	Yes	AOC-12	Appendix J
NJ SPILLS Database Listing	Yes	AOC-13	Appendix J
Regional Ground Water Contamination	Yes	AOC-14	Appendix J

If the site area exceeds two acres, an interpretation of the aerial photographic history of the site shall be submitted in accordance with N.J.A.C. 7:26E-3.1(c)1.vi. The interpretation shall focus on the site under review and if any concerns were identified on the site. References to surrounding properties are unnecessary unless a neighboring site is suspected to be directly contributing to environmental factors at the site of concern. The interpretation shall be based on available current and historical color, black and white and infrared aerial photographs (scale 1:18,000 or less) of the site and surrounding area at a frequency that provides the evaluator with a historical perspective of site activities. The photographic history shall date back to 1932 or the earliest photograph available. Aerial photographs are available for review at the New Jersey Department of Environmental Protection, Tidelands Management Program, Aerial Photo Library, 9 Ewing Street, Trenton, New Jersey, (609) 633-7369. Note, the applicant is not required to provide the Department with copies of the aerial photographs reviewed only an interpretation of what was observed in each photograph, which may represent an environmental concern. If photos are submitted please clearly identify the location of the site on each photo.

iocat	lion of the site on each photo.
	Check here if an aerial photo review was not completed and provide a reason.
Provi	ide the appendix number for the air photo review narrativesAppendix E
Discl	harge History of Hazardous Substances and Wastes, N.J.A.C. 7:26E-3.1(c)1vii:
A. H	ave there been any known discharges of hazardous substances and wastes at the site?
	No (Go to question #8) X Yes (Complete Items 7B & 7C)
B. W	as the Department notified of the discharge?
X	Yes; No
If yes	s, provide the Case # <u>97-2-21-1440-39; 98-11-20-1919-54</u>
	as a no-further-action letter, negative-declaration approval or full-compliance letter as a result of the cleanup of this discharge?
	Yes (Submit a copy of the no-further-action approval)

	X No (Submit a complete Site Investigation or Remedial Action Report documenting the action taken to address the discharge)
	Case Number 97-2-21-1440-39 refers to a five (5) gallon diesel fuel spill which occurred on February 21, 1997. According to a file completion memo dated October 25, 2007 prepared by the Camden County Department of Health, "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." See Appendix D for a summary of information pertaining to the spill.
	Case Number 98-11-20-1919-54 refers to a liquid nitrogen spill which occurred in the freezer room of the building on November 28, 1998. According to a file completion memo dated September 15, 1999 four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. See Appendix D for a summary of information pertaining to the spill.
8	In accordance with N.J.A.C.7:26E-3.1 (c) 1.viii, provide a description of any remediation activities previously conducted or currently underway at the site, including dates of discharges, remedial actions taken, and all existing sample results concerning contaminants which remain at the site. Copies of Department or other governmental agency no-further-action approvals should also be provided with a description of the areas to which the no-further-action approvals apply. This information is especially important if the approval was granted for the remediation of a portion of a site or a specific discharge event rather than the entire site subject to this preliminary assessment.
	Check here if this question does not apply.
	Provide the appendix number for the required narrative and data summary Appendix I
9.	Protectiveness of past remedies N.J.A.C. 7:26E-3.1(c) 1.ix. The owner or operator shall evaluate all remedies previously approved by the Department in a remedial action workplan or equivalent document to determine if the remedy remains protective of public health, safety and the environment. Things to consider as part of this evaluation include but are not limited to; was an engineering control used to cap contamination left on site? If yes, is this cap being maintained? Did the remedy address all of the contamination? Is the remedy working as designed? Have institutional controls been maintained at the local and county level? Please provide a page or appendix number where this written evaluation is included Not Applicable .
10.	Order of Magnitude Analysis, N.J.A.C. 7:26E, 3.2(a)5
	A. Have any areas of concern previously received a No-Further-Action approval from the Department or other equivalent government agency for which no additional remediation is proposed? X No (go to question #11). Yes (complete 10B).

B. In accordance with N.J.S.A 58:10B-13(e) and N.J.A.C. 7:26E, 3.2(a)5 the following evaluation of the protectiveness of past remedies shall be completed for all areas of concern for which no further action was previously approved by the Department or other equivalent government agency and for which no additional remediation is proposed. All final sampling results shall be evaluated to determine if contaminant levels remaining on site are in compliance with current remediation criteria. The applicant shall complete the following:

I hereby certify that the order of magnitude analysis required pursuant to N.J.A.C. 7:26E has been completed, since the issuance of a No-Further-Action approval, negative declaration approval or equivalent remediation approval; and (Check the appropriate statements (1), (2), (3) or (4), complete the summary table and provide a summary of the results comparison)

(1) The areas of concern listed below contain contaminants above the current numerical remediation standard applicable at the time of the comparison, however no further action is required because: (check the appropriate sub statement)
(a) The contaminant concentrations remaining in the areas of concern listed below are less than an order of magnitude (factor of 10) greater than the current numerical remediation standard applicable at the time of the comparison;
(b) The areas of concern or the site was remediated using engineering and institutional controls approved by the Department and these controls are still protective of public health, safety and the environment; or (c) The area of concern or the site was remediated to an approved site specific remediation standard and all of the factors and assumptions which are the basis for deriving the site specific remediation standard remain valid for the site.

Please list the areas of concern for which the previous statement applies.

Area of Concern	Location Reference Keyed to the Site Map

Include a separate table comparing the levels of contaminants remaining in each area of concern, the numerical remediation standard approved in the remedial action workplan or at the time of no-further-action approval and the current numerical remediation standards applicable at the time of the comparison. The table shall contain all sampling results, including sample location (depth), sample media, field and laboratory identification numbers, and method detection limits, as necessary, and analytical results for all individual contaminants for each area of concern.

remedi	The areas of concern listed below contain contaminants above the current numerical ation standard applicable at the time of the comparison and further remediation is dispersion because: (check the appropriate sub statement)
	(a) The contaminant concentrations remaining in the areas of concern listed below are more than an order of magnitude (factor of 10) greater than the current numerical remediation standard applicable at the time of the comparison;

_____ (b) The areas of concern or the site was remediated using engineering and institutional controls approved by the Department and these controls are no longer protective of public health, safety and the environment; or

	(c) The area	of concern of	or the site	was reme	diated to a	n approv	ed site	
specific	remediation	standard ar	nd some o	r all of the	factors and	d assum	ptions \	which
are the I	basis for deri	ving the site	e specific r	remediatio	n standard	are no le	onger v	alid;

Please list the areas of concern for which the previous statement applies.

Area of Concern	Location Reference Keyed to the Site Map

Include a separate table comparing the levels of contaminants remaining in each area of concern, the numerical remediation standard approved in the remedial action workplan or at the time of no-further-action approval and the current numerical remediation standards applicable at the time of the comparison. The table shall contain all sampling results, including sample location (depth), sample media, field and laboratory identification numbers, and method detection limits, as necessary, and analytical results for all individual contaminants for each area of concern.

(3) The areas of concern listed below do not contain contaminants above the current numerical remediation standard applicable at the time of the comparison and no further remediation is required.

Please list the areas of concern for which the previous statement applies.

Area of Concern	Location Reference Keyed to the Site Map

Include a separate table comparing the levels of contaminants remaining in each area of concern, the numerical remediation standard approved in the remedial action workplan or at the time of no-further-action approval and the current numerical remediation standards applicable at the time of the comparison. The table shall contain all sampling results, including sample location (depth), sample media, field and laboratory identification numbers, and method detection limits, as necessary, and analytical results for all individual contaminants for each area of concern.

(4).____The contaminant concentrations remaining in the below listed areas of concern are more than an order of magnitude greater than the numerical remediation standard applicable at the time of the comparison. However, no further remediation is required by the person conducting this preliminary assessment, because, in accordance with N.J.S.A. 58:10B13(e), that person is not liable for the contamination pursuant to N.J.S.A. 58:10-23.11g

Please list the areas of concern for which the previous statement applies.

Area of Concern	Location Reference Keyed to the Site Map	

Include a separate table comparing the levels of contaminants remaining in each area of concern, the numerical remediation standard approved in the remedial action workplan or at the time of no-further-action approval and the current numerical remediation standards applicable at the time of the comparison. The table shall contain all sampling results, including sample location (depth),

sample media, field and laboratory identification numbers, and method detection limits, as necessary, and analytical results for all individual contaminants for each area of concern.

11	Historical Data on environmental quality at the Industrial Establishment			
	A. Have any previous sampling results documenting environmental quality of the Industrial Establishment not received a no-further-action approval from the Department or been denied approval by the Department? (N.J.A.C. 7:26E-3.1(c)1.viii)			
	XYes (See /	Attachment #)		_ No (Go to 12)
	(No. 2) were registo an undated rep Edward Kurth and were found to be from each excava concentrations be Contaminants (10	tered for the subject port titled "Removal of Sons, Inc., the USTs in good condition whation reported total per elow the current NJDI 0,000 mg/kg) and the ompound with a forward	proper of Three s were en re etrole EP He e curr	O-gallon UST utilized for the storage of heating oil erty (UST Registration No. 0167187). According the Underground Storage Tanks" prepared by closed and removed in August 1989. The tanks moved. Post-excavation soil samples collected um hydrocarbons as non-detectable or at alth Based Criterion for Total Organic ent 1,000 mg/kg threshold for contingency brary search (VO+10) analysis. See Appendix I for
	since completion	on of previous sampl	ing or	site conditions or new information developed remediation? If sampling results were a, please explain below (N.J.A.C. 7:26E-3.1(c)xi):
12	previous and curr sheets if necessa	ent owners or operat ry).	ors, a	al permits at this facility, including permits for all pplied for, received, or both (Attach additional
	Check here if no p	permits are involved .		and got to question 13.
	A. New Jersey Ai	r Pollution Control		
Р	ermit Number	Expiration Date		Type of Permitted Unit
	B. Underground	Storage Tank Registi	ration	Number <u>0167187</u>
	Size of Tan	k (Gallons)		Tank Contents
	6,000-gallon		No. 2 Heating Oil	
	6,000-			No. 2 Heating Oil
	1 000	dallon		No. 2 Hoating Oil

C. New Jersey Pollutant Discharge Elimination System (NJPDES) Permit

Permit Number	Discharge Type	Discharge Location Keyed to Site map	Expiration Date

	D. Resource Conservation and Recovery Act (RCRA) permit #
	E. EPA Identification Number NJD982738627, NJ000093877
	The site was identified as a small quantity generator of hazardous waste (EPA ID No. NJD982738627; NJ0000938977). No violations were reported for the site. See Appendix D for a summary of information pertaining to the USEPA ID Numbers.
	F. In accordance with N.J.A.C. 7:26E-3.1(c) xii, list all other federal, state, local government environmental permits for all previous and current owners or operators applied for and/or received for the site including :
	 (1) Name and address of the permitting agency (2) The reason for the permit (3) The permit identification number (4) The application date (5) The date of approval, denial or status of the application (6) The name and current address of the permittees (7) The reason for the denial, revocation or suspension if applicable (8) The permit expiration date
	X Check here if no other environmental permits were applied for or received for this site.
	Provide the appendix # for the required listing if other environmental permits exist for this site
13.	In accordance with N.J.A.C. 7:26E-3.1(c)xiii, provide a summary of enforcement actions (including but not limited to, Notice of Violations, Court Orders, official notices or directives) for violations of environmental laws or regulations (attach additional sheets if necessary):
	A. Check here if no enforcement actions are involved X (Go to 14 otherwise complete 13B)
	B. (1) Name and address of agency that initiated the enforcement action
	(2) Date of the enforcement action
	(3) Section of statute, rule or permit allegedly violated

(4) Type of enforcement	
(5) Description of the violation	
In accordance with N.J.A.C. 7:26E-3.1(c) xiv, please provide a narrative descriareas where non-indigenous fill materials were used to replace soil or raise the elevation of the site, including the dates of emplacement. Not Applicable A. In accordance with N.J.A.C. 7:26E-3.2(a) 3.i, submit a scaled site plan, deta subject lot and block, property and or leasehold boundaries, location of currence ouildings, fill areas, paved and unpaved areas, vegetated areas, and all areas dentified above and all active or inactive wells. B. Scaled historical site maps and facility as built drawings (if available). C. A copy of the United States Geologic Survey (USGS) 7.5 minute topograph that includes the site and an area of at least one mile radius around the second location shall be clearly noted. If a portion of the USGS quadrangle is used north arrow, contour interval, longitude and latitude with the name and details.	
A. In accordance with N.J.A.C. 7:26E-3.2(a) 3.i, submit a scaled site plan, detable by the subject lot and block, property and or leasehold boundaries, location of current buildings, fill areas, paved and unpaved areas, vegetated areas, and all areas dentified above and all active or inactive wells. B. Scaled historical site maps and facility as built drawings (if available). C. A copy of the United States Geologic Survey (USGS) 7.5 minute topograph that includes the site and an area of at least one mile radius around the site location shall be clearly noted. If a portion of the USGS quadrangle is use north arrow, contour interval, longitude and latitude with the name and details and site of the site and an area of at least one mile radius around	
A. In accordance with N.J.A.C. 7:26E-3.2(a) 3.i, submit a scaled site plan, detaculated by the subject lot and block, property and or leasehold boundaries, location of currence buildings, fill areas, paved and unpaved areas, vegetated areas, and all areas dentified above and all active or inactive wells. B. Scaled historical site maps and facility as built drawings (if available). C. A copy of the United States Geologic Survey (USGS) 7.5 minute topograph that includes the site and an area of at least one mile radius around the second shall be clearly noted. If a portion of the USGS quadrangle is used north arrow, contour interval, longitude and latitude with the name and detaction in the second shall be clearly noted.	
subject lot and block, property and or leasehold boundaries, location of current buildings, fill areas, paved and unpaved areas, vegetated areas, and all areas dentified above and all active or inactive wells. B. Scaled historical site maps and facility as built drawings (if available). C. A copy of the United States Geologic Survey (USGS) 7.5 minute topograph that includes the site and an area of at least one mile radius around the selection shall be clearly noted. If a portion of the USGS quadrangle is use north arrow, contour interval, longitude and latitude with the name and described the selection of the use of t	
C. A copy of the United States Geologic Survey (USGS) 7.5 minute topograph that includes the site and an area of at least one mile radius around the solocation shall be clearly noted. If a portion of the USGS quadrangle is used north arrow, contour interval, longitude and latitude with the name and details to the control of the USGS.	nt and forme
that includes the site and an area of at least one mile radius around the s location shall be clearly noted. If a portion of the USGS quadrangle is use north arrow, contour interval, longitude and latitude with the name and da	
quadrangle shall be noted on the map.	ite. <u>The faci</u> d, the scale,
In accordance with N.J.A.C. 7:26E-3.2, please provide the date that the site vicompleted to verify the findings of the preliminary assessment. December	
List any other information you are submitting or which has been formerly requ Department:	
Description A	

Appendix A

History of Ownership/Description of Site and Operations

1. History of Ownership

CMX obtained property records from RealQuest®, a real estate database system (http://www.realquest.com), which indicate that the site is comprised of Block 1392, Lot 33. Furthermore, CMX reviewed available deeds at the City of Camden Tax Assessor's Office on November 27, 2007. A copy of the RealQuest® property detail report is provided as an attachment to this appendix. Table 1 provides a summary of ownership history obtained following a review of property records and deeds for the site.

Table 1 - History of Ownership			
Block 1392, Lot 33			
Owner	From	То	
Camden Laboratories	May 1, 1989	Present	
Coriell Institute for Medical Research (South Jersey Medical Research Foundation)	June 26, 1965	May 1, 1989	
City of Camden	Unknown	June 26, 1965	

2. Description of Site and Operations

The site consists of one (1) contiguous tax lot located at 1667 Davis Street in the City of Camden, Camden County, New Jersey. The City of Camden designates this property as Block 1392, Lot 33 for tax purposes. This property is 3.9 acres in size. The site is occupied by an approximately 50,000 square foot building compound which is currently vacant. For the purposes of this study, the compound is divided into the following six (6) buildings:

Table 2 – Structure Designations/Layout					
Building	Location	Former Uses	#of Floors		
А	Northern Section	Office/Laboratory	1 Story & Basement		
В	Central Section	Office/Laboratory/Animal quarters/Freezer room	2 Story		
С	Southwestern Section	Cleaning and sterilization of animal cages	1 Story		
D	Northwestern Section	Main Generator/Storage	1 Story		
E	Central Section	Water Deionizer/Freezer storage	1 Story & Basement		
F	Eastern Section	Administration/Laboratory/Library/Auditorium/Quality Assurance	1 Story & Basement		

Building A is located within the northern most section of the existing Camden building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. See Appendix I for a summary of information provided by the property owner during the site inspection

interview.

Building B is located in the central section of the existing structures and is the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared to be in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by the property owner, Building B boiler blowdown is directed to a floor drain system which discharges to a dry well. See Appendix I for a summary of information provided by the property owner during the site inspection interview. In addition, four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint containers were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition and no apparent cracks or migration pathways were noted. Mr. Manco informed CMX that all of the containers were going to be removed from the property in the near future.

Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted.

Building D is the western most structure and is comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building D. Heavy staining of the concrete surface was noted beneath the generators. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building.

Building E is located adjacent to and southeast of Building A and is comprised of a first floor and basement. The first floor appeared to be formerly utilized for office space. Equipment for former water deionization operations was observed in the basement of Building E. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted.

Building F is the eastern most structure and consists of a ground floor and a basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted.

One (1) 275-gallon above ground storage tank (AST) which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt.

A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. No signs of leaking or staining were noted.

Two (2) electric transformers were observed at the west exterior of Building D, also known as the power house. In addition, one (1) pole mounted electrical transformer was located along Davis Street. The transformers were in fair condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers.

Asphalt paved areas surround the building compound to the north, south, and west. The western portion of the parcel is currently grass covered.

In addition, a mobile trailer unit is located on the southwestern portion of the site. Based on a review of information provided by the current property owner, the mobile trailer unit is a New Jersey Department of Environmental Protection (NJDEP) air monitoring station is associated with a County wide air monitoring system and is unrelated to operations at the site.

The subject site is bound to the north by residential and commercial uses. The site is bound to the south by Whitman Park, to the east by commercial uses, and the west by residential development. Commercial uses to the east and north of the site include RF Products and the Dr. Charles E. Brimm Medical Arts building.

Based on a review of available historical sources, the site was developed for use as a hospital for municipal diseases, which was located in the northern portion of the site. Construction for the hospital occurred as early as 1923. The site was redeveloped for use for biological, genetic and cancer research beginning n the 1950's. Construction of the current site building compound (Buildings A through F) took place in phases from the 1950's to the 1980's.

Appendix B Environmental Database Search

Environmental Database Search

CMX performed a review of select Federal and State environmental record sources in order to evaluate the potential existence of AOCs at the site. CMX performed this records review utilizing a computer database search report prepared by Environmental Data Resources, Inc. (EDR). This report keys the surrounding sites on the ASTM-specified databases to the Overview Map and Detail Map included in the EDR database search report. A copy of the EDR Report is provided as an attachment to this appendix.

The subject property was identified in federal and state standard or supplemental environmental databases searched by EDR as summarized hereafter.

UST

The New Jersey Underground Storage Tank (UST) database includes sites with registered USTs. UST's are regulated under Subtitle I of RCRA and must be registered with the state department responsible for administering the UST program. The subject site was identified in the UST database as follows.

Camden Laboratories Copewood Street Camden, New Jersey

EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the Underground Storage Tank (UST) database (Facility ID 016718). Two (2) 6,000-gallon and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. While EDR reports the location of the Camden Laboratories to be near the intersection of Copewood Street and Haddon Avenue to northeast of the site, it is CMX's opinion the this listing is for the site based on review of additional information provided by the NJDEP and the current property owner. See Appendices D and I for a summary of pertinent findings obtained following review of information provided by the NJDEP and the current property owner, respectively.

RCRA Info

The Resource Conservation and Recovery Act Information (RCRA Info) database is the United States Environmental Protection Agency (USEPA) database of facilities that generate, transport, treat, store, or dispose of hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA). The subject site was identified in the RCRA Info as follows.

Coriell Institute Med Res Copewood Street Camden, New Jersey

EDR identified Coriell Institute Med Res, Copewood Street, Camden, New Jersey in the Resource Conservation and Recovery Act Small Quantity Generator (RCRA-SQG)/Facility Index System (FINDS) database (EPA ID No. NJD982738627). This site was identified in the orphan summary. Since the Coriell Institute for Medical Research was identified as a previous site owner following review of available City of Camden tax records, CMX believes this database listing pertains to the site. EDR reports that the Coriell Institute for Medical Research utilized halogenated solvents and non-halogenated solvents for degreasing. See Appendix A for a summary of site ownership identified following review of available City of Camden tax records.

Quality Bio-Tech Inc. 1667 Davis Street Camden, New Jersey EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the RCRA-SQG database (EPA ID No. NJ0000938977). This database includes selective information on sites which generate, transport, store, treat, or dispose of hazardous waste. Small Quantity Generators generate less than 1,000 kg of hazardous waste or less than 1 kg of acutely hazardous waste per month. No violations were reported for the Quality Bio-Tech Inc. site.

NJ Spill

The New Jersey Spill (NJ Spill) database includes initial notification information of hazardous material incidents, where there is land contamination, reported to the NJDEP's Environmental Action Line. The NJDEP has not conducted any investigation to determine its validity or accuracy. The subject site was identified in the NJ Spill database as follows.

Quality Bio-Tech Inc. 1667 Davis Street Camden, New Jersey

EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997. The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database. See Appendices D and I for additional information obtained regarding NJDEP Case No. 97-2-21-1430-39 following review of agency records and information provided by the current property owner.

EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database. See Appendix D for additional information obtained regarding NJDEP Case No. 98-11-20-1919-54 following review agency records.

MLTS

The Material Licensing Tracking System database is a listing of approximately 8,100 sites which possess or use radioactive materials and which are subject to Nuclear Regulatory Commission (NRC) licensing requirements.

Quality Bio-Tech Inc. 1667 Davis Street Camden, New Jersey

EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the Material Licensing Tracking System (MLTS) database (License No. 29-28152-01). The site was last inspected in September 2004. The next scheduled inspection is September 2009. The status of the site was not reported.

ICIS

The Integrated Compliance Information System database supports the information needs of the national enforcement and compliance program as well as the needs of National Pollution Discharge Elimination System (NJPDES).

Plant Cell Technology Inc 1667 Davis Street Camden, New Jersey

EDR identified Plant Cell Technology Inc, 1667 Davis Street, Camden, New Jersey in the Integrated Compliance Information System (ICIS)/ Facility Index System (FINDS) database (FRS ID No. 110030468795). The EFA Enforcement Action Type is reported at FIFRA (Federal Insecticide, Fungicide and Rodenticide Act) 14A Action for Penalty (EFA Enforcement Action ID No. 02-2007-5119). No other pertinent information was recorded in the ICIS database.

SSTS

The Section Seven Tracking System (SSTS) requires all registered pesticide-producing establishments to submit a report to the EPA by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced.

Plant Cell Technology Inc 1667 Davis Street Camden, New Jersey

EDR identified Plant Cell Technology Inc., 1667 Davis Street, Camden, New Jersey in the Section Seven Tracking Systems (SSTS) database. The database has information regarding 2001, 2003, and 2004 and the site registration number was reported as 071806NJ001. The product was reported as PPM-Preservation for plant tissue culture. Site status was not reported for any of the three (3) years. The product class for 2001 was reported as insect repellents such as DEET. The product class for 2003 and 2004 was reported as disinfectant, germicide, and sanitizer. No other pertinent information was recorded in the SSTS database.

In addition, EDR searched select Federal and State record sources in order to evaluate the potential for environmental impacts to the site from off-site sources. RF Products Inc. was identified in several databases. The following paragraphs present a summary of information obtained from EDR regarding this higher elevation site.

CERCLIS

The Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) database contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

RF Products Inc.
Davis & Copewood Streets
Camden, NJ

Based on the information provided in EDR, the site is considered a potential source of regional groundwater contamination. According to EDR, the RF Products site (Site ID 0204504) is a former radio, television, and wireless communication equipment manufacturer. Degreasing solvents were disposed through drains. The site is being investigated as a possible source of the Parkside Wellfield contamination. CERCLIS Assessment history actions include Discovery (8/29/03), Pre-Cerclis Screening (8/29/03), Preliminary Assessment (8/29/03 – 9/10/03) and Site Inspection (9/10/03 – 8/28/06).

RCRA Info

The Resource Conservation and Recovery Act Information (RCRA Info) database is the United States Environmental Protection Agency (USEPA) database of facilities that generate, transport, treat, store, or dispose of hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA).

RF Products Inc. Davis & Copewood Streets Camden, NJ

According to EDR, this site is a large-quantity generator of hazardous waste (Generator ID: NJD096846522) for which one (1) violation is reported. Compliance was achieved for the violation.

UST

The New Jersey Underground Storage Tank (UST) database includes sites with registered USTs. UST's are regulated under Subtitle I of RCRA and must be registered with the state department responsible for administering the UST program.

RF Products Inc.
Davis & Copewood Streets
Camden, NJ

Two (2) 10,000 gallon No. 2 heating oil USTs were abandoned in place at the site on January, 1, 1991 (UST Facility ID No. 015474).

ISRA

The Industrial Site Recovery Act (ISRA) database contains a list of sites engaged in operations after December 31, 1983 and are involved in the generation, manufacture, refining, transportation, treatment, storage, handling or disposal of hazardous substances or hazardous wastes.

Fast Doors Incorporated 1661 Davis Street Camden City, NJ

EDR reports that the NJDEP made a determination of no further action for the site under Industrial Site Recovery Act (ISRA) Case No. E91067 and E20010307.

Migration of contaminants from the RF Products site to the site would most likely be via ground water. In order to determine the potential for migration of contaminants from the RF Products site to the site, CMX performed a review of available NJDEP records for the RF Products site. See Appendix D for a summary of information obtained following a review of available NJDEP records for the RF Products site.

Appendix C Sanborn Fire Insurance Maps

Sanborn Fire Insurance Maps

CMX obtained a series of Sanborn Fire Insurance Maps (Sanborn Maps) for the subject area from EDR for the dates 1923, 1926, 1950, 1982, and 1994. A summary of information obtained following a review of these maps is presented below. Copies of the EDR Sanborn Fire Insurance Maps are provided as attachment to this appendix.

- 1923 The site is owned by the Municipal Hospital for Contagious Disease. The hospital
 detention ward is observed in the northwest portion of the site. The hospital administration
 building and contagious ward are observed on the northwest and south adjacent properties,
 respectively. Davis Street, the Heffner Shoe Company, and Kemoshine Products Inc. are
 observed to the north of the site. Vacant lots are observed to the east and west.
- 1926 No significant changes to the site or surrounding areas are observed.
- 1950 No significant changes to the site or surrounding areas are observed.
- 1982 The site is labeled "Institute for Medical Research" and is occupied by the current Camden Laboratories structures. The buildings are identified as Buildings A through F and are labeled with construction dates indicating that the buildings were constructed between the years of 1956 and 1975. The hospital detention ward is no longer observed. A feature labeled transformers is observed at the west exterior of the main generator/storage building (Building D). Six (6) mobile trailers are located at the west exterior of the animal cage wash building (Building C). Decatur Street is observed to the northwest of the site. The hospital administration building is no longer observed on the northwest adjacent property. It has been replaced with residential buildings. A little league ball park is observed on the south adjacent property.
- 1994 No significant changes to the site or surrounding areas are observed.

Appendix D

Federal, State and Local Government Records Review

Federal, State and Local Government Files

Pursuant to the Freedom of Information Act (FOIA) and the Open Public Records Act (OPRA), CMX submitted information requests for the site to the following agencies:

- United Stated Environmental Protection Agency (USEPA);
- NJDEP Office of the Records Custodian:
- Camden County Department of Health (CCDOH) and
- City of Camden.

Copies of all requests and information obtained subsequent to each request are provided as an attachment to this appendix. The following paragraphs provide a summary of information obtained as a result of the information requests submitted.

USEPA

CMX submitted a FOIA request to the USEPA on November 13, 2007. The USEPA Resource Conservation and Recovery Act (RCRA) Programs Branch responded to CMX's request on December 3, 2007 via mail. The USEPA provided a Notification of Regulated Waste Activity for Quality Biotech (EPA ID NJ0000938977) dated November 1, 1994. The document stated that Quality Biotech generated less than 100 kg of non-listed hazardous wastes per month. In addition an Envirofacts facility detail report was provided for Quality Biotech. No evidence of violations was identified following review of information provided by the USEPA RCRA Programs Branch. In addition, the USEPA Resource Management/Cost Recovery Section and the USEPA Compliance Assistance and Program Support Branch responded by correspondence dated December 6, 2007 and December 7, 2007, respectively. The USEPA Resource Management/Cost Recovery Section indicated that the site is not listed in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) and CERCLIS-No Further Remedial Action Planned (NFRAP) databases. The USEPA Compliance Assistance and Program Support Branch indicated that no information was held that was responsive to the information request.

NJDEP

CMX submitted an electronic OPRA request to the NJDEP Office of Records Access (ORA) on November 26, 2007. CMX received a response from the Records Custodian via mail on December 3, 2007. The NJDEP provided a copy of correspondence from NJDEP to Coriell Institute dated September 27, 2007 which indicated that the pending sales transaction of the site from Coriell Institute to Martin Manco & Company, Inc. was not subject to the provisions of the Environmental Cleanup responsibility Act (ECRA). This decision was made in light that the site was not an industrial establishment. In addition, NJDEP provided UST facility certification questionnaires, standard reporting forms and other UST related documents which indicated that two (2) 6,000-gallon UST and 1,000-gallon UST utilized for the storage of fuel oil were registered for the site (UST Registration No. 0167187). The documents indicated that the three (3) USTs were closed and removed in August 1989. According to an undated report (Appendix I) titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., the USTs were closed and removed in August 1989. The tanks were found to be in good condition when removed. Post-excavation soil samples collected from each excavation reported total petroleum hydrocarbons as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency volatile organic compound with a forward library search (VO+10) analysis.

CMX submitted an electronic OPRA request to the NJDEP ORA on June 18, 2008 for records pertaining to the RF Products site. CMX visited the NDJEP ORA on July 2, 2008 to review available records. According to available records, RF Products operated as a metal working and electronics assembly company from 1988 until 2001, when operations ceased. Historic metal working operations included plating, painting and oven spraying of components.

As part of a pending property transaction between FR Products and Fast Doors, Inc. in 1991, a Preliminary Assessment of the RP Products property was conducted. The following areas of concern (AOCs) were identified at the site following completion of the PA:

- Loading Dock for Hazardous Substances and Wastes;
- Plating Room Floor and Soil Beneath; and
- 1,500-gallon and 10,000-gallon Fuel Oil Tanks.

Investigation conducted for the aforementioned AOCs were documented in the February 1992 Environmental Cleanup Act (ECRA) Sampling and Decommissioning Plan Report, September 1992 ECRA Supplemental Sampling and Decommissioning Plan Report and the January 1993 Second Supplemental Sampling and Decommissioning Plan Report prepared by JCA Associates of Mount Laurel, New Jersey.

Investigations revealed a three (3) to six (6) inch cadmium impacted ash layer located beneath the concrete and asphalt in the loading dock area. The impacted ash was delineated and the ash material was left in place. A Determination of No Further Action was issued by NJDEP for the cadmium impacted area in correspondence dated March 31, 1993. Subsequent to the determination of no further action, NJDEP required a deed notice be established for the cadmium impacted area. A deed notice was filed with NJDEP dated July 29, 2002 in correspondence dated November 13, 2002.

Investigations also identified cadmium and lead impacted soil beneath the plating room floor. Cadmium and lead impacted soil was delineated and the impacted soil was left in place. A Determination of No Further Action was issued by NJDEP for the cadmium and lead impacted area in correspondence dated March 31, 1993. Subsequent to the determination of no further action, NJDEP required a deed notice be established for the cadmium and lead impacted area. A deed notice was filed with NJDEP dated July 29, 2002 in correspondence dated November 13, 2002.

According to the most recent UST Registration Questionnaire dated June 31, 1999, one (1) 1,500-gallon No. 2 heating oil UST (Tank E-1) and one (1) 10,000-gallon No. 2 heating oil UST (Tank A-1) were registered for the RF Products site (UST ID:0154749, ECRA Case No. 91067). An attached figure prepared by James C. Anderson Associates, Inc dated May 1, 1991 depicts the location of the USTs. Tank A-1 is situated at the corner of Davis and Copewood Streets adjacent to a loading dock. Tank E-1 is situated approximately sixty (60) feet from Thorn Street along the northern property boundary. Both tanks were abandoned in place on October 20, 1991 per the approved NJDEP UST Closure Approval dated September 19, 1991. Based on the findings of the investigations completed to date, petroleum impacted soil was confirmed for the 1,500-gallon heating oil tank. In addition, benzo(a)pyrene/ benzo(a)anthracene and petroleum impacted soil was confirmed for the 10,000-gallon heating oil tank. According to available boring logs for the investigations completed, ground water was only encountered in one (1) boring at a depth of fifty-eight (58) feet below grade.

Petroleum/benzo(a)pyrene/benzo(a)anthracene impacted soil was subsequently delineated and the impacted soil was left in place. Due to the lose proximity of the tanks the building foot print and underground utilities, the tanks were abandoned in place. A determination of No Further Action was

issued by NJDEP for the USTs in correspondence dated March 31, 1993. Subsequent to the determination of no further action, NJDEP required a deed notice be established for the petroleum/benzo(a)pyrene/ benzo(a)anthracene impacted soil. A deed notice for the impacted soil associated with the abandoned-in-place USTs was subsequently filed with NJDEP dated July 29, 2002 in correspondence dated November 13, 2002.

According to the Initial Notice Site Evaluation Submission (SES) dated March 3, 1993, sanitary and rinse water from plating practices discharged to the Camden City public sewer system; however, during an inspection of the site by NJDEP personnel, "sediment and a brownish liquid [were] present in the floor drain where oil and paint thinner are stored in the Fast Doors, Inc. leasehold. The area around the floor drain is stained. The integrity of the floor drain is not known. In addition, no building plans are available to verify the discharge point of the drain."

Ground water investigations for the RF Products site were documented in the Expanded Site Investigation report prepared by the NJDEP Site Remediation and Waste Management Program, Division of Remediation Support, Bureau of Environmental Measurement and Site Assessment dated September 2007. Ground water investigations were conducted in order to investigate the RF Products/Fast Doors, Inc. site as a potential source of contamination identified in the Camden Parkside Wellfield.

In March and June 2005, NJDEP conducted a soil boring/grab ground water investigation of the area surrounding the RF Products property. NJDEP installed seventeen (17) soil borings and field screened soil for PCE and TCE using a gas chromatography. With the exception of four (4) soil borings (CCP-9, RF-3, RF-12 and RF-14), refusal was encountered and a grab ground water sample could not be collected. Three (3) soil borings (RF-13 through RF-15) were installed on the Camden Laboratories property. Analytical results reported TCE at a concentration exceeding the NJDEP Ground Water Quality Standard (GWQS) of 1 ug/L for grab ground water samples CCP-9 (20.96 ug/L), RF-3 (84 ug/L), RF-12 (280 ug/L) and RF-14 (13.77 ug/L).

In December 2005, NJDEP conducted a soil gas survey surrounding the RF Products site using soil vapor samplers (RFS-2 through RFS-53). Samplers RFS-2 through RFS-4 were installed in the northern portion of the Camden Laboratories property along Davis Avenue. Samplers were analyzed for "limited chlorinated volatile analysis. The analytical results of the samplers do not identify contaminant concentrations, but assess a contaminant mass present in the soil and/or groundwater." Based on a review of soil gas survey mapping, the TCE identified in the contaminant mass extends onto the Camden Laboratories property.

In May 2007, NJDEP installed two (2) upgradient monitoring wells (MW-1A and MW-4A) on the RF Products property. One (1) downgradient monitoring well (MW-2A) was installed on the RF Products property. One (1) sidegradient monitoring well (MW-3A) was installed in the Davis street right-of way directly north of the Camden Laboratories property. Groundwater flow was determined to be towards the southeast to south-southeast depending on pumping activities associated with the Puchack Wellfield. Depth to water in the ground water monitoring wells ranged from thirty-two (32) to forty-one (41) feet below grade. Ground water samples were collected for volatile organic compound (VOC) analysis on June 27, 2007 and August 15, 2007.

TCE was reported at a concentration exceeding the NJDEP GWQS of 0.02 ug/L for sample MW-1A (2.1 ug/L) during the June 27, 2007 sampling event. Carbon tetrachloride was reported at a concentration exceeding the NJDEP GWQS of 1 ug/L for sample MW-2A (13 ug/L) during the June 27, 2007 sampling event. TCE was reported at a concentration exceeding the NJDEP GWQS of 1 ug/L for samples MW-2A (780 ug/L) and MW-3A (8.2 ug/L) during the June 27, 2007 sampling

event. The compound 1,1,2-TCA was reported at a concentration exceeding the NJDEP GWQS of 3 ug/L for sample MW-2A (6.7 ug/L) during the June 27, 2007 sampling event.

Carbon tetrachloride was reported at a concentration exceeding the NJDEP GWQS of 1 ug/L for sample MW-2A (10.91 ug/L) during the August 15, 2007 sampling event. TCE was reported at a concentration exceeding the NJDEP GWQS of 1 ug/L for samples MW-2A (1419.48 ug/L), MW-3A (2.9 ug/L) and MW-4A (1.48 ug/L) during the August 15, 2007 sampling event. The compound 1,1,2-TCA was reported at a concentration exceeding the NJDEP GWQS of 3 ug/L for sample MW-2A (9.73 ug/L) during the August 15, 2007 sampling event.

Analytical results for groundwater investigations completed by NJDEP to date confirm the presence of a TCE plume in ground water which originates from the RF Products property. The TCE plume extends onto the Camden Laboratories property, and has also been attributed to the Camden Parkside Wellfield contamination.

Camden County Health Department

CMX submitted a records request to the CCDOH on November 13, 2007 to review available records pertaining to the site. CMX received a response from CCDOH via fax on December 17, 2007. The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-1120-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. In addition, a file completion memo dated October 25, 2007 regarding Case No. 97-02-21-1440-39 was provided. According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed."

City of Camden

CMX submitted a records request to the City of Camden Municipals Clerk's Office on November 29, 2007 to review available records pertaining to the site. The City of Camden responded to CMX via correspondence dated December 13, 2007. According to the December 13, 2007 correspondence, the Department of Public Works held no files regarding the site. The Clerk's Office also indicated that other city departments did not respond to CMX's information request at the time of the response. CMX contacted the Clerk's Office via phone on December 13, 2007 and was informed that if additional records are found, they will be forwarded as appropriate.

According to the City of Camden zoning map, the site is zoned Commercial (C).

Appendix E Historical Aerial Photographs

Historical Aerial Photographs

CMX obtained historical aerial photographs available on the NJDEP Imap NJ website (http://www.state.nj.us/dep/gis/depsplash.htm) which depict site conditions in 1930, 1995 and 2002. CMX also obtained a series of historical aerial photographs from EDR which depict site conditions in 1940, 1954, 1965, 1973, and 1981. Copies of historical aerial photographs obtained from iMapNJ DEP and EDR are provided as an attachment to this appendix. Table 3 provides a summary of the available aerial photographs.

Table 3 – Summary of Aerial Photographs				
Date	Scale	Туре		
1930	1" ≈ 635'	Black and White		
1940	1" = 750'	Black and White		
1954	1" = 750'	Black and White		
1965	1" = 750'	Black and White		
1973	1" = 750'	Black and White		
1981	1" = 1,000'	Black and White		
1997	1" ≈ 635'	Color		
2002	1" ≈ 264'	Color		

The following is CMX's interpretation of key highlights represented on these aerial photographs:

- 1930 (Black and White, 1"= 750') The majority of the site appears to be open, grassed area. A small structure is observed in the northwest portion of the site. A large structure and a small structure are observed on the northwest and southeast adjacent properties, respectively. Davis Street and a large commercial structure are observed to the north of the site. Undeveloped land is observed to the east of the site.
- <u>1940 (Black and White, 1" = 750")</u> No significant changes to the site are observed. Areas to the southwest of the site are heavily disturbed.
- <u>1954 (Black and White, 1"= 750")</u> No significant changes to the site are observed. Additional commercial growth is observed to the north of the site.
- 1965 (Black and White, 1"= 750") The small structure located on the northwest portion of the site is no longer observed. Three (3) of the current Camden Laboratories structures are observed on the site. The large structure on the northwest adjacent property is no longer observed. Residential dwellings are observed in its place. Baseball fields are observed on the south adjacent property.
- 1973 (Black and White, 1"= 750') All six (6) of the current Camden Laboratories structures are observed on the site. Residential structures are observed to the south of the baseball fields. Areas to the north, east and west appeared similar to the aerial dated 1965.
- <u>1981 (Black and White, 1"= 750")</u> No significant changes to the site or surrounding areas are observed.
- <u>1997 (Color, 1"= 750')</u> The southern portion of the existing structure on the site has been expanded. All surrounding areas appear similar to the aerial dated 1973.

• <u>2002 (Color, 1"= 750')</u> – No significant changes to the site or surrounding areas are observed

Appendix F Historical Topographic Maps

USGS 7.5 Minute Topographic Map(s)

CMX reviewed the USGS 7.5 Minute Topographic Map, Camden Quadrangle, dated 1967 and photorevised 1994 (Figure 1, Appendix K). The site is occupied by the current Camden Laboratories structures. The south adjacent property is cleared. Suspected residential development is observed to the northwest and south of the site. Two (2) large suspected commercial and/or industrial structures are observed to the northeast of the site, across Davis Street. The majority of the subject area is designated "built up" or urban. The topography of the subject area of is relatively flat with a gradual slope to the east-southeast towards the Cooper River.

Appendix G McRae's Directory Search

McRae's Directory Search

CMX requested a search of McRae's Directory files from EDR for the Site on June 23, 2008. The site was identified as Quality Biotech, Inc. for the year 1994. The site was not listed in any of the directories searched for the years 1931, 1940, 1941, 1949, 1954, 1955, 1960, 1961, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 1996, 1998, 2000, 2001, 2002, 2004, 2006, 2007 or 2008. A copy of the Industrial Directory Report obtained from EDR is provided as an attachment to this appendix.

Appendix H Site Inspection Photographs

Site Inspection Photographs

CMX completed an inspection of the subject site on December 3, 2007. The following photographs were taken during the site inspection to document site conditions.

View of the Camden Laboratories entrance from Davis Street

View of Buildings A, E & F

View of Building B

View of Buildings C and D

View of cleaning supplies located in the first floor laboratories of Building A. No leaking or staining observed.

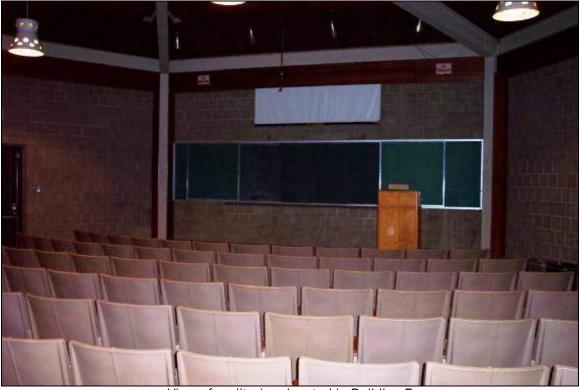
View of water filter system located in the basement of Building A. Water was visible beneath the filters due to ruptured pipes.

View of second floor lab in Building B

View of freezer room of Building B. Four (4) containers of muriatic acid, five (5) containers of caustic soda and several empty five (5) gallon containers were noted. No staining was observed.

View of animal quarters located on the first floor of Building B

View of boiler room in Building B. No staining noted in the area of the floor drain.


View of animal cage wash machine located in Building C

View of emergency generators located in Building D. Staining observed beneath the generators.

View of first floor of Building E

View of auditorium located in Building F

View of laboratory vent hood located in the ground floor of Building F

View of electric transformers located adjacent to the west of Building D. Staining could not be determined due to overgrown vegetation.

View of empty 275-gallon AST formerly containing diesel fuel located at south exterior of Building B. No staining noted.

View of emergency generator associated with the 275-gallon AST located at south exterior of Building B

View of the former location of above ground hydraulic oil tank and former lift located at the dock of Building B

View of pole mounted electric transformer located along Davis Street adjacent to Camden Laboratories. No leaking or staining observed.

Appendix I Previous Investigations

Previous Investigations

Marty Manco, owner of the site, provided several documents pertaining to previous assessments and investigations completed at the site. A summary of pertinent information obtained following review of the owner provided documents is provided herein as appropriate.

BCM Eastern, Inc. (BCM) performed an environmental assessment of the site on behalf of Mr. Manco. BCM's assessment findings were summarized in correspondence dated September 8, 1988. The following bulleted items provide a summary of BCM environmental assessment findings pertinent to this study.

- Site Operations BCM indicated that the site was "involved in biological research" with "principal activity in the area of cell culture and development. Cells are human and animal. Some radioactive elements for cells tests. Four to five drums per year of radioactive waste to Teledyne, a licensed permitted operation."
- Incinerator BCM indicated that an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site.
- USTs BCM identified two (2) 6,000-gallon No. 2 fuel oil USTs at the site.
- Asbestos BCM indicated that "steam distribution lines in Building A are insulated with what
 could be asbestos-containing materials. Other boilers and distribution lines in the other
 buildings appeared to be foam or fiberglass covered. The site had an independent asbestos
 review in recent weeks."
- Compressor Blowdown BCM indicated that refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils."
- Dry Well BCM indicated that "there is a drywell for the collection of blowdown from the boiler in Building B. All other facility boilers and other water-related operations drain to a central, monitored collection pit in Building F, which is connected to the sanitary sewer system. Building B boiler room has a floor drain, which is connected to the pit, and which could be used to collect boiler blowdown."
- Transformer BCM indicated that dry transformers were located at the exterior of the Power House (Building D). No evidence of a discharge was identified.
- Air Monitoring Station BCM indicated that a trailer located to the west of the building compound was utilized by the NJDEP as an air monitoring laboratory. The air monitoring laboratory is "used as a base for County monitoring activities" and unrelated to site operations. At the time of the BCM assessment, the air monitoring laboratory was on site for twenty-five (25) years.
- Hydraulic Lift BCM indicated that the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry."

Mr. Manco confirmed the closure and removal of three (3) UST's 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed. According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's and one (1) 2,000 gallon UST containing No. 2 heating oil were closed and removed in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for total petroleum hydrocarbons (TPH). TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency volatile organic compound with a forward library search (VO+10) analysis.

Environmental Resolutions Inc. (ERI) prepared a Preliminary Assessment (PA) for the site on behalf of Education Advance Corporation. ERI's PA findings were summarized in their PA report dated September 2007, a copy of which was provided by Mr. Manco. ERI identified the following areas of concern (AOCs) in connection with the site.

- Hydraulic Lift "A hydraulic lift was observed at the loading docks at the Site. The 1988
 assessment indicated that the tank was leaking. There is a concern that contaminants may
 have discharged to soils at the Site."
- Cesspool "Available information indicates that a cesspool was once in use at the Site.
 There is a concern that contaminants may have been discharged to the cesspool. It is
 recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii."
- 1997 Oil Spill "Records indicate that five (5) gallons of diesel fuel were released from a leaking fitting on the generator on February 21, 1997 (Case # 97-2-21-1440-39). It is recommended that soils in the area of the spill be investigated for potential impacts."

In addition, ERI indicated the following as it relates to the conditions identified in the BCM assessment report.

- Compressor Blowdown Stained soils identified at the exterior of Building B were removed.
- Dry Well The drywell utilized for collection of Building B boiler blowdown was removed.
- Asbestos Powell Environmental, Inc. conducted an asbestos inspection and asbestoscontaining materials have been removed from the buildings.

Mr. Manco acknowledged that a cesspool associated with the former site structures was potentially located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. Mr. Manco also acknowledged the discharge of diesel fuel (Case No. 97-02-21-1440-39) and provided copy of the CCDOH file completion memo dated October 25, 2007 described in Appendix D. Lastly, Mr. Manco indicated that the hydraulic lift system was pumped out and the hydraulic lift system tank removed on November 9, 2007. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. Copies of the documents provided by Mr. Manco are provided as an attachment to this Appendix.

Appendix J Areas of Concern

Areas of Concern

Areas of concern (AOCs) were evaluated by researching the history of the subject site and observed during the site inspection on December 3, 2007. Based on the findings of this PA, CMX has determined that there are twenty-three (23) areas of concern (AOCs) at the subject site:

Bulk Storage Tanks and Appurtenances

Above Ground Storage Tanks (AOC-1) – One (1) 275-gallon AST which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt. CMX recommends no investigation of this AOC.

Underground Storage Tanks (AOC-2A/AOC-2B/AOC-2C) – EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the UST database (Facility ID 016718). Two (2) 6,000-gallon heating oil USTs (AOC-2A and AOC-2B) and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. Mr. Manco confirmed the closure and removal of three (3) UST's in 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed.

According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's (AOC-2A/AOC-2B) and one (1) 2,000 gallon UST (AOC-2B) containing No. 2 heating oil were closed and removed at the site in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for TPH. TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis.

Based on our review of the post-excavation soil sample analytical results, no exceedances of current NJDEP soil cleanup were identified. CMX recommends no investigation of this AOC.

Storage and Staging Areas

Storage Containers (AOC-3) – Four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint container were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Mr. Manco informed CMX that all of the containers were going to be removed from the property in the near future. CMX recommends no investigation of this AOC; however the containers should be removed and disposed of in accordance with applicable waste regulations.

Drainage Systems

Building C Floor Drains (AOC-4) – Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former

cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommends no investigation of this AOC.

Septic Systems, Leachfields or Seepage Pits (AOC-5) – According to the ERI PA report, "available information indicates that a cesspool was once in use at the Site. There is a concern that contaminants may have been discharged to the cesspool. It is recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii." Mr. Manco acknowledged that a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. CMX recommends investigation of this AOC.

Building B Drywell (AOC-6) – Building B is located in the central section of the existing structures and was the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to the BCM environmental assessment correspondence, Building B boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. ERI indicated that the drywell utilized for collection of Building B boiler blowdown was removed in their PA report. CMX recommends investigation of this AOC.

Discharge and Disposal Areas

Incinerator (AOC-7) – According to the BCM environmental assessment correspondence, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported offsite for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site. CMX did not observe an incinerator during the site reconnaissance. CMX recommends no investigation of this AOC.

Other Areas of Concern

Transformers (AOC-8) – Two (2) electric transformers were observed at the west exterior of the power house (Building D). According to the BCM environmental assessment report, these transformers are of the dry construction type and do not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. The transformers were in fair condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers. CMX recommends no investigation of this AOC.

Building A Staining (AOC-9A) – Building A is located within the northern most section of the existing building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a

review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommends no investigation of this AOC.

Building D Staining (AOC-9B) – Building D is the western most structure and is comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building D. Heavy staining of the concrete surface was noted beneath the generators. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. CMX recommends no investigation of this AOC.

Building F Staining (AOC-9C) – Building F is the eastern most structure and consists of ground floor and basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. CMX recommends no investigation of this AOC.

Compressor Blowdown (AOC-10) – According to the BCM environmental assessment correspondence, refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils." In addition, ERI indicated that stained soils identified at the exterior of Building B were removed in their PA report. CMX did not observe stained soils in this area during the site reconnaissance. CMX recommends no investigation of this AOC.

Site Specific Areas of Concern

Hydraulic Lift System (AOC-11) – A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. No evidence of a discharge from the hydraulic lift system was noted. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. According to the BCM environmental assessment correspondence, at the time of the BCM site reconnaissance the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry." In addition, based on their PA, ERI concluded that "a hydraulic lift was observed at the loading docks at the Site. The 1988 assessment indicated that the tank was leaking. There is a concern that contaminants may have discharged to soils at the Site." CMX recommends investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997. The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

A file completion memo dated October 25, 2007 regarding Case No. 97-0221-1440-39 was provided by the Camden County Department of Health. According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that

"asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." CMX recommends investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. CMX recommends no investigation of this AOC.

Regional Ground Water Contamination (AOC-14) – EDR reported that the north adjacent RF Products property disposed degreasing solvents through drains. In order to determine the potential for impact to the site from the PF Products property, CMX reviewed available NJDEP records for RF Products on July 2, 2008. Based on a review of available records, RF Products has been identified as a source of a ground water contamination within the region. Ground water contamination has been identified on the Camden Laboratories property and has been attributed to migration of contaminants originating from RF Products. CMX recommends no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

AOC locations are included on Figure 3 (Appendix K).

Appendix K
Site Maps

070235804

REMEDIAL ACTION WORKPLAN

Camden Laboratories
1667 Davis Street
Block 1392, Lot 33
City of Camden
Camden County, New Jersey
NJDEP Case No. 08-07-01-1547-19

Prepared for:

Camden Laboratories L.P.

PO Box 2614 West Chester, Pennsylvania 19380

Prepared by:

CMX

1101 Laurel Oak Road Suite 160 Voorhees, New Jersey 08043-7346

August 2008

CERTIFICATION N.J.A.C. 7:26-1.2 et. seq.

Any person making a submission to the Department required by this chapter and pursuant to N.J.A.C. 7:26E, will include the following signature and notarized certification, for each technical submittal. Additionally, the certification will indicate the case name and address, case number, type of documents submitted, e.g. Remedial Action Report, for each technical submittal.

TYPE OF DOCUMENT: REMEDIAL ACTION WORK PLAN

CASE NAME: <u>CAMDEN LABORATORIES</u>

CASE ADDRESS: <u>1667 Davis Street</u>, <u>Block 13982</u>, <u>Lot 33</u>

City of Camden, Camden County, New Jersey

CASE NUMBER: <u>08-07-01-1547-19</u>

The following certification will be signed by:

- 1. For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For a partnership or sole proprietorship, by a general partner of the proprietor, respectively, or:
- 3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.
- 4. For persons other than 1 through 3 above, by the person with legal responsibility for the Site.

"I certify, under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

PRINTED NAME	. IIILE	_
SIGNATURE	DATE	
NOTARY SIGNATURE	DATE	

Table of Contents

1.0	Introduction	1
2.0	Previous Investigation Summary	2
2.1	Preliminary Assessment	2
2.2	Site Investigation	5
2.2.	.1 Septic Systems, Leachfields or Seepage Pits (AOC-5)	6
2.2.	.2 Building B Drywell (AOC-6)	6
2.2.	.3 Hydraulic Lift System (AOC-11)	6
2.2.	.4 NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)	7
2.2.	.5 Regional Ground Water Contamination (AOC-14)	7
2.2.	.6 Conductive Area (AOC-15)	8
3.0	Remedial Action Workplan	10
3.1	Remediation Standards	10
3.2	Permitting and Plans	10
3.2.	.1 Permits	10
3.2.	.2 Health and Safety Plan	10
3.2.	.3 Traffic	10
3.2.	.4 Dust Control	10
3.2.	.5 Site Security Plan	11
3.3	Mobilization	11
3.4	Soil Excavation	11
3.5	Post-Excavation Soil Sampling	12
3.6	Site Restoration	12
3.7	Remedial Action Report	12
3.8	Estimated Remediation Remedial Action Costs	13
3.9	Implementation/Schedule	13

List of Figures

- Figure 1 Site Location Map USGS 7.5 Minute Topographic Map Camden Quadrangle Figure 2 Site Location Map City of Camden Tax Map
- Figure 3 Area of Concern Location Map
- Figure 4 Site Investigation Sample Location Map

Appendices

Appendix A – Health and Safety Plan

n:\project\2007\0702358\04\05_reports\rawp\camden labs rawp.doc

1.0 Introduction

CMX has prepared this Remedial Action Workplan (RAWP) for the Camden Laboratories property, designated as Block 1392, Lot 33 in the City of Camden, Camden County, New Jersey (herein referred to as the "site") on behalf of Camden Laboratories, L.P. This RAWP includes a narrative description of the proposed remediation strategy to be implemented to address copper and lead contaminated ash-like material identified following completion of a Site Investigation (SI) at the site. Since the copper and lead contaminated ash-like material is present on property that is proposed for redevelopment as a charter school, a remedy, consistent with the proposed site use, has been selected for this site. Based on the results of investigations performed to date and the proposed use of the site, Camden Laboratories L.P. intends to address the limited area of copper and lead impacted ash on the Camden Laboratories property through excavation and off-site disposal. Figure 1 displays the approximate location of the property on a portion of the USGS 7.5 Minute Camden Quadrangle. Figure 2 displays the boundaries of the property on the City of Camden Tax Map.

This report is divided into three (3) sections including this Introduction (Section 1), Previous Investigation Summary (Section 2) and Remedial Action Work Plan (Section 3). The previous investigation summary section presents the findings and conclusions of investigation activities completed at the site to date. The remedial action work plan presents the proposed remedial action for the site. This report has been prepared in accordance with the guidelines and recommendations presented in the New Jersey Technical Requirements for Site Remediation (N.J.A.C. 7:26E) or "Tech Rules".

2.0 Previous Investigation Summary

CMX conducted a Preliminary Assessment (PA) and SI of the Camden Laboratories Property on behalf of Camden Laboratories L.P. The findings of the PA and SI were summarized in CMX's PA rand SI reports dated August 2008, which are being submitted concurrently with this RAWP. The following sections present a summary of PA and SI findings.

2.1 Preliminary Assessment

In August 2008, CMX conducted a Preliminary Assessment (PA) of the Camden Laboratories Property on behalf of Camden Laboratories L.P. The PA was conducted pursuant to N.J.A.C. 7:26E-3.1 through 3.2. CMX identified the following areas of concern (AOCs) in connection with the site following completion of the PA.

- <u>Above Ground Storage Tanks (AOC-1)</u> One (1) 275-gallon AST which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt. CMX recommended no investigation of this AOC.
- Underground Storage Tanks (AOC-2A/AOC-2B/AOC-2C) EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the UST database (Facility ID 016718). Two (2) 6,000-gallon heating oil USTs (AOC-2A and AOC-2B) and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. Mr. Martin Manco, a representative of the current property owner, confirmed the closure and removal of three (3) UST's in 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed.

According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's (AOC-2A/AOC-2B) and one (1) 2,000 gallon UST (AOC-2B) containing No. 2 heating oil were closed and removed at the site in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for TPH. TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis.

Based on our review of the post-excavation soil sample analytical results, no exceedances of current NJDEP soil cleanup were identified. CMX recommended no investigation of this AOC.

• Storage Containers (AOC-3) – Four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint container were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Mr.

Manco informed CMX that all of the containers were going to be removed from the property in the near future. CMX recommended no investigation of this AOC; however the containers should be removed and disposed of in accordance with applicable waste regulations.

- <u>Building C Floor Drains (AOC-4)</u> Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- Septic Systems, Leachfields or Seepage Pits (AOC-5) According to an Environmental Resolutions Inc. PA report for the site dated September 2007, "available information indicates that a cesspool was once in use at the Site. There is a concern that contaminants may have been discharged to the cesspool. It is recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii." Mr. Manco acknowledged that a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. CMX recommended investigation of this AOC.
- <u>Building B Drywell (AOC-6)</u> Building B is located in the central section of the existing structures and was the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to BCM Eastern, Inc. environmental assessment correspondence dated September 8, 1988, Building B boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. ERI indicated that the drywell utilized for collection of Building B boiler blowdown was removed in their PA report. CMX recommended investigation of this AOC.
- Incinerator (AOC-7) According to the BCM environmental assessment correspondence, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site. CMX did not observe an incinerator during the site reconnaissance. CMX recommended no investigation of this AOC.
- Transformers (AOC-8) Two (2) electric transformers were observed at the west exterior of the power house (Building D). According to the BCM environmental assessment report, these transformers are of the dry construction type and do not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. The transformers were in fair condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers. CMX recommended no investigation of this AOC.

- <u>Building A Staining (AOC-9A)</u> Building A is located within the northern most section of the existing building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- <u>Building D Staining (AOC-9B)</u> Building D is the western most structure and is comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building D. Heavy staining of the concrete surface was noted beneath the generators. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. CMX recommended no investigation of this AOC.
- <u>Building F Staining (AOC-9C)</u> Building F is the eastern most structure and consists of ground floor and basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. CMX recommended no investigation of this AOC.
- Compressor Blowdown (AOC-10) According to the BCM environmental assessment correspondence, refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils." In addition, ERI indicated that stained soils identified at the exterior of Building B were removed in their PA report. CMX did not observe stained soils in this area during the site reconnaissance. CMX recommended no investigation of this AOC.
- Hydraulic Lift System (AOC-11) A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. No evidence of a discharge from the hydraulic lift system was noted. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. According to the BCM environmental assessment correspondence, at the time of the BCM site reconnaissance the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry." In addition, based on their PA, ERI concluded that "a hydraulic lift was observed at the loading docks at the Site. The 1988 assessment indicated that the tank was leaking. There is a concern that contaminants may have discharged to soils at the Site." CMX recommended investigation of this AOC.
- NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12) EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997. The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being

done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

A file completion memo dated October 25, 2007 regarding Case No. 97-0221-1440-39 was provided by the Camden County Department of Health. According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." CMX recommended investigation of this AOC.

• NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. CMX recommended no investigation of this AOC.

Regional Ground Water Contamination (AOC-14) – EDR reported that the north adjacent RF Products property disposed degreasing solvents through drains. In order to determine the potential for impact to the site from the PF Products property, CMX reviewed available NJDEP records for RF Products on July 2, 2008. Based on a review of available records, RF Products has been identified as a source of a ground water contamination within the region. Ground water contamination has been identified on the Camden Laboratories property and has been attributed to migration of contaminants originating from RF Products. CMX recommended no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

The locations of AOC's identified following completion of the PA are presented on Figure 3.

2.2 Site Investigation

CMX completed a SI of the site on behalf of the Camden Laboratories, L.P. SI activities were conducted between April and June 2008 and included a geophysical survey, soil boring investigation and ground water investigation. SI soil boring/sampling locations and temporary well point locations are presented on Figure 4. The following paragraphs present a summary of SI findings and recommendations by AOC investigated.

2.2.1 Septic Systems, Leachfields or Seepage Pits (AOC-5)

Upon verification of the septic system location during the geophysical survey, CMX advanced one (1) soil boring at the suspected downgradient side of the septic tank and one (1) soil boring at the terminus of the associated pipe. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in the soil borings advanced. All priority pollutant compounds and total petroleum hydrocarbons (TPH) were reported as non-detect or at concentrations below their respective most stringent NJDEP Soil Cleanup Criteria (SCC) for soil samples collected from the soil borings. Based on the analytical results, CMX recommends no additional investigation of this AOC; however, if the septic system will not be used as part of future site redevelopment, CMX recommended closure of the septic system in accordance with applicable state and local requirements.

2.2.2 Building B Drywell (AOC-6)

Piping associated with a large sump, floor drain and sanitary sewer line were identified within the Building B south boiler room. Due to the thickness of the building's concrete floor, GPR penetration was limited to approximately one (1) foot below grade. Therefore, piping associated with the floor drain could not be traced and the discharge location of the sump and floor drain system was not identified. As discussed in our PA report, ERI prepared a PA for the site on behalf of Education Advance Corporation. ERI's PA findings were summarized in their PA report dated September 2007. According to the ERI PA report, the drywell utilized for collection of Building B boiler blowdown was removed. Based on all of the above, CMX recommended no additional investigation of this AOC.

2.2.3 Hydraulic Lift System (AOC-11)

CMX advanced three (3) soil borings along the southern perimeter of the concrete pad associated with the hydraulic lift system and one (1) soil boring adjacent to the associated anomaly identified during the geophysical survey. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in any of the borings advanced. TPH was reported as non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings.

CMX installed one (1) temporary well point to investigate the potential for impact to ground water from the hydraulic lift system (AOC-11). CMX collected one (1) groundwater sample (TWP-1) from this temporary well point. Volatile organic and base neutral compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Ground Water Quality Standard

(GWQS) for sample TWP-1. Based on the analytical results, CMX recommended no additional investigation of this AOC.

2.2.4 NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)

CMX advanced two (2) soil borings in the vicinity of the generator located at the exterior of Building B. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in either of the borings advanced. Analytical results reported TPH as non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings. Based on the analytical results, CMX recommended no additional investigation of this AOC.

2.2.5 Regional Ground Water Contamination (AOC-14)

CMX installed five (5) temporary well points to investigate the potential for impact to ground water at the site. Since four (4) of the five (5) temporary well points did not yield enough ground water for collection of samples and clay was identified within the soil column of several of the soil borings, CMX suspects that the ground water conditions observed during the soil boring investigation are representative of a perched ground water condition. Analytical results for sample (TWP-1) collected from the temporary well point installed adjacent to the hydraulic lift system (AOC-11) reported all VO+10 and BN+15 compounds as non-detect or at concentrations below their respective most stringent NJDEP GWQS. Based on these results, CMX concluded that shallow/perched ground water at the site has not been impacted.

As discussed in our July 2008 PA report, the NJDEP Site Remediation and Waste Management Program, Division of Remediation Support, Bureau of Environmental Measurement and Site Assessment conducted ground water investigations to evaluate the north adjacent RF Products/Fast Doors, Inc. site as a potential source of contamination identified in the Camden Parkside Wellfield. The NJDEP findings were summarized in an Expanded Site Investigation Report dated September 2007. According to the report, TCE was indentified at concentrations exceeding the NJDEP GWQS in ground water beneath the RF Products/Fast Doors, Inc. site and the Camden Laboratories property. The NJDEP concluded that the RF Products/Fast Doors, Inc. site was the source of the TCE ground water contamination and that the TCE ground water contamination has migrated to the Camden Laboratories property from the RF Products/Fast Doors, Inc. site. Since depth to ground water during NJDEP's ground water investigation was identified between thirty-two (32) to forty-one (41) feet below grade, TCE impact to the deep aquifer has been confirmed.

CMX recommended no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

2.2.6 Conductive Area (AOC-15)

During the geophysical survey conducted on April 8, 2008, CMX identified a large conductive anomaly measuring approximately fifty (50) feet by seventy-five (75) feet within the western grassed portion of the site. CMX initially investigated this AOC on April 9, 2008. CMX advanced two (2) soil borings east and west flank of the conductive area identified during the geophysical survey. Soil samples were collected from each soil boring to characterize an ash-like material identified within the soil column. Copper was reported at a concentration exceeding the NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC)/Non-Residential Direct Contact Soil Cleanup Criteria (NRDCSCC) of 600 mg/kg for sample SB-8 (1,380 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg and NRDCSCC of 600 mg/kg for sample SB-8 (667 mg/kg). All other priority pollutant compounds and TPH were reported as non-detect or at concentrations below their respective most stringent NJDEP SCC for both soil samples.

Based on the above, CMX performed follow-up investigations of this AOC on June 23, 2008. CMX advanced four (4) soil borings through the conductive area. One (1) sample was collected from each boring to characterize the ash-like material identified within the soil column. One (1) additional sample was collected from each boring in order to establish the vertical limit of the ash-like material. In addition, twelve (12) borings were advanced in an effort to determine the perimeter of the conductive area. One (1) soil sample was collected from each boring where no indications of impact (i.e. the presence of ash-like material) were identified in order to establish the horizontal limit of material. With the exception of one (1) sample (AM-2), copper and lead were reported at concentrations below the NJDEP most stringent SCC for all samples collected. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg).

The extent of ash-like material was horizontally delineated to the north by soil borings AM-4 and AM-5; to the east by soil borings AM-3 and AM-12; and to the south by soil borings AM-14 and AM-15. While ash-like material was identified on a portion of the Camden Laboratories property, a substantial area of ash-like material was observed across the south adjacent Whitman Park. The ash-like material was thicker on Whitman Park when compared to the Camden Laboratories

property, and extended to a greater depth. Based on these observations, the ash-like material originates on Whitman Park and extends onto the Camden Laboratories property.

Based on the analytical results for samples collected to investigate the conductive area, copper and lead impacted subsurface soil has been horizontally and vertically delineated by samples collected during the April 9 and June 23, 2008 soil boring investigations. Impacted subsurface soil has been horizontally delineated to the north by on-site subsurface soil samples AM-4 and AM-5; to the east by on-site subsurface soil sample AM-3; to the south by off-site subsurface soil samples AM-7 and AM-8; and to the west by on-site subsurface soil samples AM-6. Furthermore, impacted subsurface soil has been vertically delineated by on-site subsurface soil sample AM-1A and AM-2A.

Analytical results indicated that the area of copper and lead impacted ash is limited to the on-site conductive area initially identified during the geophysical survey. Therefore, the extent of impact is limited to an approximate 3,750 square foot area. The ash-like material was 1.1 feet thick. The copper and lead impacted area is estimated to be 4,125 cubic feet (152.8 cubic yards), or approximately 230 tons in volume.

3.0 Remedial Action Workplan

This RAWP presents the proposed remedial actions to address the copper and lead contaminated ash-like material (AOC-15) identified on the site following completion of the SI. Since the copper and lead contaminated ash-like material is present on property that is proposed for redevelopment as a charter school, a remedy, consistent with the proposed site use, has been selected for this site. Based on the results of investigations performed to date and the proposed use of the site, Camden Laboratories L.P. intends to address the limited area of copper and lead impacted ash on the Camden Laboratories property through excavation and off-site disposal.

3.1 Remediation Standards

Analytes detected at the site at concentrations exceeding NJDEP RDCSCC include copper and lead. The remediation standard selected is the NJDEP RDCSCC.

3.2 Permitting and Plans

3.2.1 Permits

CMX does not anticipate that any permits will be required to perform the selected remedial action.

3.2.2 Health and Safety Plan

A site-specific Health and Safety Plan (HASP) has been prepared for the proposed remediation activities. The HASP was prepared in accordance with applicable federal, state and local requirements, including but not limited to, the Occupational Safety and Health Administration Regulations 29 CFR Part 1910 (Occupational Safety and Health Standards) and 29 CFR Part 126 (Safety and Health Regulations for Construction). The HASP outlines the health and safety procedures and equipment required for the work activities to minimize the potential for exposure and/or increased risk to field personnel and the community. The HASP includes site control measures, engineering controls and work practices, air monitoring procedures, decontamination and residuals management procedures, and emergency response information. A copy of the site-specific HASP is provided in Appendix A.

3.2.3 Traffic

Truck routes will be developed prior to implementation of the remedial action in order to minimize impacts to the surrounding community.

3.2.4 Dust Control

Dust control measures will be employed as necessary during excavation activities through soil wetting or other approved technique. Dust control measures will include procedures to prevent

spreading of potentially contaminated soils by excavation and transport equipment. Specific procedures will be established in concert with the remediation contractor.

3.2.5 Site Security Plan

The remediation contractor will be responsible for making sure that the work areas are secured during non-working hours.

3.3 Mobilization

Construction equipment will be mobilized to the site and staged in a designated equipment staging area during the project. The following control measures will be implemented, as necessary:

- A temporary equipment decontamination/staging area will be established to facilitate collection of soil and mud from equipment;
- Trucks and equipment will be restricted to designated travel routes and staging locations;
 and
- Water spray will be available onsite and used as necessary to suppress unacceptable dust encountered during remediation.

3.4 Soil Excavation

Based on the results of the site investigation, the impacted area is estimated to measure 50' in length, 75' in width and 1.1' in thickness and is approximately 152.8 cubic yards in volume. The anticipated excavation area location is presented on Figure 4. Due to the fact that field screening with a calibrated PID did not reveal measurable differences between the contaminant and the surrounding matrix, field observation of gross contamination (horizontal extent of the conductive anomaly and vertical limits of ash-like material) will be the deciding factor used to determine the final limits of the excavation. Impacted soil will be excavated using a backhoe to mitigate the soil source.

Soil from this impacted zone will stockpiled on-site over and covered with plastic. A waste classification sample will be collected from the stockpiled materials and an appropriate disposal facility will be chosen based upon the waste classification analytical results. Surficial overburden soil which was determined not to contain impacted ash-like material will be stockpiled on-site for later reuse as backfill and augmented with certified clean soil from an off-site source as necessary.

3.5 Post-Excavation Soil Sampling

Post-excavation soil samples will be collected in accordance with the frequency outlined in N.J.A.C. 7:26E-6.4(a)2.ii.(2) which states "one sample from the bottom of each sidewall for every 30 linear feet of sidewall and one sample from the excavation bottom for every 900 square feet of bottom area." Post-excavation soil samples will be forwarded to a New Jersey certified laboratory for copper and lead analysis. Based on the anticipated extent of soil to be excavated, CMX proposes a minimum of ten (10) sidewall and five (5) bottom samples be collected from the approximate 3,750 square foot area of impact. The following table provides a summary of proposed post-remediation samples.

Table 1: Proposed Post-Remedial Action Samples				
ID	Location	Parameter		
PE-1	Excavation Sidewall	Copper, Lead		
PE-2	Excavation Sidewall	Copper, Lead		
PE-3	Excavation Sidewall	Copper, Lead		
PE-4	Excavation Sidewall	Copper, Lead		
PE-5	Excavation Sidewall	Copper, Lead		
PE-6	Excavation Sidewall	Copper, Lead		
PE-7	Excavation Sidewall	Copper, Lead		
PE-8	Excavation Sidewall	Copper, Lead		
PE-9	Excavation Sidewall	Copper, Lead		
PE-10	Excavation Sidewall	Copper, Lead		
PE-11	Excavation Bottom	Copper, Lead		
PE-12	Excavation Bottom	Copper, Lead		
PE-13	Excavation Bottom	Copper, Lead		
PE-14	Excavation Bottom	Copper, Lead		
PE-15	Excavation Bottom	Copper, Lead		

3.6 Site Restoration

Site restoration will include backfill of the excavation areas with certified clean fill materials. The area will be rough graded and seeded following completion of the remedial action.

3.7 Remedial Action Report

A Remedial Action Report (RAR) will be prepared following completion of the remedial action field activities described in this RAWP. The RAR will be prepared in accordance with the NJDEP Technical Requirements for Site Remediation (N.J.A.C. 7:26 E-6.6). The RAR will present the results of the remedial activities and include the following information:

- A summary of the remedial actions completed, including documentation of any field changes or other deviations from the RAWP:
- List of the remediation standards applied:
- Post-excavation soil sampling analytical results:
- Evaluation of post-remediation compliance status;
- Detailed description of site restoration activities;

- Documentation of the source, quality and the amount of backfill material:
- Bills of lading for backfill material;
- Certificates of recycling/disposal for waste material that is transported offsite; and
- A summary of actual remediation costs.

3.8 Estimated Remediation Remedial Action Costs

Proposed remedial activities associated with this phase of the project include the following major components:

- Mobilization and Site preparations including utility mark-outs, and installation of temporary fencing if necessary;
- Soil excavation, offsite transportation and recycling and/or disposal of contaminated soils;
- Post-excavation soil sampling;
- Excavation backfilling;
- Site restoration including placement of clean fill material;
- Demobilizationp; and
- Remedial Action reporting.

The total cost for the proposed Remedial Action is estimated to be \$50,000.00. This estimated cost was prepared utilizing typical contractor costs for similar projects. Actual costs will vary based upon characterization of the soils generated requiring off-site disposal/recycling and contractor selected to complete the work.

3.9 Implementation/Schedule

The anticipated duration of the remediation phase is approximately three (3) months. This includes initial soil excavation activities and appropriate reporting. CMX anticipates that the soil excavation, off-site recycling/disposal, excavation area backfill and site restoration will require five (5) field days to complete. Upon receipt of laboratory analytical results, CMX will prepare a RAR for submittal to NJDEP.

Appendix A Health and Safety Plan

070235804

SITE INVESTIGATION REPORT

FOR

Camden Laboratories
1667 Davis Street
City of Camden
Camden County, New Jersey
NJDEP Case No. 08-07-01-1547-19

Prepared for:

PO Box 2614 West Chester, PA 19380

Prepared by:

CMX 1101 Laurel Oak Road Suite 160 Voorhees, New Jersey 08043-7346

August 2008

WORKING TOGETHER FOR A BETTER TOMORROW

CERTIFICATION

N.J.A.C. 7:26-1.2 et. seg.

Any person making a submission to the Department required by this chapter and pursuant to N.J.A.C. 7:26E, will include the following signature and notarized certification, for each technical submittal. Additionally, the certification will indicate the case name and address, case number, type of documents submitted, e.g. Remedial Action Report, for each technical submittal.

TYPE OF DOCUMENT: SITE INVESTIGATION REPORT

CASE NAME: CAMDEN LABORATORIES

CASE ADDRESS: 1667 Davis Street, Block 1392, Lot 33, City of Camden, Camden County, New

Jersey

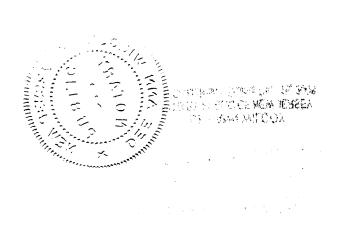
CASE NUMBER: 08-07-01-1547-19

The following certification will be signed by:

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For a partnership or sole proprietorship, by a general partner of the proprietor, respectively, or:

3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.


4. For persons other than 1 through 3 above, by the person with legal responsibility for the Site.

"I certify, under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

SIGNATURE DE CONTROL DATE 3/11/2008

NOTARY SIGNATURE DE CONTROL QUICOYDATE QUIQUET 11, 2008

DEE ANN WILCOX NOTARY PUBLIC OF NEW JERSEY My Commission Expires Dec. 18, 2008

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	HISTORICAL INFORMATION	2
2.1	SITE DESCRIPTION	2
2.2	SITE HISTORY	2
2.3	CURRENT USE	2
2.4	JULY 2008 PRELIMINARY ASSESSMENT SUMMARY	3
3.0	PHYSICAL SETTING	7
3.1	TOPOGRAPHY	7
3.2	GEOLOGY	7
3.3	SOILS	7
3.4	HYDROGEOLOGY	7
4.0	TECHNICAL OVERVIEW	8
4.1	APRIL 8, 2008 GEOPHYSICAL SURVEY	8
4.2	APRIL 9, 2008 SOIL BORING INVESTIGATION SOIL BORING INVESTIGATION	g
4.3	APRIL 9 AND 11 2008 GROUNDWATER INVESTIGATION	12
4.4	JUNE 23, 2008 SOIL BORING INVESTIGATION	13
4.5	RELIABILITY OF DATA	14
5.0	BASELINE ECOLOGICAL EVALUATION	15
5.1	CONTAMINANTS OF POTENTIAL ECOLOGICAL CONCERN	15
5.2	ENVIRONMENTALLY SENSITIVE AREAS	16
5.3	POTENTIAL CONTAMINANT MIGRATION PATHWAYS	16
5.4	BEE RESULTS AND CONCLUSIONS	16
5.5	WELL SEARCH	17
6.0	FINDINGS/RECOMMENDATIONS	18
6.1	SEPTIC SYSTEMS, LEACHFIELDS OR SEEPAGE PITS (AOC-5)	18
6.2	BUILDING B DRYWELL (AOC-6)	18
6.3	HYDRAULIC LIFT SYSTEM (AOC-11)	18
6.4	NJ SPILLS DATABASE LISTING (NJDEP CASE NO. 97-2-21-1440-39) (AOC-13)	19
6.5	SITES LOCATED WITHIN ASTM SEARCH DISTANCES (AOC-19)	19
6.6	CONDUCTIVE AREA (AOC-20)	

LIST OF FIGURES

- Figure 1 Site Location Map USGS 7.5 Minute Topographic Map Camden Quadrangle
- Figure 2 Site Location Map City of Camden Tax Map
- Figure 3 Area of Concern Location Map
- Figure 4 Site Investigation Sample Location Map

LIST OF TABLES

- Table 1 Summary of Analytical Methods and Quality Assurance Indicators
- Table 2 Soil Boring Investigation Analytical Results (AOC-5) April 9, 2008
- Table 3 Soil Boring Investigation Analytical Results (AOC-11) April 9, 2008
- Table 4 Soil Boring Investigation Analytical Results (AOC-13) April 9, 2008
- Table 5 Soil Boring Investigation Analytical Results (AOC-20) April 9, 2008
- Table 6 Ground Water Investigation Analytical Results (AOC-11) April 11, 2008
- Table 7 Soil Boring Investigation Analytical Results (AOC-20) April 11, 2008

APPENDICES

- Appendix A Geophysical Investigation Report
- Appendix B Soil Boring Logs
- Appendix C Laboratory Analytical Results and Electronic Data Deliverables
- Appendix D BEE Comparison Tables

1.0 Introduction

CMX has performed a Site Investigation (SI) at Camden Laboratories, designated as Block 1392, Lot 33 in the City of Camden, Camden County, New Jersey (herein referred to as the "site") on behalf of Camden Laboratories, L.P. This SI Report SIR presents a summary of the SI activities completed at the site to date.

This SIR is divided into six (6) sections including this introduction (Section 1), historical information (Section 2), physical setting (Section 3), technical overview (Section 4), baseline ecological evaluation (Section 5) and findings and recommendations (Section 6). The historical information section details information relating to site use and history of ownership for the site. The physical setting section details physical characteristics of the site. The technical overview section documents SI activities completed to date. The Baseline Ecological Evaluation (BEE) section includes an evaluation of the SI data to identify site-specific contaminants that are of ecological concern. The conclusion section provides CMX's conclusions and recommendations based on the findings of the SI to date. This report has been prepared in accordance with the guidelines and recommendations presented in the New Jersey Technical Requirements for Site Remediation (N.J.A.C. 7:26E).

2.0 Historical Information

2.1 Site Description

The site is located at 1667 Davis Street in the City of Camden, Camden County, New Jersey. The property is designated Lot 33 of Block 1392 by the City of Camden for tax purposes. The subject site is bound to the north by residential and commercial uses. The site is bound to the south by Whitman Park, to the east by commercial uses, and the west by residential development. Commercial uses to the east and north of the site include RF Products and the Dr. Charles E. Brimm Medical Arts building. Figure 1 displays the approximate location of the property on a portion of the USGS 7.5 Minute Camden Quadrangle. Figure 2 displays the boundaries of the property on the City of Camden Tax Map.

2.2 Site History

The site consists of one (1) contiguous parcel that is 3.9 acres in size. Based on a review of available historical sources, the site was developed for use as a hospital for municipal diseases, which was located in the northern portion of the site. Construction for the hospital occurred as early as 1923. The site was redeveloped for use for biological, genetic and cancer research. Construction of the current site building compound (Buildings A through F) took place in phases from the 1950's to the 1980's.

2.3 Current Use

The site is currently occupied by an approximately 50,000 square foot building compound which is currently vacant. Construction of the building compound took place in phases from the 1950's to the 1980's. The Camden Laboratories compound is divided into the following six (6) buildings:

Table 1 – Structure Designations/Layout					
Building	Location	Former Uses	#of Floors		
Α	Northern Section	Office/Laboratory	1 Story & Basement		
В	Central Section	Office/Laboratory/Animal quarters/Freezer room	2 Story		
С	Southwestern Section	Cleaning and sterilization of animal cages	1 Story		
D	Northwestern Section	Main Generator/Storage	1 Story		
Е	Central Section	Water Deionizer/Freezer storage	1 Story & Basement		
F	Eastern Section	Administration/Laboratory/Library/Auditorium/Quality Assurance	1 Story & Basement		

An asphalt paved road provides access to the site from Davis Street. Asphalt parking lots surround the site buildings to the north, south, and west. Remaining portions of the site, predominantly the western portion consists of an open grasses lawn.

2.4 August 2008 Preliminary Assessment Summary

CMX completed a Preliminary Assessment (PA) of the site on behalf of Camden Laboratories. L.P. CMX's findings were summarized in a PA Report dated August 2008. CMX identified the following areas of concern (AOCs) in connection with the subject site following completion of the PA.

- <u>Above Ground Storage Tanks (AOC-1)</u> One (1) 275-gallon AST which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt. CMX recommended no investigation of this AOC.
- <u>Underground Storage Tanks (AOC-2A/AOC-2B/AOC-2C)</u> EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the UST database (Facility ID 016718). Two (2) 6,000-gallon heating oil USTs (AOC-2A and AOC-2B) and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. Mr. Martin Manco, a representative of the current property owner, confirmed the closure and removal of three (3) UST's in 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed.

According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's (AOC-2A/AOC-2B) and one (1) 2,000 gallon UST (AOC-2B) containing No. 2 heating oil were closed and removed at the site in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for TPH. TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis.

Based on our review of the post-excavation soil sample analytical results, no exceedances of current NJDEP soil cleanup were identified. CMX recommended no investigation of this AOC.

Storage Containers (AOC-3) – Four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint container were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Mr. Manco informed CMX that all of the containers were going to be removed from the property

in the near future. CMX recommended no investigation of this AOC; however the containers should be removed and disposed of in accordance with applicable waste regulations.

- Building C Floor Drains (AOC-4) Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- Septic Systems, Leachfields or Seepage Pits (AOC-5) According to an Environmental Resolutions Inc. PA report for the site dated September 2007, "available information indicates that a cesspool was once in use at the Site. There is a concern that contaminants may have been discharged to the cesspool. It is recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii." Mr. Manco acknowledged that a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. CMX recommended investigation of this AOC.
- Building B Drywell (AOC-6) Building B is located in the central section of the existing structures and was the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to BCM Eastern, Inc. environmental assessment correspondence dated September 8, 1988, Building B boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. ERI indicated that the drywell utilized for collection of Building B boiler blowdown was removed in their PA report. CMX recommended investigation of this AOC.
- Incinerator (AOC-7) According to the BCM environmental assessment correspondence, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site. CMX did not observe an incinerator during the site reconnaissance. CMX recommended no investigation of this AOC.
- <u>Transformers (AOC-8)</u> Two (2) electric transformers were observed at the west exterior of the power house (Building D). According to the BCM environmental assessment report, these transformers are of the dry construction type and do not contain oil. In addition, one (1) pole mounted electrical transformer was located along Davis Street. The transformers were in fair condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers. CMX recommended no investigation of this AOC.

- Building A Staining (AOC-9A) Building A is located within the northern most section of the existing building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- <u>Building D Staining (AOC-9B)</u> Building D is the western most structure and is comprised of one (1) ground floor. Two (2) emergency gas powered generators were observed within Building D. Heavy staining of the concrete surface was noted beneath the generators. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No floor drains were noted in this building. CMX recommended no investigation of this AOC.
- <u>Building F Staining (AOC-9C)</u> Building F is the eastern most structure and consists of ground floor and basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. CMX recommended no investigation of this AOC.
- Compressor Blowdown (AOC-10) According to the BCM environmental assessment correspondence, refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils." In addition, ERI indicated that stained soils identified at the exterior of Building B were removed in their PA report. CMX did not observe stained soils in this area during the site reconnaissance. CMX recommended no investigation of this AOC.
- Hydraulic Lift System (AOC-11) A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. No evidence of a discharge from the hydraulic lift system was noted. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. According to the BCM environmental assessment correspondence, at the time of the BCM site reconnaissance the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry." In addition, based on their PA, ERI concluded that "a hydraulic lift was observed at the loading docks at the Site. The 1988 assessment indicated that the tank was leaking. There is a concern that contaminants may have discharged to soils at the Site." CMX recommended investigation of this AOC.
- NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12) EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997.

The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

A file completion memo dated October 25, 2007 regarding Case No. 97-0221-1440-39 was provided by the Camden County Department of Health. According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." CMX recommended investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

The CCDOH provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. CMX recommended no investigation of this AOC.

Regional Ground Water Contamination (AOC-14) – EDR reported that the north adjacent RF Products property disposed degreasing solvents through drains. In order to determine the potential for impact to the site from the PF Products property, CMX reviewed available NJDEP records for RF Products on July 2, 2008. Based on a review of available records, RF Products has been identified as a source of a ground water contamination within the region. Ground water contamination has been identified on the Camden Laboratories property and has been attributed to migration of contaminants originating from RF Products. CMX recommended no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

The locations of AOC's identified following completion of the PA are presented on Figure 3.

3.0 Physical Setting

3.1 Topography

Figure 1 shows the topography of the subject area, along with local drainage patterns. Based on a review of this map, the site slopes from east to west. Elevation of the site ranges from approximately twenty-two (22) to twenty-six (26) feet above mean sea level (ft msl).

3.2 Geology

According to the Bedrock Geological Survey Map of Central & Southern New Jersey prepared by the U.S. Geologic Survey, the site lies within the Magothy Formation (Kmg) of the Coastal Plain Physiographic Province. The Magothy Formation consists of fine to coarse-grained white sand and quartz that weathers yellow-brown to orange-brown. This Formation is interbedded with grey clay or dark grey clay-silt near the top. Muscovite and feldspar are minor constituents. Large wood fragments occur in many clay layers.

3.3 Soils

According to the New Jersey Department of Environmental Protection (NJDEP) i-MapNJ application (http://www.state.nj.us/dep/gis/depsplash.htm#), the subject site is underlain by urban land soils. Urban land soils are classified as anthrotransported, or consisting of parent material from miscellaneous sources. Urban land soils are not typically represented in a soil survey as a specific soil series.

3.4 Hydrogeology

Based on a review of historical sources, depth to groundwater ranges between thirty-two (32) to forty-one (41) feet below grade within the subject area. Groundwater flow within the immediate subject area was determined during previous investigation activities conducted by NJDEP at the east adjacent RF Products property in 2007, as documented in our July 2007 PA report. Based on the investigative findings, ground water flow was determined to be in a southeast to south-southeast direction, depending on pumping activities associated with the Puchack Wellfield.

4.0 Technical Overview

CMX completed SI activities at the site between April and June 2008. SI activities included a geophysical survey, soil boring investigation and ground water investigation. SI soil boring/sampling locations and temporary well point locations are presented on Figure 4. A tabulated summary of analytical methods and quality assurance indicators is provided in Table 1. The following paragraphs document and summarize CMX's site investigation (SI) activities performed to date.

4.1 April 8, 2008 Geophysical Survey

CMX and its subcontractor completed a geophysical survey of the subject site on April 8, 2008. The geophysical survey was completed in an effort to identify the following: the location of the potential septic system (AOC-5); the location of any potential subsurface floor drain systems associated with the Building B dry well (AOC-6) and subsurface anomalies associated with the former hydraulic lift system (AOC-11). An electromagnetic (EM) survey, or ground conductivity survey, was completed using a Geonics EM31 Electro Magnetic (EM) induction unit by a qualified operator. A Fisher TW-6 Magnetic Locator and a 250Mhz Ground Penetrating Radar (GPR) equipment were also used. The EM survey was performed in a linear pattern on a maximum of ten foot (10') centers. The Magnetic Locator and GPR were used to further investigate areas of concern found with the EM. All EM data was digitally stored, downloaded to an in-field computer, and reviewed to ensure data quality for use in decisions regarding additionally focused surveys. The grid was located in the field with a total data station and Global Positioning System (GPS) coordinates so that anomalous areas could be located and a subsurface anomaly location map could be prepared. Anomalies identified following completion of the geophysical survey are presented on Sheets 1 and 2 of the Geophysical Investigation Report provided in Appendix A. The following paragraphs provide a summary of pertinent geophysical survey findings by AOC investigated.

Septic System (AOC-5)

An anomaly indicative of an approximate 10,000-gallon subsurface septic tank was located in the eastern portion of the site adjacent to Building F. An associated discharge pipe was identified at a location directly north of the anomaly. The subsurface septic tank and discharge pipe were situated approximately fifteen (15) feet to the east of the building.

Building B Dry Well (AOC-6)

A geophysical investigation was conducted within the interior of Building B boiler rooms. The geophysical survey revealed piping associated with a large sump, floor drain and sanitary sewer line

within the south boiler room. The floor drain appeared to be clogged, as water and debris was observed within the drain. Due to the thickness of the building's concrete floor, GPR penetration was limited to approximately one (1) foot below grade. Therefore, piping associated with the floor drain could not be traced and the discharge location of the sump and floor drain system was not identified.

Hydraulic Lift System (AOC-11)

A round anomaly of unidentified origin was identified approximately twenty (20) feet southeast of the hydraulic lift system. The anomaly was located within a small depression in the asphalt and appeared to be connected to the lift system by subsurface piping.

Other Features

During the geophysical survey, a large conductive area (AOC-15) measuring approximately fifty (50) feet by seventy-five (75) feet was encountered within the western grassed portion of the site. Two (2) pipes were also identified in this area, one (1) of which traversed the site and extended off-site to the east and west.

Two (2) vent pipes were identified along the north exterior of Building B. The vent pipes are consistent with the location of a former 2,000-gallon heating oil UST and a former 6,000-gallon heating oil UST previously removed from the site. Furthermore, a large excavation was identified at the south corner of Building C. This excavation corresponds with the location of a former 6,000-gallon heating oil UST removed from the site. No evidence of USTs was identified in these areas.

Several subsurface utilities were identified at the north exterior of Buildings A and F during the geophysical survey. Subsurface utilities identified were consistent with a stormsewer line, natural gas line and electrical conduit.

4.2 April 9, 2008 Soil Boring Investigation Soil Boring Investigation

CMX and its subcontractor completed a soil boring investigation at the subject site on April 9, 2008. Soil boring and sampling locations were recorded using Trimble GPS survey equipment and are presented on Figure 4. Soil boring logs are provided in Appendix B. The following paragraphs present a summary of the soil boring investigation activities by AOC investigated.

Septic Systems, Leachfields or Seepage Pits (AOC-5)

CMX advanced two (2) soil borings (SB-6 and SB-7) in the vicinity of the septic system. The soil boring locations were determined following completion of the geophysical survey described above. One (1) soil boring was advanced at the suspected downgradient side of the septic tank. An additional soil boring was advanced at the terminus of the discharge pipe. The soil borings were advanced to sixteen (16) feet below grade utilizing direct push equipment. The soil borings were field screened with a photo-ionization detector (PID) for the presence of organic vapor and logged. A soil sample was collected from each soil boring (SB-6 and SB-7 respectively). Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval at the suspected invert of the septic tank or immediately above the observed groundwater table. Therefore, sample SB-6 was collected from a depth of 5.5 to 6.0' below grade and sample SB-7 was collected from a depth of 13.5 to 14.0' below grade. The soil samples were forwarded to Accutest Laboratories of Dayton, New Jersey (Accutest) for priority pollutant (PP+40) analysis and total petroleum hydrocarbons analysis by NJDEP Method OQA-QAM-O25, Rev.6 (TPH-OAM).

All PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Soil Cleanup Criteria (SCC) for samples SB-6 and SB-7. A tabulated summary of laboratory analytical results for soil samples collected to investigate AOC-5 is provided in Table 2.

Hydraulic Lift System (AOC-11)

CMX advanced three (3) soil borings (SB-3 through SB-5) to investigate the hydraulic lift system. The locations of the soil borings were determined following completion of the geophysical survey described in Section 4.1. Two (2) soil borings were advanced along the southern perimeter of the concrete pad associated with the hydraulic lift system. An additional soil boring was advanced adjacent to the round anomaly of unidentified origin located to the southeast of the hydraulic lift system. Soil borings were advanced to a depth of sixteen (16) feet below grade utilizing direct push equipment. Soil borings were field screened with a PID for the presence of organic vapor and logged. A soil sample was collected from each soil boring (SB-3 through SB-5 respectively). Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval immediately above the observed groundwater table. Samples SB-3 and SB-5 were collected from a depth of 13.5 to 14.0' below grade. Sample SB-4 was collected from a depth of 14.5-15.0' below grade. Soil samples were forwarded to

Accutest for TPH-QAM analysis. Contingent polynuclear aromatic hydrocarbon (PAH) analysis was to be performed in the event that TPH was reported at a concentration exceeding 100 mg/kg.

TPH-QAM was reported as non-detect or at concentrations below the NJDEP PAH contingency threshold of 100 mg/kg for samples SB-3 through SB-5; therefore, contingent PAH analysis was not performed. A tabulated summary of laboratory analytical results for soil samples collected to investigate AOC-11 is provided in Table 3.

NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)

CMX advanced two (2) soil borings (SB-1 and SB-2) at accessible areas in the vicinity of the generator located at the exterior of Building B. The soil borings were advanced to a maximum of sixteen (16) feet below grade utilizing direct push equipment. The soil borings were field screened with a PID for the presence of organic vapor and logged. A soil sample was collected from each soil boring (SB-1 and SB-2 respectively). Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval immediately above the observed groundwater table (14.5-15.0' below grade). Since the material spilled was reportedly diesel fuel, the soil samples were forwarded to Accutest for total petroleum hydrocarbon-diesel range organics (TPH-DRO) analysis. Contingency volatile organic compound with a forward library search (VO+10) analysis was to be performed in the event that TPH-DRO was reported at a concentration exceeding 1,000 mg/kg.

TPH-DRO was reported as non-detect or at concentrations below the NJDEP VO+10 contingency threshold of 1,000 mg/kg for samples SB-1 and SB-2; therefore, contingent VO+10 analysis was not performed. A tabulated summary of laboratory analytical results for soil samples collected to investigate AOC-13 is provided in Table 4.

Conductive Area (AOC-15)

On April 8, 2008, CMX advanced two (2) soil borings (SB-8 and SB-9) at the perimeter of the conductive area identified during the geophysical survey in order to investigate the potential for impact. Soil borings were advanced along the east and west flank of conductive area to a depth of sixteen (16) feet below grade utilizing direct push equipment. The soil borings were field screened with a PID for the presence of organic vapor and logged. Ash-like material was encountered in each of the borings within the upper fourteen (14) inches of the soil column. No indications of impact (i.e. odors, staining, elevated PID readings) were observed and groundwater was not encountered in the

borings. A soil sample was collected from each soil boring to characterize the ash-like material (SB-8 and SB-9 respectively). Sample SB-8 was collected from a depth of 0.5 to 1.0' below grade. Sample SB-9 was collected from a depth of 0.75 to 1.25' below grade. The soil samples were forwarded to Accutest for PP+40 and TPH-QAM analyses.

Copper was reported at a concentration exceeding the NJDEP Residential Direct Contact Soil Cleanup Criteria/Non-Residential Direct Contact Soil Cleanup Criteria (RDCSCC/NRDCSCC) of 600 mg/kg for sample SB-8 (1,380 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg and NRDCSCC of 600 mg/kg for sample SB-8 (667 mg/kg). All other PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP SCC for samples SB-8 and SB-9. A tabulated summary of laboratory analytical results for soil samples collected to investigate the AOC-15 is provided in Table 5.

4.3 April 9 and 11, 2008 Groundwater Investigation

CMX installed five (5) temporary well points on April 9, 2008 in conjunction with the soil boring investigation activities described in Section 4.2. Temporary well points were installed at the following locations: one (1) temporary well point (TWP-1) was installed at soil boring SB-5 advanced adjacent to the hydraulic lift system (AOC-11); one (1) temporary well point (TWP-2) was installed at soil boring SB-6 installed in the vicinity of the septic system (AOC-5); one (1) temporary well point (TWP-3) was installed at soil boring SB-1 advanced within the vicinity of the generator to investigate potential impacts from the reported spill (AOC-12); and, two (2) temporary well points (TWP-4 and TWP-5) were installed at soil borings SB-10 and SB-11 advanced at the east property line to evaluate the potential for migration of contaminants to the site from the east adjacent RF Products property via ground water (AOC-14). Temporary well point locations were recorded using Trimble GPS survey equipment and are presented on Figure 4. Temporary well points were installed in accordance with the August 2005 NJDEP Field Sampling Procedures Manual and the July 1994 NJDEP Alternative Ground Water Sampling Techniques guidance for passively placed narrow diameter points.

CMX returned to the site on April 11, 2008 to collect grab ground water samples from the temporary well points in order to characterize the potential for impacts to ground water at the site. Upon inspection of the temporary well points, only TWP-1 installed adjacent to the round anomaly of unidentified origin the southeast of the hydraulic lift system (AOC-11) yielded enough water to facilitate collection of a groundwater sample. Since the remaining temporary well points did not yield enough ground water for collection of samples and clay was identified within the soil column of

several of the soil borings, CMX suspects that the ground water conditions observed during the soil boring investigation are representative of a perched ground water condition. Based on the above, CMX collected one (1) groundwater sample (TWP-1) from the temporary well point installed at soil boring location SB-5. The groundwater sample was collected as close to the 48th hour as practical, prior to removal of the well point. The ground water sample was forwarded to Accutest for VO+10 and base neutral compounds with a forward library search (BN+15) analyses.

All VO+10 and BN+15 compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Ground Water Quality Standard (GWQS) for sample TWP-1. A tabulated summary of laboratory analytical results for the groundwater sample collected to investigate AOC-11 is provided in Table 6. The laboratory analytical report and electronic data deliverables are provided in Appendix C.

4.4 June 23, 2008 Soil Boring Investigation

On June 23, 2008, CMX mobilized to the site to perform a soil boring investigation to characterize the conductive ash-like material and determine the horizontal boundary and vertical limits of this material. CMX advanced sixteen (16) soil borings (AM-1 through AM-16) to investigate the conductive area. Soil borings AM-1 through AM-6 were advanced on the site. Since it was determined that the majority of the ash-like material is located on the south adjacent Whitman Park property, soil borings AM-7 through AM-16 were advanced off site. Soil boring and sampling locations were recorded using Trimble GPS survey equipment and are presented on Figure 4.

Ash-like material was encountered in eleven (11) of the sixteen (16) soil borings advanced. The extent of ash-like material was horizontally delineated to the north by soil borings AM-4 and AM-5, to the east by soil borings AM-3 and AM-12, and to the south by soil borings AM-14 and AM-15. The west boundary of the ash-like material was not determined as it extended into the Hallowell Avenue right of way. Based on conditions observed during the soil boring investigation, the majority of the ash-like material is located on the south adjacent Whitman Park property and extends off-site to the west into Hallowell Avenue and onto the site. The known extent of ash-like material is presented on Figure 4.

With the exception of soil borings AM-6 and AM-16, all soil borings were advanced to a depth of four (4) feet bgs. Since soil borings AM-6 and AM-16 were advanced in an area which exhibited a large change in topography, these borings were advance to a depth of eight (8) feet bgs. Four (4) soil

borings (AM-1, AM-2, AM-7 and AM-8) were advanced through the conductive area. One (1) sample (e.g. AM-1) was collected from each boring in an effort to characterize the ash-like material. One (1) additional sample (e.g. AM-1A) was collected from each boring in order to establish the vertical limit of the ash-like material. Twelve (12) borings (AM-3 through AM-6 and AM-9 through AM-16) were advanced in an effort to establish the perimeter of the conductive area. One (1) soil sample was collected from each boring where no indications of impact (i.e. the presence of ash-like material) were identified in order to establish the horizontal limit of material. Soil samples were forwarded to Accutest for copper and lead analyses.

Copper was reported at a concentration exceeding the NJDEP RDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg). Copper and lead were reported at concentrations below their respective most stringent NJDEP SCC for all other samples collected. A tabulated summary of laboratory analytical results is provided in Table 7. The laboratory analytical report and electronic data deliverables are provided in Appendix C.

4.5 Reliability of Data

SI activities included collection of soil and groundwater samples in order to investigate potential contaminants at concentrations above applicable NJDEP remediation standards. Soil and groundwater samples were biased towards locations and depths exhibiting greatest anticipated contamination based on visual and olfactory indicators. Where appropriate, each sample was laboratory analyzed for parameters outlined in Table 2-1 of N.J.A.C. 7:26E. All soil and groundwater samples were collected in accordance with N.J.A.C. 7:26E and the 2005 NJDEP <u>Field Sampling</u> Procedures Manual.

Soil and groundwater samples were analyzed at Accutest. Reliability of laboratory analytical data is indicated by compliance with USEPA and NJDEP sample holding times, the laboratory's ability to achieve method detection limits (MDLs), precision and accuracy with respect to the analytical method used, and/or any other indicators of data quality. Information pertaining to the reliability of laboratory analytical data was obtained from the Reduced Tier II Laboratory Data Deliverable report for each sampling event. Chain of Custody documentation, laboratory Quality Assurance/Quality Control (QA/QC) data, and laboratory non-conformance summaries (which contain details with respect to laboratory contamination) are included in the laboratory analytical data package compiled for each sampling event and have been provided in Appendix C.

5.0 Baseline Ecological Evaluation

A BEE was conducted at the site pursuant to N.J.A.C.7:26E-3.11. This BEE was performed in order to evaluate the potential for adverse ecological effects potentially associated with historic or current operations conducted at the site. The BEE process utilizes three (3) main assessment strategies to make a determination on how sensitive resources proximal to the site could be potentially impacted detrimentally:

- Determination if Contaminants of Potential Ecological Concern (COPEC) exist onsite;
- Determination if an environmentally sensitive natural resource exists on, or immediately adjacent to, the site; and
- Determination if potential contaminant migration pathways to an environmentally sensitive natural resource exist, or an impact to an environmentally sensitive natural resource is indicated based on visual observation.

If a co-occurrence of the three (3) conditions above is identified following completion of the BEE, additional ecological investigation is required pursuant to N.J.A.C. 7:26E-4.7.

5.1 Contaminants of Potential Ecological Concern

The BEE includes an analysis of COPECs. In order to identify COPECs associated with the Site, the results of data gathered from the SI conducted between April and June 2008 was reviewed and compared to appropriate screening criteria. The screening values that were used included: Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants (Will and Suter, 1995); Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision (Efroymson, Will, and Suter, 1997); and National Oceanographic & Atmospheric Administration's Screening Quick Reference Tables or "SQuiRTs" (NOAA, 1999). CMX utilized data from twenty-six (26) samples to determine whether COPECs were present in the soils and ground water for this BEE. Tabulated summaries of SI analytical data with comparisons to BEE screening criteria are provided in Appendix D.

The results of the subsurface investigation have determined that COPECs do exist on-site in soil. COPECs identified in site soils include certain metals. Arsenic, cadmium, chromium, copper, lead, mercury, silver and/or zinc were identified at concentrations exceeding their most stringent screening values for subsurface soil samples SB-6, SB-7, SB-8, SB-9, AM-6, AM-7, AM-8 and AM-16.

The results of the subsurface investigation have determined that no COPECs exist on-site in ground water. All results were reported below their respective BEE screening criteria for ground water samples collected at the site to date.

5.2 Environmentally Sensitive Areas

The site consists of 3.9 acres in size and is developed for use as the Camden Laboratories. Site improvements include an approximate 50,000 square foot building compound which is currently vacant. An asphalt paved road provides access to the site from Davis Street. Asphalt parking lots surround the site buildings to the north, south, and west. Remaining portions of the site, predominantly the western portion, consists of an open grasses lawn. The surrounding area is primarily developed for residential and industrial use. The site is bound to the south by Whitman Park, to the east by commercial uses, and the west by residential development. Commercial uses to the east and north of the site include RF Products and the Dr. Charles E. Brimm Medical Arts building.

Based on a review of topographic maps for the site, as well as a site inspection, no primary sensitive resource areas are located on the site or were identified within proximity of the site boundary.

5.3 Potential Contaminant Migration Pathways

In order for a COPEC to present risk to ecological receptors there must be a complete pathway from the source of the COPEC to an ecological receptor. Based on a review of topographic maps the site slopes from east to west. Elevation of the site ranges from approximately twenty-two (22) and twenty-six (26) feet above mean sea level (ft msl). Surface water drainage is expected to flow across the site to the east towards Hallowell Lane.

Results for subsurface samples collected to investigate the septic system (AOC-5) and the conductive area (AOC-20) identified arsenic, cadmium, chromium, copper, lead, mercury, silver and/or zinc at concentrations exceeding the screening values for subsurface soil samples SB-6, SB-7, SB-8, SB-9, AM-6, AM-7, AM-8 and AM-16. COPECs identified in subsurface soils are effectively segregated from the Cooper River area to the east by Davis Street, Haddon Avenue and portions of Harleigh Cemetery. Horizontal and vertical migration of contaminants is limited since the impacted area is encapsulated by overburden, underlying and peripheral soils which were determined not to be impacted during delineation investigation activities. Furthermore, temporary well point sampling conducted at the site to date has confirmed that ground water has not been impacted by site operations. Therefore, there is no potential for impact via an exposure pathway to an ecological receptor.

5.4 BEE Results and Conclusions

Based on the findings of the BEE, COPECs were identified in the site soils; however, no COPECs have been identified in ground water on the site. No primary sensitive resource areas have been

identified. Horizontal and vertical migration of contaminants is limited by overburden soils and the absence of a shallow groundwater table. Due to the absence of a sensitive resource area, and the lack of a migration pathway, there is no potential for impact via an exposure pathway to an ecological receptor. Therefore, CMX has determined that further ecological investigation is not required pursuant to 7:26E-4.7.

5.5 Well Search

Based on the results of the April 2008 groundwater sampling event conducted at the site during the SI, no groundwater impacts associated with site operations have been identified to date. Therefore, CMX did not conduct a well search pursuant to N.J.A.C. 7:26E-3.7(e)3i.

6.0 Findings/Recommendations

CMX has performed a Site Investigation (SI) at Camden Laboratories, designated as Block 1392, Lot 33 in the City of Camden, Camden County, on behalf of Camden Laboratories, L.P. SI activities were conducted between April and June 2008 and included a geophysical survey, soil boring investigation and ground water investigation. The following paragraphs present CMX's findings and recommendations based on SI activities completed to date.

6.1 Septic Systems, Leachfields or Seepage Pits (AOC-5)

Upon verification of the septic system location during the geophysical survey, CMX advanced one (1) soil boring at the suspected downgradient side of the septic tank and one (1) soil boring at the terminus of the associated pipe. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in the soil borings advanced. All PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP SCC for soil samples collected from the soil borings. Based on the analytical results, CMX recommends no additional investigation of this AOC; however, if the septic system will not be used as part of future site redevelopment, CMX recommends closure of the septic system in accordance with applicable state and local requirements.

6.2 Building B Drywell (AOC-6)

Piping associated with a large sump, floor drain and sanitary sewer line were identified within the Building B south boiler room. Due to the thickness of the building's concrete floor, GPR penetration was limited to approximately one (1) foot below grade. Therefore, piping associated with the floor drain could not be traced and the discharge location of the sump and floor drain system was not identified. As discussed in our PA report, ERI prepared a PA for the site on behalf of Education Advance Corporation. ERI's PA findings were summarized in their PA report dated September 2007. According to the ERI PA report, the drywell utilized for collection of Building B boiler blowdown was removed. Based on all of the above, CMX recommends no additional investigation of this AOC.

6.3 Hydraulic Lift System (AOC-11)

CMX advanced three (3) soil borings along the southern perimeter of the concrete pad associated with the hydraulic lift system and one (1) soil boring adjacent to the associated anomaly identified during the geophysical survey. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in any of the borings advanced. Analytical results reported TPH-QAM as

non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings.

CMX installed one (1) temporary well point to investigate the potential for impact to ground water from the hydraulic lift system (AOC-11). CMX collected one (1) groundwater sample (TWP-1) from this temporary well point. All VO+10 and BN+15 compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP GWQS for sample TWP-1. Based on the analytical results, CMX recommends no additional investigation of this AOC.

6.4 NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)

CMX advanced two (2) soil borings in the vicinity of the generator located at the exterior of Building B. No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in either of the borings advanced. Analytical results reported TPH-DRO as non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings. Based on the analytical results, CMX recommends no additional investigation of this AOC.

6.5 Regional Ground Water Contamination (AOC-14)

CMX installed five (5) temporary well points to investigate the potential for impact to ground water at the site. Since four (4) of the five (5) temporary well points did not yield enough ground water for collection of samples and clay was identified within the soil column of several of the soil borings, CMX suspects that the ground water conditions observed during the soil boring investigation are representative of a perched ground water condition. Analytical results for sample (TWP-1) collected from the temporary well point installed adjacent to the hydraulic lift system (AOC-11) reported all VO+10 and BN+15 compounds as non-detect or at concentrations below their respective most stringent NJDEP GWQS. Based on these results, CMX concludes that shallow/perched ground water at the site has not been impacted.

As discussed in our July 2008 PA report, the NJDEP Site Remediation and Waste Management Program, Division of Remediation Support, Bureau of Environmental Measurement and Site Assessment conducted ground water investigations to evaluate the north adjacent RF Products/Fast Doors, Inc. site as a potential source of contamination identified in the Camden Parkside Wellfield. The NJDEP findings were summarized in an Expanded Site Investigation Report dated September 2007. According to the report, TCE was indentified at concentrations exceeding the NJDEP GWQS in ground water beneath the RF Products/Fast Doors, Inc. site and the Camden Laboratories property.

The NJDEP concluded that the RF Products/Fast Doors, Inc. site was the source of the TCE ground water contamination and that the TCE ground water contamination has migrated to the Camden Laboratories property from the RF Products/Fast Doors, Inc. site. Since depth to ground water during NJDEP's ground water investigation was identified between thirty-two (32) to forty-one (41) feet below grade, TCE impact to the deep aquifer has been confirmed.

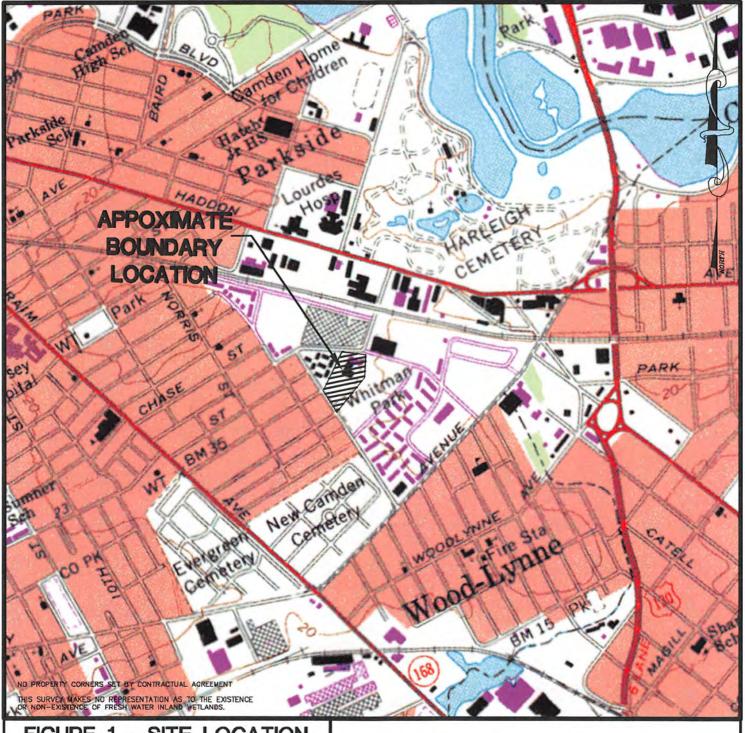
CMX recommends no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

6.6 Conductive Area (AOC-15)

CMX initially investigated this AOC on April 9, 2008. CMX advanced two (2) soil borings east and west flank of the conductive area identified during the geophysical survey. Soil samples were collected from each soil boring to characterize an ash-like material identified within the soil column. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample SB-8 (1,380 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg and NRDCSCC of 600 mg/kg for sample SB-8 (667 mg/kg). All other PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP SCC for both soil samples.

Based on the above, CMX performed follow-up investigations of this AOC on June 23, 2008. CMX advanced four (4) soil borings through the conductive area. One (1) sample was collected from each boring to characterize the ash-like material identified within the soil column. One (1) additional sample was collected from each boring in order to establish the vertical limit of the ash-like material. In addition, twelve (12) borings were advanced in an effort to determine the perimeter of the conductive area. One (1) soil sample was collected from each boring where no indications of impact (i.e. the presence of ash-like material) were identified in order to establish the horizontal limit of material. With the exception of one (1) sample (AM-2), copper and lead were reported at concentrations below the NJDEP most stringent SCC for all samples collected. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg).

The extent of ash-like material was horizontally delineated to the north by soil borings AM-4 and AM-5; to the east by soil borings AM-3 and AM-12; and to the south by soil borings AM-14 and AM-15.


While ash-like material was identified on a portion of the Camden Laboratories property, a substantial area of ash-like material was observed across the south adjacent Whitman Park. The ash-like material was thicker on Whitman Park when compared to the Camden Laboratories property, and extended to a greater depth. Based on these observations, the ash-like material originates on Whitman Park and extends onto the Camden Laboratories property.

Based on the analytical results for samples collected to investigate the conductive area, copper and lead impacted subsurface soil has been horizontally and vertically delineated by samples collected during the April 9 and June 23, 2008 soil boring investigations. Impacted subsurface soil has been horizontally delineated to the north by on-site subsurface soil samples AM-4 and AM-5; to the east by on-site subsurface soil sample AM-3; to the south by off-site subsurface soil samples AM-7 and AM-8; and to the west by on-site subsurface soil samples AM-6. Furthermore, impacted subsurface soil has been vertically delineated by on-site subsurface soil sample AM-1A and AM-2A.

Analytical results indicated that the area of copper and lead impacted ash is limited to the on-site conductive area initially identified during the geophysical survey. Therefore, the extent of impact is limited to an approximate 3,750 square foot area. The ash-like material was 1.1 feet thick. The copper and lead impacted area is estimated to be 4,125 cubic feet (152.8 cubic yards), or approximately 230 tons in volume.

Camden Laboratories L.P. intends to address the limited area of copper and lead impacted soils on the Camden Laboratories property through excavation and off-site disposal, as this remedy is permanent and will not require a deed notice or long term monitoring if executed appropriately. Therefore, a Remedial Action Workplan (RAWP) proposing the excavation and off-site disposal remediation strategy will be submitted.

FIGURE 1 - SITE LOCATION 1667 DAVIS STREET

BLOCK 1392, LOT 33 CITY OF CAMDEN CAMDEN COUNTY NEW JERSEY

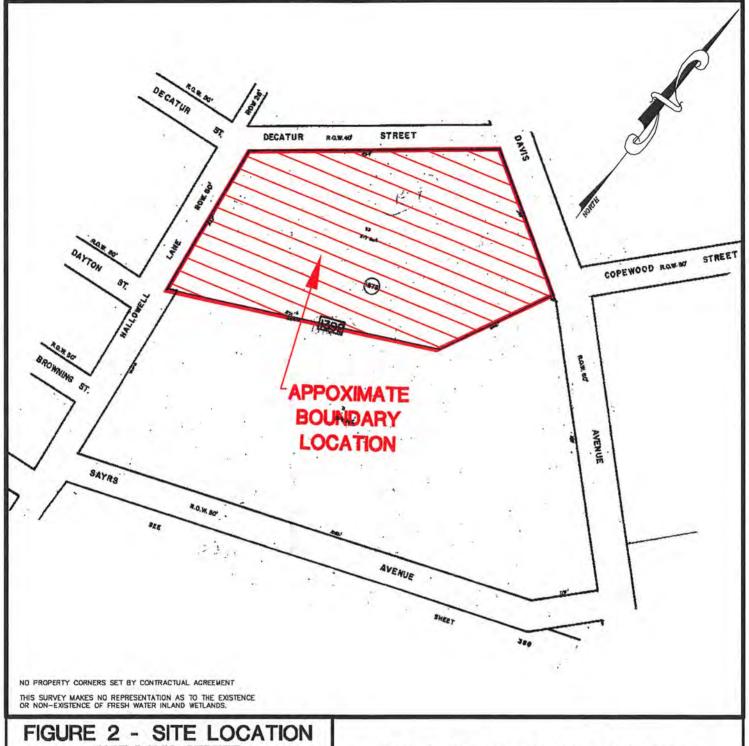
-NOTICE-

THIS DRAWING AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

DATE REVISIONS ORDER NO.


U.S.G.S. TOPOGRAPHIC MAP

Cert. Of Authorization 24GA27926200 1101 LAUREL OAK ROAD, SUITE 160 P.O. BOX 1346 VOORHEES, NJ 08043 TEL (856)783-1900 FAX (856)783-2100

 SCALE
 DATE
 DRAWN BY DES. BY
 FILE NO.
 CHECKED BY

 1"=1,000'
 12/3/2007
 RQ
 MP
 070235802
 MP

1667 DAVIS STREET

BLOCK 1392 LOT 33 CITY OF CAMDEN CAMDEN COUNTY NEW JERSEY

-NOTICE-

THIS DRAWING AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

CITY OF CAMDEN TAX MAP

Cert. Of Authorization 24GA27926200 1101 LAUREL OAK ROAD, SUITE 160 P.O. BOX 1346 VOORHEES, NJ 08043

TEL (856)783-1900 FAX (856)783-2100

			SCALE	DATE	DRAWN BY	DES. BY	FILE NO.	CHECKED BY
d to go to "			N.T.S.	12/03/2007	RQ	MP	070235802	MP
DATE	REVISIONS	ORDER NO.	10.01			200	100 00 00 00000	

TABLES

Camden Laboratories

1667 Davis Street
City of Camden, Camden County, New Jersey
Project Number: 070235804

											II Idiaa Timo
T400	Comple ID	Comple Date	Sample Depth	Matrix	Sampling Method	Parameter	Analytical Method	Preservative		Volume	Holding Time
AOC		4/8/2008	5.5-6.0'	Soil	Direct Push Geoprobe	PP+40, TPH-QAM	8260B, 8270C, 8081A, 6010B, C10-C28	Ice, Encore	Glass	8 oz., Encore	14 Days, 7 days, 28 Days
AOC-5	SB-6		13.5-14.0'	Soil	Direct Push Geoprobe	PP+40 TPH-OAM	8260B, 8270C, 8081A, 6010B, C10-C28	ice, Encore	Glass	8 oz., Encore	14 Days, 7 days, 28 Days
AOC-5	SB-7	4/8/2008	13.5-14.0	Soil	Direct Push Geoprobe	TPH-QAM	C10-C28	Ice	Glass	8 oz.	28 Days
AOC-11	SB-3	4/8/2008		Soil	Direct Push Geoprobe	TPH-QAM	C10-C28	ice	Glass	8 oz.	28 Days
AOC-11	SB-4	4/8/2008	14.5-15.0'		Direct Push Geoprobe	TPH-QAM	C10-C28	Ice	Glass	8 oz.	28 Days
AOC-11	SB-5	4/8/2008	13.5-14.0'	Soil	Direct Push Geoprobe	TPH-DRO, VO+10	C10-C28, 8260B	Ice, Encore	Glass	8 oz., 5 g.	28 Days, 14 Days
AOC-13	SB-1	4/8/2008	14.5-15.0'	Soil	Direct Push Geoprobe		C10-C28, 8260B	ice, Encore	Glass	8 oz., 5 g.	28 Days, 14 Days
AOC-13		4/8/2008	14.5-15.0'	Soil	Direct Push Geoprobe		8260B, 8270C, 8081A, 6010B, C10-C28	Ice, Encore	Glass	8 oz., Encore	14 Days, 7 days, 28 Days
AOC-20		4/8/2008	0.5-1.0'	Soil		PP+40, TPH-QAM	8260B, 8270C, 8081A, 6010B, C10-C28	Ice, Encore	Glass	8 oz., Encore	14 Days, 7 days, 28 Days
AOC-20		4/8/2008	0.75-1.25'	Soil	Direct Push Geoprobe	VO+10, BN+15	8260B, 8270C	Ice, HCL	Glass	120 mL., 1 L.	14 Days, 7 Days
AOC-11	TWP-1	4/9/2008	14.5-15.0'	Aqueous	Direct Push Geoprobe	VO+10, BN+15	8260B, 8270C	Ice, HCL	Glass	120 mL., 1 L.	14 Days, 7 Days
AOC-11	Field Blank	4/9/2008		Aqueous	Direct Push Geoprobe		8260B	Ice, HCL	Glass	120 mL.	14 Days
AOC-11	Trip Blank	4/9/2008		Aqueous	Direct Push Geoprobe	VO+10	6010B	Ice	Glass	4 oz.	6 mos.
AOC-20	AM-1	6/23/2008		Soil	Direct Push Geoprobe	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-20	AM-1A	6/23/2008		Soil	Direct Push Geoprobe	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-20	AM-2	6/23/2008	1.0-1.5'	Soil	Direct Push Geoprobe	As, Pb	6010B	ice	Glass	4 oz.	6 mos.
AOC-20	AM-2A	6/23/2008	1.75-2.25'	Soil	Direct Push Geoprobe	As, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-20		6/23/2008	0.85-1.35'	Soil	Direct Push Geoprobe	As, Pb		Ice	Glass	4 oz.	6 mos.
AOC-20		6/23/2008	0.85-1.35	Soil	Direct Push Geoprobe	As, Pb	6010B	lce	Glass	4 oz.	6 mos.
AOC-20		6/23/2008	1.0-1.5'	Soil	Direct Push Geoprobe		6010B	lce	Glass	4 oz.	6 mos.
AOC-20		6/23/2008	5.0-5.5'	Soil	Direct Push Geoprobe		6010B	Ice	Glass	4 oz.	6 mos.
AOC-20		6/23/2008	1.75-2.25'	Soil	Direct Push Geoprobe		6010B		Glass	4 oz.	6 mos.
AOC-20	AM-7A	6/23/2008		Soil	Direct Push Geoprobe		6010B	lce	Glass	4 oz.	6 mos.
AOC-20		6/23/2008		Soil	Direct Push Geoprobe	As, Pb	6010B	lce_	Glass	4 oz.	6 mos.
AOC-20		6/23/2008		Soil	Direct Push Geoprobe	As, Pb	6010B	lce		4 oz.	6 mos.
AOC-20		6/23/2008		Soil	Direct Push Geoprobe	As, Pb	6010B	lce_	Glass	4 0Z.	6 mos.
AOC-20		6/23/2008		Soil	Direct Push Geoprobe	As, Pb	6010B	Ice	Glass		6 mos.
AOC-20		6/23/2008		Soil	Direct Push Geoprobe	As, Pb	6010B	Ice	Glass	4 oz.	6 mos.
		6/23/2000		Soil	Direct Push Geoprobe		6010B	lce_	Glass	4 oz.	0 illos.
AOC-20	AIVI- 10	1 0/23/2000	2.5-0.0	1 3011	1 - "						

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-6			SB-7		
Lab ID	Residential	Non-Residential	Impact to	J87954-6			J87954-7		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				5.5-6.0'			13.5-14.0'		
Result		,		Result	Qual	RDL	Result	Qual	RDL
GC/MS Volatiles (ppm)		•							
Acrolein	NS	NS	NS	ND		3200	ND		2900
Acrylonitrile	1	5	1	ND		3200	ND		2900
Benzene	3	13	1	ND		64	ND		58
Bromodichloromethane	11	46	1	ND		320	ND		290
Bromoform	86	370	1	ND		320	ND		290
Bromomethane	79	1000	1	ND		320	ND		290
Carbon tetrachloride	2	4	1	ND		320	ND		290
Chlorobenzene	37	680	1	ND		320	ND		290
Chloroethane	NS	NS	NS	ND		320	ND		290
2-Chloroethyl vinyl ether	NS	NS	NS	ND		1600	ND		1400
Chloroform	19	28	1	ND		320	ND		290
Chloromethane	520	1000	10	ND		320	ND		290
Dibromochloromethane	110	1000	1	ND		320	ND		290
1.2-Dichlorobenzene	5100	10000	50	ND		320	ND		290
1,3-Dichlorobenzene	5100	10000	100	ND		320	ND		290
1.4-Dichlorobenzene	570	10000	100	ND		320	ND		290
Dichlorodifluoromethane	NS	NS	NS	ND		320	ND		290
1.1-Dichloroethane	570	1000	10	ND		320	ND		290
1,2-Dichloroethane	6	24	1	ND		64	ND		58
1.1-Dichloroethene	8	150	10	ND		320	ND		290
cis-1,2-Dichloroethene	79	1000	1	ND		320	ND	!	290
trans-1,2-Dichloroethene	1000	1000	50	ND		320	ND		290
1,2-Dichloropropane	10	43	NS	ND	 	320	ND	İ	290
cis-1,3-Dichloropropene	NS	NS	NS	ND	 	320	ND		290
trans-1,3-Dichloropropene	NS	NS	NS	ND	· · · · ·	320	ND	 	290
Ethylbenzene	1000	1000	100	ND		64	ND		58
Methylene chloride	49	210	1	ND		320	ND	† ·	290
1,1,2,2-Tetrachloroethane	34	70	1	ND		320	ND	t — —	290
Tetrachloroethene	4	6	1	ND		320	ND	<u> </u>	290
Toluene	1000	1000	500	ND	├	64	ND		58
1,1,1-Trichloroethane	210	1000	50	ND	\vdash	320	ND	<u> </u>	290
1,1,2-Trichloroethane	22	420	1	ND	 	320	ND	<u> </u>	290
Trichloroethene	23	54	1	ND		320	ND		290
Trichlorofluoromethane	NS	NS	NS	ND		320	ND	\vdash	290
Vinyl chloride	2	7	10	ND		320	ND		290
Xylene (total)	410	1000	67	ND	 	130	ND		120
Total TIC, Volatile	NS	NS	NS	0		100	0	├	125
GC/MS Semi-volatiles (ppm)	143	110	110					\vdash	
2-Chlorophenol	280	5200	10	ND		200	ND	 	190
4-Chloro-3-methyl phenol	10000	10000	100	ND	\vdash	200	ND ND	 	190
2,4-Dichlorophenol	170	3100	100	ND ND	\vdash	200	ND ND	-	190
2,4-Dimethylphenol	1100	10000	10	ND ND	 	200	ND	1	190
2,4-Dinitrophenol	1100	2100	10	ND	\vdash	780	ND ND	 	770
4,6-Dinitro-o-cresol	NS NS	NS	NS	ND ND	\vdash	780	ND	-	770
2-Nitrophenol	NS NS	NS NS	NS NS	ND	 	200	ND	 	190
4-Nitrophenol	NS NS	NS NS	NS NS	ND ND		780	ND	 	770
	6	24	100	ND ND		390	ND	 	390
Pentachlorophenol Phenol	10000	10000	50	ND ND	 	78	ND	\vdash	77
	62	270	10	ND ND	 	200	ND ND		190
2,4,6-Trichlorophenol		10000		ND ND	 	78	ND		
Acenaphthene	3400		100		 			-	77 77
Acenaphthylene	NS	NS	NS	ND	<u> </u>	78	ND_	<u>l</u>	11

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	nnle ID	7
Sampling Date Direct Contact Direct Contact Sampling Depth Sample Depth		4-7
Sample Depth		008
Result Qual RDL Result Qual RDL Result Qual Anthracene 10000 10000 1000 ND 78 ND Renzidine NS NS NS ND 780 ND Renzidine NS NS NS ND 780 ND Renzidine NS NS NS ND 780 ND Renzidine Renzidine NS NS NS ND Renzidine Renzidin		
Anthracene		
Benzidine		
Benzo(a)anthracene		
Benzo(a)pyrene		
Benzo(ph)fuoranthene 0.9		
Benzo(gh, h)perylene		
Berizo(s)filluoranthene 0.9 4 500 ND 78 ND ND 78 ND ND ND ND ND ND ND N		
AB-Bromophenyl phenyl ether NS NS NS ND 78 ND ND Page		
Butyl benzyl phthalate		
Section		
A-Chloroanilline		
Section Sect		
District		
Disig(2-Chloroethyl)ether		
District		
A-Chlorophenyl phenyl ether		
1,2-Dichlorobenzene 5100 10000 50 ND 78 ND 1,2-Dichlorobenzene 5100 10000 100 ND 78 ND 1,3-Dichlorobenzene 5100 10000 100 ND 78 ND 1,4-Dichlorobenzene 570 10000 100 ND 78 ND 1,4-Dichlorobenzene 570 10000 100 ND 78 ND 1,4-Dichlorobenzene 570 10000 100 ND 78 ND 1,4-Dichlorobenzene NS NS NS NS ND 78 ND 1,4-Dichlorobenzene NS NS NS ND 78 ND 1,4-Dichlorobenzene NS NS NS ND 78 ND 1,4-Dichlorobenzene NS NS NS ND 78 ND 1,4-Dichlorobenzidine 2 6 100 ND 200 ND 200		
1,2-Dichlorobenzene 5100 10000 50 ND 78 ND 1,2-Diphenylhydrazine NS NS NS ND 78 ND 1,3-Dichlorobenzene 5100 10000 100 ND 78 ND 1,4-Dichlorobenzene 570 10000 100 ND 78 ND 2,4-Dinitrotoluene NS NS NS ND 78 ND 2,6-Dinitrotoluene NS NS NS ND 78 ND 2,6-Dinitrotoluene NS NS NS ND 78 ND 3,3-Dichlorobenzidine 2 6 100 ND 78 ND 3,3-Dichlorobenzidine 2 6 100 ND 78 ND 3,3-Dichlorobenzidine 2 6 100 ND 78 ND Di-n-butyl phthalate 1100 10000 100 ND 78 ND Di-n-butyl phthalate 11000 1	hlorophenyl phenyl ether	
1,4-Dichlorobenzene	-Diphenylhydrazine	
2,4-Dinitrotoluene NS NS NS ND 78 ND 2,6-Dinitrotoluene NS NS NS ND 78 ND 3,3'-Dichlorobenzidine 2 6 100 ND 200 ND Dibenzo(a,h)anthracene 0.66 0.66 100 ND 78 ND Di-n-butyl phthalate 5700 10000 100 ND 78 ND Di-n-octyl phthalate 1100 10000 100 ND 78 ND Di-n-otyl phthalate 10000 10000 50 ND 78 ND Diethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 ND 78 ND Fluorathyl phthalate 10000 <t< td=""><td></td><td></td></t<>		
2,4-Dinitrotoluene NS NS NS ND 78 ND 2,6-Dinitrotoluene NS NS NS ND 78 ND 3,3'-Dichlorobenzidine 2 6 100 ND 200 ND Dibenzo(a,h)anthracene 0.66 0.66 100 ND 78 ND Di-n-butyl phthalate 5700 10000 100 ND 78 ND Di-n-octyl phthalate 1100 10000 100 ND 78 ND Diethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Fluorentene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorobutadiene 1		
Z,6-Dinitrotoluene NS NS NS ND 78 ND 3,3'-Dichlorobenzidine 2 6 100 ND 200 ND Dibenzo(a, h)anthracene 0.66 0.66 100 ND 78 ND Di-n-butyl phthalate 5700 10000 100 ND 78 ND Di-n-octyl phthalate 1100 10000 100 ND 78 ND Diethyl phthalate 11000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 ND 78 ND Fluorene 2300 10000		
3,3-Dichlorobenzidine 2 6 100 ND 200 ND		
Dibenzo(a,h)anthracene 0.66 0.66 100 ND 78 ND Di-n-butyl phthalate 5700 10000 100 ND 78 ND Di-n-octyl phthalate 1100 10000 1000 ND 78 ND Diethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Fluoranthene 2300 10000 100 ND 78 ND Fluorene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorocyclopentadiene 1 21 100 ND 78 ND Hexachloroethane 6 100 100 ND 78 ND Indeno(1,2,3-cd)pyrene 9		190
Di-n-butyl phthalate 5700 10000 100 ND 78 ND Di-n-octyl phthalate 1100 10000 100 ND 78 ND Diethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 49 210 100 ND 78 ND Dis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Fluoranthene 2300 10000 100 ND 78 ND Fluorene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorobutadiene 1 21 100 ND 78 ND Hexachlorocyclopentadiene 400 7300 100 ND 780 ND Hexachlorocyclopentadiene 6		77
Di-n-octyl phthalate 1100 10000 100 ND 78 ND Diethyl phthalate 10000 10000 50 ND 78 ND Dimethyl phthalate 10000 10000 50 ND 78 ND Dis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Fluoranthene 2300 10000 100 ND 78 ND Fluorene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorobutadiene 1 21 100 ND 78 ND Hexachlorocyclopentadiene 400 7300 100 ND 78 ND Hexachlorocethane 6 100 100 ND 78 ND Indeno(1,2,3-cd)pyrene 0.9 4 500 ND 78 ND Isophorone 1100 10000		77
Diethyl phthalate		77
Dimethyl phthalate 10000 10000 50 ND 78 ND ND Sis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND ND Sis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND ND Sis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Sis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Sis(2-Ethylhexyl)phthalate 2300 10000 100 ND 78 ND Sis(2-Ethylhexyl)phthalate 2300 10000 100 ND 78 ND Sis(2-Ethylhexyl)phthalate 1000 ND 78 ND Sis(2-Ethylhexyl)phthalate 1000 ND 78 ND Sis(2-Ethylhexyl)phthalate 1000 1000 ND NO NO NO NO NO NO NO		77
bis(2-Ethylhexyl)phthalate 49 210 100 ND 78 ND Fluoranthene 2300 10000 100 ND 78 ND Fluorene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorobutadiene 1 21 100 ND 78 ND Hexachlorocyclopentadiene 400 7300 100 ND 780 ND Hexachlorocyclopentadiene 6 100 ND ND 78 ND Indeno(1,2,3-cd)pyrene 0.9 4 500 ND 78 ND Isophorone 1100		77
Size) 77
Fluorene 2300 10000 100 ND 78 ND Hexachlorobenzene 0.66 2 100 ND 78 ND Hexachlorobutadiene 1 21 100 ND 78 ND Hexachlorocyclopentadiene 400 7300 100 ND 780 ND Hexachlorocyclopentadiene 6 100 100 ND 200 ND Hexachlorocyclopentadiene 6 100 100 ND 78 ND Indentification 1100 10000 50 ND 78 ND Naphthalene 230 4200 100 ND 78 ND Nitrobenzene 28		
Hexachlorobenzene		
Hexachlorobutadiene		
Hexachlorocyclopentadiene		
Hexachloroethane		
Indeno(1,2,3-cd)pyrene 0.9 4 500 ND 78 ND Isophorone 1100 10000 50 ND 78 ND Naphthalene 230 4200 100 ND 78 ND Nitrobenzene 28 520 10 ND 78 ND n-Nitrosodimethylamine NS NS NS ND 78 ND N-Nitroso-di-n-propylamine 0.66 0.66 10 ND 78 ND N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND		
Isophorone		
Naphthalene 230 4200 100 ND 78 ND Nitrobenzene 28 520 10 ND 78 ND n-Nitrosodimethylamine NS NS NS ND 78 ND N-Nitroso-di-n-propylamine 0.66 0.66 10 ND 78 ND N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND		
Nitrobenzene 28 520 10 ND 78 ND n-Nitrosodimethylamine NS NS NS ND 78 ND N-Nitroso-di-n-propylamine 0.66 0.66 10 ND 78 ND N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND	<u> </u>	
n-Nitrosodimethylamine NS NS NS ND 78 ND N-Nitrosodimethylamine 0.66 0.66 10 ND 78 ND N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND		
N-Nitroso-di-n-propylamine 0.66 0.66 10 ND 78 ND N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND		
N-Nitrosodiphenylamine 140 600 100 ND 200 ND Phenanthrene NS NS NS ND 78 ND		
Phenanthrene NS NS NS ND 78 ND		
Pyrene 1700 10000 100 ND 78 ND		
1,2,4-Trichlorobenzene 68 1200 100 ND 78 ND	·	
Total TIC, Semi-Volatile NS NS NS 0 0	tal TIC, Semi-Volatile	
Pesticides/PCBs (ppm)		
Aldrin 0.04 0.17 50 ND 1.6 ND		
alpha-BHC NS NS ND 1.6 ND		D 1.5
beta-BHC NS NS NS ND 1.6 ND		
delta-BHC NS NS NS ND 1.6 ND		
gamma-BHC (Lindane) 0.52 2.2 50 ND 1.6 ND		

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-6			SB-7		
Lab ID	Residential	Non-Residential	Impact to	J87954-6			J87954-7		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				5.5-6.0'			13.5-14.0'		
Result				Result	Qual	RDL	Result	Qual	RDL
Chlordane	0.25	2.1	NS	ND		39	ND		39
Dieldrin	0.042	0.18	50	ND		1.6	ND		1.5
4,4'-DDD	3	12	50	ND		1.6	ND	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1.5
4,4'-DDE	2	9	50	ND		1.6	ND		1.5
4,4'-DDT	2	9	500	ND		1.6	ND		1.5
Endrin	17	310	50	ND		1.6	ND		1.5
Endosulfan sulfate	NS	NS	NS	ND		1.6	ND		1.5
Endrin aldehyde	NS	NS	NS	ND		1.6	ND		1.5
Endosulfan-l	34	620	NS	ND		1.6	ND	<u> </u>	1.5
Endosulfan-II	34	620	NS	ND		1.6	ND		1.5
Heptachlor	0.15	0.65	50	ND		1.6	ND	L	1.5
Heptachlor epoxide	NS	NS	NS	ND		1.6	ND		1.5
Methoxychlor	280	5200	50	ND		1.6	ND		1.5
Toxaphene	0.1	0.2	50	ND		20	ND		19
Aroclor 1016	0.49	2	50	ND	[39	ND		39
Aroclor 1221	0.49	2	50	ND		39	ND		39
Aroclor 1232	0.49	2	50	ND		39	ND		39
Aroclor 1242	0.49	2	50	ND		39	ND		39
Aroclor 1248	0.49	2	50	ND		39	ND		39
Aroclor 1254	0.49	2	50	ND		39	ND		39
Aroclor 1260	0.49	2	50	ND		39	ND		39
Total PHC (mg/kg)	NS	NS	NS	ND		1.6	ND		1.6
Metals Analysis (ppm)									
Antimony	14	340	NS	<2.3		2.3	<2.5		2.5
Arsenic	20	20	NS	9.7	<u>. </u>	2.3	5.4		2.5
Beryllium	2	2	NS	<0.58	<u> </u>	0.58	<0.62		0.62
Cadmium	39	100	NS	<0.58	<u> </u>	0.58	<0.62		0.62
Chromium	NS	NS	NS	26.8		1.2	12.2		1.2
Copper	600	600	NS	6.9		2.9	10.6	<u> </u>	3.1
Lead	400	600	NS	7.1		2.3	10.4	ļ	2.5
Mercury	14	270	NS	<0.039		0.039	<0.036	<u> </u>	0.036
Nickel	250	2400	NS	5.7	<u> </u>	4.6	<5.0		5
Selenium	63	3100	NS	<2.3		2.3	<2.5		2.5
Silver	110	4100	NS	<1.2		1.2	<1.2	<u> </u>	1.2
Thallium	2	2	NS	<1.2		1.2	<1.2	1_	1.2
Zinc	1500	1500	NS	20.9		2.3	8.4	<u> </u>	2.5
General Chemistry (ppm)							ļ	<u> </u>	
Cyanide	1100	21000	NS	<0.31		0.31	<0.31	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	0.31
Phenois	NS	NS	NS	<2.7		2.7	<2.7	<u> </u>	2.7
Solids, Percent (%)	NS	NS	NS	84.0	ļ		85.0	 	<u> </u>
TPH-DRO (C10-C28) (mg/kg)	NS	NS	NS	ND		1.6	ND	<u> </u>	1.6

ND=Not detected at the indictaed concentration NS=No standard

Table 3: Tabulated Summary of Soil Sample Analytical Results

Hydraulic Lift System (AOC-11)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey

Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-3			SB-4			SB-5		
Lab ID	Residential	Non-Residential	Impact to	J87954-3			J87954-4			J87954-5		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008			4/9/2008		
Sample Depth				13.5-14.0'			14.5-15.0			13.5-14.0'		
Result		· · · · · · · · · · · · · · · · · · ·		Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Total PHC (mg/kg)	NS	NS	NS	ND		1.4	ND		1.5	22.8		1.4
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	93.4			86.1			93.5		

ND=Not detected at the indictaed concentration NS=No standard

Table 4: Tabulated Summary of Soil Sample Analytical Results

NJ Spills Database Listing (AOC-13) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-1			SB-2		
Lab ID	Residential	Non-Residential	Impact to	J87954-1			J87954-2		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				14.5-15.0			14.5-15.0'		
Result				Result	Qual	RDL	Result	Qual	RDL
TPH-DRO (C10-C28) (mg/kg)	NS	NS	NS	ND		7.4	8.40		7.6
General Chemistry (ppm)									
Solids, Percent (%)	NS	NS	NS	88.7			86.8		

ND=Not detected at the indictaed concentration NS=No standard

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jersey	Class Soil Clean	un Criteria	SB-8			SB-9		
Lab ID	Residential	Non-Residential		J87954-8			J87954-9		
Sampling Date	Direct Contact	Direct Contact					4/9/2008		
Sample Depth	Direct Contact	Direct Contact	Groundwater	0.5-1.0			0.75-1.25		
Sample Deptil				Result	Qual	RDL	Result	Qual	RDL
CC/MS Valatiles (nnm)				Troodic	Qu.	IVDE	rtoout	-	
GC/MS Volatiles (ppm)	NS	NS	NS	ND	-	6500	ND	\vdash	7100
Acrolein	1	5	1	ND		6500	ND	\vdash	7100
Acrylonitrile	3	13	1	ND	-	130	ND		140
Benzene	11	46	1	ND ND		650	ND	-	710
Bromodichloromethane		370	1	ND	-	650	ND ND		710
Bromoform	86			ND	ļi	650	ND ND		710
Bromomethane	79	1000	1	ND -	-	650	ND		710
Carbon tetrachloride	2	4	1				ND ND		710
Chlorobenzene	37	680	1	ND		650		-	710
Chloroethane	NS	NS	NS	ND		650	ND		
2-Chloroethyl vinyl ether	NS	NS	NS_	ND		3300	ND	-	3600
Chloroform	19	28	1	ND		650	ND		710
Chloromethane	520	1000	10	ND		650	ND	ļ	710
Dibromochloromethane	110	1000	1	ND		650	ND	<u> </u>	710
1,2-Dichlorobenzene	5100	10000	50	ND		650	ND		710
1,3-Dichlorobenzene	5100	10000	100	ND	<u> </u>	650	ND		710
1,4-Dichlorobenzene	570	10000	100	ND		650	ND		710
Dichlorodifluoromethane	NS	NS	NS	ND		650	ND		710
1,1-Dichloroethane	570	1000	10	ND		650	ND		710
1,2-Dichloroethane	6	24	1	ND		130	ND		140
1.1-Dichloroethene	8	150	10	ND		650	ND		710
cis-1,2-Dichloroethene	79	1000	1	ND		650	ND		710
trans-1,2-Dichloroethene	1000	1000	50	ND	İ	650	ND	1	710
1,2-Dichloropropane	10	43	NS	ND	1	650	ND	1	710
cis-1,3-Dichloropropene	NS	NS	NS	ND		650	ND		710
trans-1,3-Dichloropropene	NS	NS	NS	ND		650	ND	\vdash	710
Ethylbenzene	1000	1000	100	ND	 	130	ND	 	140
Methylene chloride	49	210	1	ND	t	650	ND	 	710
1,1,2,2-Tetrachloroethane	34	70	1	ND	┼	650	ND	 	710
	4	6	 	ND	 	650	ND	-	710
Tetrachloroethene	1000	1000	500	ND ND	 	130	ND ND	 	140
Toluene						650	ND	┼──	710
1,1,1-Trichloroethane	210	1000	50	ND	├		ND	ļ. —	710
1,1,2-Trichloroethane	22	420	1	ND	-	650			
Trichloroethene	23	54	1 1	ND	<u> </u>	650	ND	 	710
Trichlorofluoromethane	NS	NS	NS	ND	 -	650	ND	↓	710
Vinyl chloride	2	7	10	ND	<u> </u>	650	ND	-	710
Xylene (total)	410	1000	67	ND	<u> </u>	260	ND	 	290
Total TIC, Volatile	NS	NS	NS	0	<u> </u>		0	1	
GC/MS Semi-volatiles (ppm)		.		<u> </u>	<u> </u>			-	ļ
2-Chlorophenol	280	5200	10	ND ND	ļ	1200	ND	<u> </u>	1300
4-Chloro-3-methyl phenol	10000	10000	100	ND	<u> </u>	1200		$oxed{oxed}$	1300
2,4-Dichlorophenol	170	3100	10	ND		1200	ND		1300
2,4-Dimethylphenol	1100	10000	10	ND		1200	ND		1300
2,4-Dinitrophenol	110	2100	10	ND		5000	ND		5100
4,6-Dinitro-o-cresol	NS	NS	NS	ND		5000	ND		5100
2-Nitrophenol	NS	NS	NS	ND		1200	ND		1300
4-Nitrophenol	NS	NS	NS	ND		5000	ND		5100
Pentachlorophenol	6	24	100	ND	1	2500	ND		2600
Phenol	10000	10000	50	ND	1	500	ND	1	510
2,4,6-Trichlorophenol	62	270	10	ND	t	1200	ND	\vdash	1300
Acenaphthene	3400	10000	100	ND	 	500	ND	 	510
Acenaphthylene	NS	NS	NS NS	ND	 	500	ND	 	510
L'ocuabimiyiene	LING	110	1110	טאו ן	L	T. 200	ווט ו		7 7 10

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jersev	Class Soil Clean	up Criteria	SB-8			SB-9		
Lab ID	Residential	Non-Residential	Impact to	J87954-8			J87954-9		
Sampling Date	Direct Contact	Direct Contact		4/9/2008			4/9/2008		
Sample Depth				0.5-1.0'			0.75-1.25		
Campio Bopa.				Result	Qual	RDL	Result	Qual	RDL
Anthracene	10000	10000	100	ND		500	ND		510
Benzidine	NS	NS	NS	ND		5000	ND		5100
Benzo(a)anthracene	0.9	4	500	ND	. –	500	108	J	510
Benzo(a)pyrene	0.66	0.66	100	ND		500	ND		510
Benzo(b)fluoranthene	0.9	4	50	109	J	500	ND		510
Benzo(g,h,i)perylene	NS NS	NS	NS	ND		500	ND		510
Benzo(k)fluoranthene	0.9	4	500	ND		500	ND		510
4-Bromophenyl phenyl ether	NS	NS	NS	ND		500	ND		510
Butyl benzyl phthalate	1100	10000	100	ND		500	ND		510
2-Chloronaphthalene	NS	NS	NS	ND		500	ND		510
4-Chloroaniline	230	4200	NS	ND		1200	ND		1300
	9	40	500	ND	 	500	105	J	510
Chrysene bis(2-Chloroethoxy)methane	NS	NS	NS	ND	-	500	ND		510
bis(2-Chloroethyl)ether	0.66	3	10	ND		500	ND		510
bis(2-Chloroisopropyl)ether	2300	10000	10	ND	<u> </u>	500	ND		510
4-Chlorophenyl phenyl ether	NS	NS	NS	ND	 	500	ND		510
	5100	10000	50	ND	 	500	ND	—	510
1,2-Dichlorobenzene	NS	NS	NS	ND	 	500	ND	 	510
1,2-Diphenylhydrazine	5100	10000	100	ND	_	500	ND	-	510
1,3-Dichlorobenzene	570	10000	100	ND	_	500	ND	 	510
1,4-Dichlorobenzene	NS NS	NS	NS	ND ND		500	ND	 	510
2,4-Dinitrotoluene	NS	NS NS	NS NS	ND		500	ND	 	510
2,6-Dinitrotoluene	2	6	100	ND ND	 	1200	ND ND	\vdash	1300
3,3'-Dichlorobenzidine		0.66	100	ND -	-	500	ND ND	-	510
Dibenzo(a,h)anthracene	0.66	10000	100	ND	-	500	ND ND	-	510
Di-n-butyl phthalate	5700 1100	10000	100	ND ND		500	ND	 	510
Di-n-octyl phthalate		10000	50	ND	_	500	ND		510
Diethyl phthalate	10000		50	ND -	\vdash	500	ND ND		510
Dimethyl phthalate	10000	10000 210	100	ND	├	500	ND ND	-	510
bis(2-Ethylhexyl)phthalate	49		100	120	J	500	201	J	510
Fluoranthene	2300	10000		ND	<u>ا ا</u>	500	ND	 -	510
Fluorene	2300	10000	100		├	500	ND ND	+-	510
Hexachlorobenzene	0.66	2	100	ND	 		ND	+ -	510
Hexachlorobutadiene	1	21	100	ND		500	ND	┼	5100
Hexachlorocyclopentadiene	400	7300	100	ND	├—	5000	ND	1	1300
Hexachloroethane	6	100	100	ND		1200		-	
Indeno(1,2,3-cd)pyrene	0.9	4	500	ND	⊢ −	500	ND	 	510 510
Isophorone	1100	10000	50	ND	₩-	500	ND ND	+-	
Naphthalene	230	4200	100	ND	 	500	ND	 	510
Nitrobenzene	28	520	10	ND ND	╄	500	ND ND	1	510
n-Nitrosodimethylamine	NS	NS	NS	ND	-	500	ND	1	510
N-Nitroso-di-n-propylamine	0.66	0.66	10	ND ND	 	500	ND	₩	510
N-Nitrosodiphenylamine	140	600	100	ND	<u> </u>	1200	ND	 	1300
Phenanthrene	NS	NS	NS	ND	⊢ –	500	182	J	510
Pyrene	1700	10000	100	111	J	500	177	J	510
1,2,4-Trichlorobenzene	68	1200	100	ND	<u> </u>	500	ND	1—	510
Total TIC, Semi-Volatile	NS	NS	NS_	1300	J	<u> </u>	0	1	
Pesticides/PCBs (ppm)			<u> </u>	 	ļ	1	 	 	
Aldrin	0.04	0.17	50	ND	<u> </u>	1.7	ND	1_	1.7
alpha-BHC	NS	NS	NS	ND		1.7	ND	 	1.7
beta-BHC	NS	NS	NS_	ND		1.7	ND_	\vdash	1.7
delta-BHC	NS	NS	NS	ND	<u> </u>	1.7	ND	—	1.7
gamma-BHC (Lindane)	0.52	2.2	50	ND	<u>L</u>	1.7	ND	<u> </u>	1.7

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-8			SB-9		
Lab ID	Residential	Non-Residential		J87954-8			J87954-9		
Sampling Date	Direct Contact	Direct Contact		4/9/2008			4/9/2008		
Sample Depth				0.5-1.0'			0.75-1.25'		
Campie Bopai				Result	Qual	RDL	Result	Qual	RDL
Chlordane	0.25	2.1	NS	ND		42	ND		43
Dieldrin	0.042	0.18	50	ND		1.7	ND		1.7
4,4'-DDD	3	12	50	1.9		1.7	3.3		1.7
4,4'-DDE	2	9	50	18.5		1.7_	14.8		1.7
4,4'-DDT	2	9	500	9.1		1.7	3.6		1.7
Endrin	17	310	50	ND		1.7	ND		1.7
Endosulfan sulfate	NS	NS	NS	ND		1.7	ND	<u> </u>	1.7
Endrin aldehyde	NS	NS	NS	ND		1.7	ND		1.7
Endosulfan-I	34	620	NS	ND		1.7	ND		1.7
Endosulfan-II	34	620	NS	ND		1.7	ND		1.7
Heptachlor	0.15	0.65	50	ND		1.7	ND		1.7
Heptachlor epoxide	NS	NS	NS	ND		1.7	ND		1.7
Methoxychlor	280	5200	50	ND		1.7	ND	L	1.7
Toxaphene	0.1	0.2	50	ND		21	ND		21
Aroclor 1016	0.49	2	50	ND		42	ND		43
Aroclor 1221	0.49	2	50	ND		42	ND		43
Aroclor 1232	0.49	2	50	ND		42	ND	<u> </u>	43
Aroclor 1242	0.49	2	50	ND		42	ND		43
Aroclor 1248	0.49	2	50	ND		42	ND	<u> </u>	43
Aroclor 1254	0.49	2	50	ND	l	42	ND	<u> </u>	43
Aroclor 1260	0.49	2	50	ND	L	42	ND		43
Total PHC (mg/kg)	NS	NS	NS	64.4		4.7	53.8		4.8
Metals Analysis (ppm)									
Antimony	14	340	NS	2.6		2.6	<2.7	ļ	2.7
Arsenic	20	20	NS	14.5		2.6	11.0		2.7
Beryllium	2	2	NS	1.0		0.66	0.89		0.68
Cadmium	39	100	NS	7.2		0.66	3.4	<u> </u>	0.68
Chromium	NS	NS	NS	26.5	ļ <u> </u>	1.3	9.9	<u> </u>	1.4
Copper	600	600	NS	1380	<u> </u>	3.3	271	<u> </u>	3.4
Lead	400	600	NS	667	<u> </u>	2.6	146	<u> </u>	2.7
Mercury	14	270	NS	0.13	<u> </u>	0.038		<u> </u>	0.041
Nickel	250	2400	NS	57.4		5.3	14.8		5.4
Selenium	63	3100	NS	<2.6	↓	2.6	<2.7		2.7
Silver	110	4100	NS	2.5		1.3	3.9		1.4
Thallium	2	2	NS	<1.3	<u> </u>	1.3	<1.4	—	1.4
Zinc	1500	1500	NS	626		2.6	231	↓	2.7
General Chemistry (ppm)					<u> </u>			<u> </u>	<u> </u>
Cyanide	1100	21000	NS	<0.32	<u> </u>	0.32	<0.34	↓	0.34
Phenols	NS	NS	NS	<3.4		3.4	<3.2	1	3.2
Solids, Percent (%)	NS	NS	NS	79.2		ļ	77.9		<u> </u>
Total PHC (mg/kg)	NS	NS	NS	64.4	1	4.7	53.8		4.8

ND=Not detected at the indictaed concentration NS=No standard

Table 6: Tabulated Summary of Ground Water Sample Analytical Results Hydraulic Lift System (AOC-11)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey Class	TWP-1			FB-1			TRIP BLANK		
Lab ID	IIA Groundwater	J88150-1			J88150-2			J88150-3		
Sampling Date	Quality Criteria	4/11/2008			4/11/2008			4/11/2008		
Sample Depth	Quality Statement	14.5-15.0			NA			NA		
Cample Bepar		Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
GC/MS Volatiles (ppb)		- ttoout								
Acrolein	5	ND		50	ND		50	ND		50
Acrylonitrile	2	ND		50	ND		50	ND		50
Benzene	1 1	ND		1	ND		1	ND		1
Bromodichloromethane	1	ND		1	ND		1	ND		1
Bromoform	4	ND		4	ND		4	ND		4
Bromomethane	10	ND		2	ND ND	\vdash	2	ND	\vdash	2
	1	ND		1	ND	-	1	ND	 	1
Carbon tetrachloride	50	ND	 -	1	ND		1	ND	┢	1
Chlorobenzene		ND ND	├─	1	ND		1	ND		1
Chloroethane	NS		 	10	ND	-	10	ND		10
2-Chloroethyl vinyl ether	NS	ND	ļ <u>.</u>		ND		1	ND ND	_	1
Chloroform	70	0.56	J	1		 	1	ND ND		1
Chloromethane	NS_	ND		1	ND				-	1
Dibromochloromethane	1	ND	<u> </u>	1	ND		1	ND	├	
1,2-Dichlorobenzene	600	ND		1	ND		1	ND	<u> </u>	1
1,3-Dichlorobenzene	600	ND		1	ND	L	1	ND		1 1
1,4-Dichlorobenzene	75	ND	<u> </u>	1	ND		1	ND	<u> </u>	1
Dichlorodifluoromethane	1000	ND		5	ND		5	ND	↓	5
1,1-Dichloroethane	50	ND		1	ND		1_	ND		1
1,2-Dichloroethane	2	ND		1	ND		1	ND		1
1,1-Dichloroethene	1	ND		1	ND		1_	ND		1
cis-1,2-Dichloroethene	70	ND		1	ND		1	ND	<u> </u>	1
trans-1,2-Dichloroethene	100	ND		1	ND		1_	ND		1
1,2-Dichloropropane	1	ND		1	ND		1	ND		1
cis-1,3-Dichloropropene	NS	ND		1	ND		1	ND		1
trans-1,3-Dichloropropene	NS	ND	<u> </u>	1	ND		1	ND		1
Ethylbenzene	700	ND		1	ND		1	ND		1
Methylene chloride	3	ND		2	ND		2	ND		2
1,1,2,2-Tetrachloroethane	1	ND		1	ND		1	ND		1
Tetrachloroethene	1	ND		1	ND		1	ND		1
Toluene	600	0.24	J	1	ND	 	1	ND	<u> </u>	1
1,1,1-Trichloroethane	30	ND	Ť	1	ND	†	1	ND	—	1
1,1,2-Trichloroethane	3	ND	 	 i	ND	 	1	ND ND	+ -	1
Trichloroethene	1 1	ND	 	1	ND		1	ND	1	1 1
Trichlorofluoromethane	2000	ND	 	5	ND	}	5	ND ND	 	5
	1	ND	-	1	ND	 	1	ND ND	_	1 1
Vinyl chloride	1000	ND ND	\vdash	1	ND	-	1	ND	+	1 1
Xylene (total)	NS NS	6.7	J	 	0	-	 '-	0	 	l '
Total TIC, Volatile	NO	0.7	ا - ا		 	-	 		-	
GC/MS Semi-volatiles (ppb)	100	ND		0.00	ND	├	0.2	N/A	├	┼
Acenaphthene	400	ND	 	0.22	ND	₩	0.2	NA NA	+-	┼
Acenaphthylene	NS	ND	—	0.22	ND	-	0.2	NA NA	┼	
Anthracene	2000	ND	<u> </u>	0.22	ND	 	0.2	NA NA	+	1
Benzidine	20	ND	<u> </u>	22	ND	 	20	NA NA	├	 -
Benzo(a)anthracene	0.1	ND	1	0.11	ND	↓	0.1	NA NA	-	1
Benzo(a)pyrene	0.1	ND	<u> </u>	0.11	ND	<u> </u>	0.1	NA		₩
Benzo(b)fluoranthene	0.2	ND	<u> </u>	0.22	ND	<u> </u>	0.2	NA	ــــ	ļ
Benzo(g,h,i)perylene	NS	ND		0.22	ND	<u> </u>	0.2	NA	<u> </u>	1
Benzo(k)fluoranthene	0.5	ND		0.22	ND	Ļ	0.2	NA NA	<u> </u>	
4-Bromophenyl phenyl ether	NS	ND		2.2	ND	<u> </u>	2	NA	1	
Butyl benzyl phthalate	100	ND		2.2	ND		2	NA		
2-Chloronaphthalene	600	ND		5.4	ND		5	NA		
4-Chloroaniline	30	ND		5.4	ND		5	NA		

Table 6: Tabulated Summary of Ground Water Sample Analytical Results Hydraulic Lift System (AOC-11)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey Class	TWP-1			FB-1			TRIP BLANK		
Lab ID	IIA Groundwater	J88150-1			J88150-2			J88150-3		
Sampling Date	Quality Criteria	4/11/2008			4/11/2008			4/11/2008		
Sample Depth		14.5-15.0'			NA			NA _		
		Result	Qual	RDL.	Result	Qual	RDL	Result	Qual	RDL
Chrysene	5	ND		0.22	ND		0.2	NA		
bis(2-Chloroethoxy)methane	NS	ND		2.2	ND		2	NA		
bis(2-Chloroethyl)ether	7	ND		2.2	ND		2	NA		
bis(2-Chloroisopropyl)ether	300	ND		2.2	ND		2	NA		
4-Chlorophenyl phenyl ether	NS	ND		2.2	ND		2	NA		Щ
1,2-Dichlorobenzene	600	ND		2.2	ND		2	NA		
1,2-Diphenylhydrazine	20	ND		2.2	ND		2	NA		
1,3-Dichlorobenzene	600	ND		2.2	ND		2	NA		
1,4-Dichlorobenzene	75	ND		2.2	ND		2	NA		
2.4-Dinitrotoluene	NS	ND		2.2	ND		2	NA	L	
2,6-Dinitrotoluene	NS	ND		2.2	ND_		2	NA		
3,3'-Dichlorobenzidine	30	ND		5.4	ND		5	NA	L	
Dibenzo(a,h)anthracene	0.3	ND		0.22	ND		0.2	NA		
Di-n-butyl phthalate	700	ND		2.2	ND		2	NA		<u></u>
Di-n-octyl phthalate	100	ND		2.2	ND		2	NA		
Diethyl phthalate	6000	2.2		2.2	ND	Ì	2	NA		
Dimethyl phthalate	NS	ND		2.2	ND		2	NA		
bis(2-Ethylhexyl)phthalate	3	1.3	J	2.2	ND		2	NA		
Fluoranthene	300	ND		0.22	ND		0.2	NA		<u> </u>
Fluorene	300	ND		0.22	ND		0.2	NA		
Hexachlorobenzene	0.02	ND		0.022	ND		0.02	NA _		↓
Hexachlorobutadiene	1	ND		2.2	ND		2	NA	<u> </u>	<u> </u>
Hexachlorocyclopentadiene	40	ND		22	ND		20	NA	<u> </u>	└
Hexachloroethane	7	ND		5.4	ND		5	NA		
Indeno(1,2,3-cd)pyrene	0.2	ND		0.22	ND		0.2	NA	<u> </u>	<u> </u>
Isophorone	40	ND		2.2	ND	L	2	NA	<u> </u>	<u> </u>
Naphthalene	300	ND		0.22	ND_		0.2	NA	<u> </u>	
Nitrobenzene	6	ND		2.2	ND		2	NA		
n-Nitrosodimethylamine	0.8	ND		2.2	ND		2	NA		<u> </u>
N-Nitroso-di-n-propylamine	10	ND		2.2	ND		2	NA	<u> </u>	
N-Nitrosodiphenylamine	10	ND		5.4	ND		5	NA	<u> </u>	
Phenanthrene	NS	ND		0.22	ND		0.2	NA		<u> </u>
Pyrene	200	ND		0.22	ND		0.2	NA		
1,2,4-Trichlorobenzene	9	ND		2.2	ND		2	NA		<u> </u>
Total TIC, Semi-Volatile	NS	10.1	J	<u> </u>	0			NA	<u></u>	

ND=Not detected at the indictaed concentration NS=No standard

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-1			AM-1A			AM-2		
Lab ID	Residential	Non-Residential	Impact to	J93728-1			J93728-2			J93728-3		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)												
Copper	600	600	NS	321		3.2	8.8		2.9	1150		2.9
Lead	400	600	NS	73.9		2.6	8.5		2.3	450		2.3
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	79.8			87.6			88.5		

Table 7: Tabulated Summary of Soil Sample Analytical Results

Conductive Area (AOC-20) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-2A			AM-3			AM-4		
Lab ID	Residential	Non-Residential	Impact to	J93728-4			J93728-5			J93728-6		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)												
Copper	600	600	NS	10		3.1	5.3		3	7.0		2.9
Lead	400	600	NS	7.2		2.5	7.2		2.4	8.6		2.3
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	84.3			81.6			85.9		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	ıp Criteria	AM-5			AM-6			AM-7		
Lab ID	Residential	Non-Residential	Impact to	J93728-7			J93728-8			J93728-9		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)												
Copper	600	600	NS	8.6		3	105		2.8	132		2.9
Lead	400	600	NS	8.8		2.4	92.1		2.3	18.5		2.3
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	87.2			88.4			89.2		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20)

Camden Laboratories

1667 Davis Street City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-7A			AM-8			AM-8A		
Lab ID	Residential	Non-Residential	Impact to	J93728-10			J93728-11			J93728-12		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)												
Copper	600	600	NS	8.1		3	50.1		3.2	5.6		3
Lead	400	600	NS	6.8		2.4	58.8		2.6	7.0		2.4
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	86.6			80.7			87.3		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-12			AM-14			AM-15		
Lab ID	Residential	Non-Residential	Impact to	J93728-13			J93728-14			J93728-15		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)										•		
Copper	600	600	NS	12.8		2.7	5.1		2.8	5.8		2.7
Lead	400	600	NS	41.8		2.2	9.3		2.2	9.8		2.1
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	89.6			93.2			92.2		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-20) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070236804

Sample ID	New Jerse	y Class Soil Cleanu	ıp Criteria	AM-16		
Lab ID	Residential	Non-Residential	Impact to	J93728-16		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008		
Sample Depth				Result	Qual	RDL
Metals Analysis (ppm)						
Copper	600	600	NS	67.2		3.2
Lead	400	600	NS	53.9		2.5
General Chemistry (ppm)						
Solids, Percent (%)	NS	NS	NS	81.8		

APPENDIX A GEOPHYSICAL INVESTIGATION REPORT

GEOPHYSICAL INVESTIGATION REPORT

PERFORMED AT:

1667 Davis Street Camden, NJ 08103

PREPARED FOR:

CMX Engineering 1101 Laurel Oak Road PO Box 1346 Voorhees, NJ 08043-7346

PREPARED BY:

Shan Wei

Senior Geophysicist Enviroprobe Service, Inc. 221 Haddon Avenue Westmont, New Jersey 08108

1.0 INTRODUCTION

Enviroprobe Service, Inc. (Enviroprobe) is an environmental investigation services firm which provides Geoprobe (DPT), mobile Gas Chromatography (GC), and Environmental & Engineering Geophysics (EEG) services to the environmental consulting and engineering community.

Enviroprobe conducted a subsurface geophysical investigation at the subject property within client-specified areas of concern. Due to conditions and objectives, the investigation utilized a Mala Geoscience Ramac X3M cart-mounted Ground Penetrating Radar (GPR) unit with a 250 MHz antenna, Sensors and software cart mounted GPR with 250 MHz, a Radiodetection RD4000 receiver, a Radiodetection RD4000T10 transmitter, a Fisher TW-6 metal detector and Geonics EM31-MK2 system with a Differential Global Positioning System.

GPR has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,600 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries where there are electrical property contrasts. GPR is a method commonly used for environmental, engineering, archeological, and other shallow investigations. The penetration depth of the Ramac X3M/Sensors and software unit varies from several inches to tens of feet according to site-specific conditions. The penetration depth decreases with increased soil conductivity. The penetration depth is the greatest in ice, dry sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, of other highly conductive materials greatly reduces GPR penetration.

The Radiodetection RD4000 receiver and the RD T10 transmitter are commonly used for pipe and cable locating. The RD T10 is a transmitter that can be directly connected, clamped, or induced to a target line while the RD4000 receiver is used to get the signal from energized lines.

The TW-6 is designed to find pipes, cables and other metallic objects such as USTs. One surveyor can carry both the transmitter and receiver together, making it ideal for "blindly" searching for bulk metals.

The Geonics EM31-MK2 maps geological, environmental, geotechnical and other subsurface features associated with changes in ground conductivity. It has two sets of readings: apparent conductivity in millisiemens per metre (mS/m) and in-phase ratio of the secondary to primary magnetic field in parts per thousand (ppt). The in-phase reading is very useful for locating metallic objects. The depth of exploration can be as deep as about 20 feet. However, the effective detecting range may be much shallower depending on the target sizes and host materials.

2.0 SCOPE OF WORK

On April 10, 2008, a geophysicist and a geophysical technician from Enviroprobe Service Inc. were at the subject site to locate storm drain pipes, a septic system and other geophysical anomalies for potential environmental concerns within client-specified areas of the property. Underground utilities were also located for the purpose of clearing proposed boring locations. The property measured approximately three acres. The ground surface materials were mainly concrete inside the buildings, and varied from asphalt pavement, concrete to grass outside the buildings.

3.0 SURVEY RESULTS

The EM31 survey was carried out first. One highly conductive area measuring approximately 50'x 60' was detected in the grassy area. Two unknown pipes were also identified from the data and confirmed by further surveys using Radiodetection instruments and the GPR.

A suspected septic tank was also detected with the EM31. It was located on the Davis St. side of the property, in the northern corner. This area of concern was also confirmed by the T-W6 metal detector and GPR.

A drain line investigation inside the building produced inconclusive results when making the correlation to a suspected drywell. Also, in the hydraulic lift location no sufficient evidence was found, consistent with a UST. A circular anomaly was located approximately 20' from the lift.

Specific boring locations were cleared for drilling and discussed with the on site consultant.

The EM31 conductivity and inphase data maps are attached with the report. The GPR anomaly close to the hydraulic lift, the suspected septic tank and their associated pipes were also shown in the maps.

4.0 LIMITATIONS

The GPR penetration depth was estimated as about 5 feet in the grassy areas, about 4 feet in the asphalt pavement areas, and less than 1 foot in the concrete areas inside the building.

5.0 WARRANTIES

The field observations and measurements reported herein are considered sufficient in detail and scope for this project. Enviroprobe Service, Inc. warrants that the findings and conclusions contained herein have been promulgated in accordance with generally accepted environmental engineering methods. There is a possibility that conditions may exist which could not be identified within the scope of this project and were not apparent during the site activities performed for this project.

Enviroprobe represents that the services were performed in a manner consistent with that level of care and skill ordinarily exercised by environmental consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

Enviroprobe Service, Inc. believes that the information provided in this report is reliable. However, Enviroprobe cannot warrant or guarantee that the information provided by others is complete or accurate. No other warranties or guarantees are implied or expressed.

GPR data is subject to signal anomalies and operator interpretation. The GPR data is intended to provide the locations of areas of concern (AOC's) requiring additional investigation or the approximate location of underground structures and utilities. Great care must be utilized when excavating and/or drilling around underground structures and utilities since GPR data can only be used for estimation purposes and GPR data is subject to misinterpretation.

This report was prepared pursuant to the contract Enviroprobe has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Enviroprobe and its client and serves as the basis upon which this report was prepared. Because of the importance of the communication between Enviroprobe and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Enviroprobe.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Enviroprobe contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

APPENDIX B SOIL BORING LOGS

-				L	.0	GC)F	so	IL B	OR	NG	s	B-1 _.					-	Page 1 of 2
-	PROJECT NAME Camden Labor			PROJECT N 7023580		BER			DATE/I	IME ST 04/0	ARTED 9/08			ME COM 04/09/0		GROUN	D ELEVATION (FT.	MSL)	TOTAL DEPTH (ft)
	PROJECT LOCATI 1667 Davis Str	reet							REC-2										
	BORING LOCATIO	N (sketch)	n 1	DRILLING N Direct Pu			rob	е					Enviro		RACTOR				
-			1	BORING DI			1)			2"			DRILLE	RNAME			INSPECTOR		DRILLING EQUIPMENT
				DRILLING F				-		NA 2"			John HAMME	R WEIGH	fT (lbs)		MAG HAMMER	R DROP	Geoprobe
1						ABANI		MENT								NS (dept	h in fl bgs)	Observ	
				METHOD				Backf			Depth		15'	Dete/Tim				Seesor	nal High WT
				MATERIAL QUANTITY			So	il/Beto NA	nite		Depth Depth			Date/Tim Dete/Tim				┢	
(ama)			nterve	3		a l				San	ples			OR	SANIC VA				OR METER INFORMATION
				Depth 3	g E	Graphic Log	Ę	e d	s per hes	Driven (feet)	vered	RQD	Time	Bkg	READING Sample	S Head	MANUF./MOD	DEL	LAMP (eV) SOURCE
	INTERVAL	DESCRIPTION	Sample	(ft bgs)	5	Grap	Strat	Sample No.	Blows per 6 inches	Drive (feet)	Recc (feet)				L .		REMARKS		· · · · · · · · · · · · · · · · · · ·
أعجا	0-4'	30" Recovery		- 0 -													PID 0.0 ppm		
		0-6" Ashpalt 6-14" Orange sand with gravel															PID 0.0 ppm		
أسعها		14-30" Orange silty sand		1													PID 0.0 ppm		
i																	PID 0.0 ppm		
إستا		-		2_ - .													PID-0.0-ppm		
			ĺ	-	ŀ												PID 0.0 ppm		
لنستة				3 															
													i						
اسم	4-8'	36" Recovery		_4	ļ												PID 0.0 ppm		
		48-52" SAA 52-60" Orange sand				a.								1			PID 0.0 ppm		
لزومنوا		60-84" Tan and orange fine sand		 5 													PID 0.0 ppm		
																	PID 0.0 ppm		
de la composition della compos				6 	- 					**.**.**.**			C	***************************************			PID-0,0-ppm	******	
						İ											PID 0.0 ppm		
إوسا				-7					:								PID 0.0 ppm		
	8-12'	48" Recovery			ŀ												DID 0 0 nnm		
أحجوا	0-12	96-144" SAA		8 													PID 0.0 ppm - PID 0.0 ppm		
		1		 9													PID 0.0 ppm		
فنجها				_													PID 0.0 ppm		
				_10				PID-0.0-ppm		to grant and state of the state
																	PID 0.0 ppm		
اسبه	:			_11 													PID 0.0 ppm		
	:																PID 0.0 ppm		
)1	C:\Documents end	Settings\mgilmore\Desktop\Camden Labs PAR\f16	67 Soil	12 Boring Logs	.xis]S	SB-1				*							PID 0.0 ppm	*********	

												.r-BS s	x:s6c	30 yuda Fo	I lio≳ √əər <i>yя</i> .4	A sdr.J nebms://qob/set/Deskings/mden Labs	Documents and
					l												
														-			
													I ├	— .			
													,				
***************************************			*************														
													-				
													-			-	
		******			**********								-				
														•			
													╽┟				
														_		,	
aga na kananda na mananda an manda an mananda an mananda an mananda an mananda an mananda an mananda mananda a	pangarangan dari sa Maranasa sa sa pangaran s				************				*******				1	-			
						:							-	. -			
														—.			
													 •	• •			
				:									П				
													╽┝	<u> </u>			
Set temporary well point			1										.				
			:								Н						
14.5-15.0' bgs	mqq 0.0 Qlq						***********							_16_			
mon 01+0V tragnitnoo	mqq 0.0 QI9												-				
Collected sample SB-1 9:05 for TPH-DRO and	mqq 0,0 Qlq						ļ						Δ	-g L		19W ,AAS "Se1-081	
t 92 clamos bottotlo2													H	3,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	mqq 0.0 Ql9												H				
	mqq 0.0 Glq							ļ						- ₄ -	3		
	mqq 0,0 Q19																
	-												\prod	_			
	mqq 0.0 d19													_13_	1		
	mqq 0.0 Qlq ,			1	1					1							
																AA-180" SAA	61
	РІВ 0.0 ррп	Space					'કે ⊼ુ	(a) 단	9 8	Šδ	Şî.	ရှ	9 ([t pda)	1 [<u>α</u>	48" Recovery DESCRIPTION	16' 1ERVAL
		bseH	elqms2		emíT	ВОО	et)	Driven (feet)	Blows per 6 inches	Sample No.	ratum	Graphic Log	wbnna	Depth	mple I		
MODEL SOURCE	ORGANIC VA		ANIC VAF		<u> </u>	<u> </u>	səlq	ms2 	L	<u> </u>		-0g	ater	Depth Depth	nterva		
10: 19:	ELEVATION (FT. MSL)	פאסטאפ	0∃ 8	0/60/⊅0	O BTAC		80/6	аатяАт 904/0	DATE S			603	3328	0103 0300	Ī	ratories	лест имме лест имме
						-				-	_						

RDJECT NAME	atories		PROJECT 702358		MBER			DATE/	TIME ST 04/0	ARTED			ME CDM		GRDUN	DELEVATION (FT	MSL)	TDTAL DEPTH (ft) 16'
RDJECT LDCATI	NC					-		REC-2										
667 Davis Str		Ņ	DRILLING						-				G CDNTF	RACTOR				
		1	Direct F				e		2"			Enviro		-		INSPECTOR		DRILLING EQUIPMENT
		•	BDRING I			in)			NA			John	RNAME			MAG		Geoprobe
			SAMPLE			E	-		2"				R WEIGH	T (lbs)			R DRDP	• • • • • • • • • • • • • • • • • • • •
					ABAN	IDDN	MENT				GRD	UNDWAT	TER OBS	ERVATID	NS (depti	n in fl bgs)	Dbserv	
			METHOD				Backf			Depth		15'	Date/Tim				Season	al High WT
			MATERIA QUANTIT			50	il/Bett NA	onite		Depth Depth			Date/Tim Date/Tim				1	
		Š		٦						nples			ORG	ANIC VA				DR METER INFORMATION
		le Inte	Denth	dwate	Graphic Log	E	le.	per les	_	Recovered (feet)	RQD	Time	Bkg F	READING Sample	S Head	MANUF./MO	OEL	LAMP (eV) SOURCE
INTERVAL	DESCRIPTION	Samp	Depth (ft bgs)	Groun	Graph	Stratum	Semple No.	Blows per 6 inches	Driven (feet)	Reco (feet)	KQD	Titale	Dkg	Gampio		REMARKS		<u> </u>
-4¹	36" Recovery		- 0 -													PID-0:0-ppm-		
	0-6" Ashpalt 6-12" Orange sand with gravel		- -													PID 0.0 ppm		
	12-36" Orange silty sand		1_	<u> </u>						:						PID 0.0 ppm		
			-													PID 0.0 ppm		
			2_ 	Ī												PID-0.0-ppm-		
			3_	 -				: :								PID 0.0 ppm		
		3											ı					
8 ^t	48" Recovery 48-52" SAA		 4_ 	1												PID 0:0 ppm		
	52-96" Orange sand		۔ ۔								:					PID 0.0 ppm PID 0.0 ppm		
	60-84" Tan and brange fine sand		5_ 													PID 0.0 ppm		
			6_	 							ļ	C 2 ** 2 ** 2 ** 2 * 2 * 2 * 2 * 2 * 2 *				PID 0.0 ppm		, a t , a t , a t , a t , a , a , a , a
													:			PiD 0.0 ppm		
			7	: 												PID 0.0 ppm		
I-12¹	48" Recovery	ļ	8_													PID 0.0 ppm		
	96-144" SAA		 													PID 0.0 ppm		
			9_	 - 												PiD 0.0 ppm		
]- .													PID 0.0 ppm		
			10					ļ.,								PID-0.0 ppm PID 0.0 ppm		······································
			11													PID 0.0 ppm		
															ĺ	PID 0.0 ppm		

b

Ą

C:\Documents and Settings\mg|\more\Desktop\Camden Labs PAR\[1667 Soil Boring Logs.xis]SB-2.

	· · · · · · · · · · · · · · · · · · ·	 														-				Page 1 of 2
					L	OG	OF	SC	IL E	BOR	ING		SB-3							J
-	PROJECT NAME Camden Labor			PROJECT 702358		MBER			DATE/	TIME \$1 04/0	ARTEC 9/08)		IME COM 04/09/0		GROUN	D ELEVATION (FT. I	MSL)	TOTAL OEPTH	(ft) 16'
r\$	PROJECT LOCATI 1667 Davis Str	eet							REC-4				[
	BORING LOCATIO	N (sketch)	ķ	DRILLING Direct P			prob	e						ng conti probe	RACTOR					_
in St			ł	BORING ((in)			2"			1	RNAME			INSPECTOR		DRILLING EQUI	PMENT
				DRILLING SAMPLER			PE .			NA_ 2"			John HAMME	R WEIGH	iT (lbs)		MAG HAMMER	DROP	Geoprobe (in)	
						ABA		MENT								NS (depti	h in ft bgs)	Observ	ed WT	
				METHOD MATERIAL				Back il/Bet			Oepth Oepth		15'	Oate/Tim				Season	nal High WT	
			6	OUANTIT	Y		,	NA			Depth			Date/Tim						
-			Interve		water	Log		_	je s		nples	Γ	Ι	4	BANIC VA		ORGANI MANUF./MOD		OR METER INFO	
. 1	INTERVAL	DESCRIPTION	Sample	Depth (ft bgs)	Ground	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample		REMARKS			
1	0-4'	40" Recovery	Ĭ	- 0 -	Ť												PID-0.0-ppm-			
		0-6" Ashpalt 6-12" Orange sand with gravel															PiD 0.0 ppm			
		12-40" Orange silty sand		1 									l.				PID 0.0 ppm			
																	PID 0.0 ppm			
				2 													PID 0.0 ppm PID 0.0 ppm			
				3													PID 0.0 ppm			
	4-8'	40" Recovery 48-58" SAA		4	<u>.</u> 												PID 0.0 ppm			
		58-88" Tan and orange fine sand		 - !													PID 0.0 ppm			
				5													PID 0.0 ppm PID 0.0 ppm			
1				6						ļ							PID-0.0 ppm			* *-*
																	PID 0.0 ppm			
				7	1 - 1										;		PID 0.0 ppm			
	8-12'	48" Recovery 96-144" Tan fine sand		8						ļ							PID 0.0 ppm			
į				9_ ·													PID 0.0 ppm PID 0.0 ppm			
																	PID 0.0 ppm			
				10							ļ				ļ		PID 0.0 ppm			
																	PID 0.0 ppm			
				11	<u> </u>												PID 0.0 ppm			
																	PID 0.0 ppm			
tones	C:\Documents and	Settings\mglimore\Desktop\Camden Labs PAR\(1667	Soil	_12_ Boring Log	gs.xl:	s]SB-3	·}										PID 0.0 ppm			

												9-85[s	jx:s6	ը Ծարծ	8 lio	ettings/mgilmore/Desktop/Camden L	S bns stnemucod/:0
										4				-			
															-		
													l		-		
							Ì								-		
N. N. C. C. C. C. C. C. C. C. C. C. C. C. C.										ļ			\mathbf{H}	. —	-		
															.		
						ŀ								. —	-		
															.		
	***************************************						ļ		ļ					. —	.		
															.		
														. —	.		
														. —			
									1					_			
			:														
											1			. — .	11		
			i											. — .	-		
Set temporary well point													 				:
89-29 pås	mqq 0:0 Glq				ļ					*********				_91_			
bns MAQ-H9T 1of 00:4f mon 04+99	mqq 0.0 QIQ					:							 				
Collected sample SB-6 at	mqq 0.0 QIA			<u> </u>										-g,-	1		
	mqq 0.0 QIA																
	mdq 0.0 Qld						**********						ا إ	_ ^{pl_}	1	19W ,AAS "Se1-831	
	mqq 0.0 QIQ				Ī								 				
	mqq 0.0 QIQ									}				_13_	1		
	mqq 0.0 Qlq																
	madd 0.0 Gl9						*****							_12_		144-168" SAA 144-168" SAA	15-16,
	KEWARKS		elqms2	Вкд	emiT	ВОВ	Recov (feet)	Driven (feet)	Blows per 6 inches	Sample No.	Stratui	Graphic Log	Groundwater	ngan (If pas	Sampl	DESCRIPTION	
MODEL SOURCE	ORGANIC /	9	EADINGS	4			səjd	Sam	\$ per	•		ic Log	dwater	Depth	e Interva		
1e.	ELEVATION (FT. MSI		8	04\09\0	D BTAG		80/6	0/70	s 3TAO			MBER 803	532			stories	PROJECT NAME Camden Labor
					_ 9-8	ıs	NG	ОВІ	ור פ	os	OE	90	7				

Page_2_of_2_

C:\Documents and Settings\mgilmora\Dasktop\Camden Labs PAR\1667 Soli Boring Logs.xls]SB-7.

					LC	og	OF	so	IL B	BOR	ING		SB-8					<u> </u>	Page 1 of 2
_	PROJECT NAME Carnden Labor			PROJECT 702358		MBER				TIME ST 04/0	9/08			IME COM 04/09/0		GROUN	ELEVATION (FT.	MSL)	TOTAL DEPTH (ft) 12'
ı	PROJECT LOCATION 1667 Davis Str								Condu	ctive Are	a 		ļ						
ĺ	BORING LOCATIO	N (sketch)		DRILLING Direct P			prob	e					ORILLIN Enviro	IG CONTI	RACTOR				
-				BORING D				<u> </u>		2"				R NAME			INSPECTOR		ORILLING EQUIPMENT
J				ORILLING	FLU	10				NΑ			John				MAG		Geoprobe
				SAMPLER	DIA	M./TY	E			2"			HAMME	R WEIGH	∏ (lbs)		HAMMER	ROP	(in)
-						ABA		MENT			_			Ţ		NS (depti	n in ft bgs)	Observ	
				METHOO MATERIAI				Back il/Bet			Depth Depth		15'	Date/Tim				Season	nal High WT
				QUANTIT				NA			Depth			Oate/Tim					
-			erva		Pe	Ē.	Π			San	nples		-	4	SANIC VA				OR METER INFORMATION
			ole Int	Depth	ndwat	hic Log	Ę	용	s per	_	Recovered (feet)	RQD	Time	Bkg	READING Sample		MANUF./MOC	DEL	LAMP (eV) SOURCE
	INTERVAL	DESCRIPTION	Sample		Grou	Graphic (Stratum	Samı No.	Blow 6 incl	Driven (feet)	Reco (feet)			g		Space	REMARKS		-
-		40" Recovery	П	- 0 -	-												PID-0.0-ppm		
		0-6" OM, Grass 6-12" Ash-like fill material			ŀ												PID 0.0 ppm		Collected sample SB-8 at 15:10 for TPH-QAM and
-		12-40" Orange sand		1	¦												PID 0.0 ppm		PP+40 from 8-12" bgs
																	PID 0.0 ppm		
				2												>	PID-0.0-ppm		
																	PID 0.0 ppm		
-				3 				ė									PID 0.0 ppm		
-	4-8'	48" Recovery 48-96" SAA	ľ	4	! I					<u> </u>				ļ			PID-0:0-ppm-		
		40-90 SAA										:					PID 0.0 ppm		
<u></u>	:			5										ı			PID 0.0 ppm		
	:														=		PID 0.0 ppm		
-	;			6												*	PID 0.0 ppm		
	:																PID 0.0 ppm		
				7_ ·	il												PID 0.0 ppm		
	8-12'	48" Recovery		8													PID 0.0 ppm PID 0.0 ppm		
-		96-144" SAA		_0													PID 0.0 ppm		
				9													PID 0.0 ppm		
)																	PID 0.0 ppm		
į				_10_	 			ļ						S			PID-0.0-ppm		
																	PID 0.0 ppm		
1				_11_	: -												PID 0.0 ppm		
																 - 	PID 0.0 ppm		
	C:\Documents and	Settings\mgilmore\Desktop\Camden Labs PAR\[1667	Soil	12_ Boring Los	75.xls	sìSB-8	ļ			ł					ł		PID 0.0 ppm		

					L	OG (OF	so	IL B	OR	ING	{	SB-9						Page 1 of 2
w)	PRDJECT NAME Camden Labor			PRDJECT 702358		MBER				04/0				IME COM 04/09/0		GROUN	DELEVATION (FT.	. MSL)	TDTAL OEPTH (ft) 12 ¹
	PRDJECT LDCATII 1667 Davis Str								Conduc	tive Are	ea .		i						
	BDRING LDCATID	N (sketch)	♦ Z	ORILLING Direct F			orob	e						NG CONTI	RACTOR				
-			П	BDRING				-		2"				R NAME		•	INSPECTOR		DRILLING EQUIPMENT
				ORILLING	Fμ	סונ				NA			John				MAG		Geoprobe
				SAMPLER	R DIA	VM./TYP	E			2"				R WEIGH			HAMME		•
-						ABA		MENT								NS (depti	h in ft bgs)	Dbserv	
				METHDD MATERIA				Backt il/Beti			Depth Depth		15'	Dete/Tim Date/Tim				Season	nal High WT
-				QUANTIT			- 00	NA	5,1110		Oepth			Oate/Tim		,		1	
			эгvа		ř	m				San	nples			ORG	SANIC VA	POR	ORGA	NIC VAP	DR METER INFORMATION
			le inte	Donth	dwat	5	E	<u>e</u>	ber es	_	/ered	RQD	Time	Bkg	READING Sample	S Head	MANUF./MO	DEL	LAMP (eV) SDURCE
	INTERVAL	DESCRIPTION	Sample Interva	Depth (ft bgs)	Broun	Graphic Log	Stratu	Sатрlе No.	Blows per 6 Inches	Oriver (feet)	Recovered (feet)	KQD	IIII	ыщ	Sample		REMARKS		
		40" Recovery		- 0 -	Ť												PID-0.0 ppm		
		0-8" OM, Grass 8-14" Ash-like fill material				:											PID 0.0 ppm		Collected sample SB-9 at 16:00 for TPH-QAM and
-		14-40" Orange sand		_1	<u> </u>												PID 0.0 ppm		PP+40 from 8-14" bgs
																	PID 0.0 ppm PID 0.0 ppm		
-				2_ 													PID 0.0 ppm		
_				3_ - -	 - 						:		:		:		PID 0.0 ppm		
1		48" Recovery 48-96" SAA		4_				· *** ·			ļ	·			.		PID 0.0 ppm		
				 5_							:					!	PID 0.0 ppm PID 0.0 ppm		
																	PID 0.0 ppm		
				6_	! 			.*	***********	**						***************************************	.PID.0.0.ppm		
											<u> </u>						PID 0.0 ppm PID 0.0 ppm		
				7_ 			: !										PID 0.0 ppm		
		48" Recovery 96-144" SAA		8	<u> </u>		s										PID 0.0 ppm		
		30-144 3/		<u>.</u> -													PID 0.0 ppm		
-				9_													PID 0.0 ppm PID 0.0 ppm		
				10											ļ		PID-0.0-ppm		
																	PID 0.0 ppm		
				11	<u>.</u>												PID 0.0 ppm		
				12				>		? * * 	45,45545555						PID 0.0 ppm		
	C:\Documents end	Settings\mgilmore\Desktop\Camden Lebs PAR\[1667	Soll		gs.xl	s[SB-9								•			4		

Camden Laboratories 70235803 04/09/08	DATE/TIME COMPLETE GROUND ELEVATION (FT. MSL) TOTAL OEPTH (ft) 16' DRILLING CONTRACTOR Enviroprobe ORILLER NAME INSPECTOR DRILLING EQUIPMENT John MAG Geoprobe HAMMER WEIGHT (lbs) HAMMER OROP (in) DUNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
PROJECT LOCATION 1667 Davis Street BORING LOCATION (skatch) N ORILLING METHOO Direct Puch Geoprobe BORING DIAMETER (in) 2" ORILLING FLUIO NA SAMPLER OIAM/TYPE 2" ABANOONMENT GROUMETHOO Backfill Depth 1 MATERIAL SOIl/Betonite Depth QUANTITY NA Depth	DRILLING CONTRACTOR Enviroprobe ORILLER NAME INSPECTOR DRILLING EQUIPMENT John MAG Geoprobe HAMMER WEIGHT (Ibs) HAMMER OROP (in) UNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
BORING LOCATION (skatch) N ORILLING METHOO Direct Puch Geoprobe BORING DIAMETER (in) ORILLING FLUID NA SAMPLER DIAM/TYPE 2" ABANOONMENT GROUMETHOD Backfill Dapth 1 MATERIAL SOII/Betonite Depth QUANTITY NA Depth Samples	Enviroprobe ORILLER NAME INSPECTOR DRILLING EQUIPMENT John MAG Geoprobe HAMMER WEIGHT (Ibs) HAMMER OROP (in) DUNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
BORING DIAMETER (in) ORILLING FLUIO NA SAMPLER OIAM./TYPE 2" ABANOONMENT GROU METHOD Backfill Dapth 1 MATERIAL SOII/Betonite QUANTITY NA Depth Samples	ORILLER NAME INSPECTOR DRILLING EQUIPMENT John MAG Geoprobe HAMMER WEIGHT (Ibs) HAMMER OROP (in) UNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
ORILLING FLUIO NA SAMPLER OIAM./TYPE 2" ABANOONMENT GROUMETHOD Backfill Depth 1 MATERIAL Soil/Betonite Depth QUANTITY NA Depth Samples Samples	John MAG Geoprobe HAMMER WEIGHT (Ibs) HAMMER OROP (in) DUNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
ABANOONMENT GROUMETHOD Backfill Depth 1 MATERIAL Soil/Betonite Depth QUANTITY NA Depth Samples	DUNDWATER OBSERVATIONS (depth in ft bgs) Observad WT
METHOD Backfill Depth 1 MATERIAL Soil/Betonite Depth QUANTITY NA Depth Samples	
MATERIAL Soil/Betonite Depth QUANTITY NA Depth Samples	
Samples	15' Oata/Tima Seasonal High WT Date/Tima
	Oate/Time
	ORGANIC VAPOR ORGANIC VAPOR METER INFORMATION READINGS MANUF,/MODEL LAMP (eV) SOURCE
INTERVAL DESCRIPTION (ft bgs)	
INTERVAL DESCRIPTION 등 (ft bgs) 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	Space REMARKS PID 0.0-ppm
0-6" OM, grass	
6-12" Strong brown loam	PID 0.0 ppm
12-48" Strong brown clay loam	PID 0.0 ppm
	PID 0.0 ppm
4-8' 48" Recovery44	PID 0,0 ppm
48-96" SAA	PID 0.0 ppm
	PID 0.0 ppm
8-12' 48" Recovery	PID 0:0 ppm
96-144" Strong brown clay loam	PID 0.0 ppm
	PID 0.0 ppm
	PID 0.0 ppm
	PID-0.0-ppm-
	PID 0.0 ppm
	PID 0.0 ppm
12	PID 0.0 ppm

							,				01-88 [8	jx sß	on Buyog	l lìos	7991/PA9 eds Labms: Tookles/Yorkendigm/eghings and saluemood:	<u>ء</u>
													. — .			7
													_ — .			
																Ì
n esterna variante anta tratar ser este este este este en este este de desta de desta de desta este este este	***********				**********	et est est estare							. – .			
																1
													<i>-</i>			,
																1
nanananananananananananananananananana	***********												. – .			
		:											- -			
	i												. — .			4
													- _			
Security of the level constraint of the constrai									***********							•
													. — .			
	,		·		*							 -	. – .			
								ı								1
													. – .			,
Set temporary well point																}
mqq 0.0 olq	***************************************				y-w		30. F8. F F F F F F F F F				***********	' 	_16_			•
mqq 0.0 QIq																1
mqq 0.0 QI9												- 	<u>-</u> 91_			
mqq 0.0 dlq																
mqq 0.0 Qlq	*************	P * * * * * * * * * * * * * * * * * * *				g (a (a) a)				3	g-1 g-1 7g 1 g-1 ha				19W ,AAS "Se1-881	ļ
mqq 0.0 Qlq												[] -	_ ย่			
тqq 0.0 ОIЧ																P
mqq 0.0 Qlq													_12_		2-16' 48" Recovery	L
		өіфтя2		əmiT	צמם	Recovered (feet)	Driven (feet)	Blows pe 6 inches	Sample No.	Stratum	Graphic Log	Groundw	(r pda)	Sample I	INTERVAL DESCRIPTION	
16° ORGANIC VAPOR METER INFORMATION MANUFACTURE MODEL SOURCE	ROG	SEADING:	ORG		L	səjd		<u></u> _			8U0	at er	2020	nterva	samden Laboratories]
D ELEVATION (FT. MSL) TOTAL DEPTH (#)	ипояв	ED	T=J9MO:				13TRAT				Raber	UNT	PROJEC	<u>L</u>	POJECT NAME	1
2 to _2_ egs9				01-8	is_	₽ I	NRC	r B	IOS	ЭE	90	Г				e

Appropriate Appropriate	ROJECT NAME	LOG OF PROJECT NUMBER OTOTAGES	LOG OF SOIL BORING	SB-11 DATE COMPLETED GROUND F	ND ELEVATION (FT. MSL) TOTAL DEPTH (f)
14-16F SAA West 150-167 150-	Camden Laboratories	070235803 water Log	\top	C VAPOR	ORGANIC VAPOR METER INFORMAT
144-189" SAA. Welt -1314151616161616161616	h'	(ft bgs) Ground Graphic	Sample No. Blows p 6 inche Driven (feet) Recove (feet)	Time Bkg Sample Hes	PID 0.0 ppm
PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm		·			PID 0.0 ppm
PID 00 ppm PID 00 ppm PID 00 ppm PID 00 ppm PID 00 ppm		_13			PID 0.0 ppm
PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm		•			PID 0.0 ppm
165 - PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm	168-192" SAA, Wet	_14_ \			P1D-0.0 ppm
16_ PID 0.0 ppm PID 0.0 ppm PID 0.0 ppm		ı			PID 0.0 ppm
PID 0.0 ppm	-	15			PID 0.0 ppm
		1			PID 0.0 ppm
		_16		er i e de la companya de la companya de la companya de la companya de la companya de la companya de la company	PID-0:0-ppm
		1			Set temporary w
		1 1			
		1 1			
			The second secon	Transmission of Grant Control of Grant C	

أويس				LC	og (OF	SO	IL B	ORI	ING	^	\M-1				<u></u>			Page 1 of
	PROJECT NAME Camden Laboratories		PROJECT 070235					DATE/	TIME \$1 06/2	ARTED 3/08			IME COM 06/23/0		GROUN	D ELEVATION (FT.	MSL)	TOTAL DEPTH	(fl) 4'
	PROJECT LOCATION 1667 Davis Street							REC-2											
	BORING LOCATION (sketch)	N	DRILLING			arab	_						G CONTI	RACTOR					
<u>_</u>		I	Direct P				е		2"			Enviro	RNAME			INSPECTOR	-	DRILLING EOU	IPMENT
			DRILLING						NA			John				MAG		Geoprobe	
			SAMPLER	DIA	M./TYP	E			2"				R WEIGH			HAMME			
W					ABAN										NS (dept	h in ft bgs)	Observe		
- 1			METHOD MATERIAL				Backfi il/Betc			Depth Depth		15'	Date/Tim Date/Tim				Season	al High WT	
- 1			OUANTIT				NΑ			Depth			Date/Tim			•••			
-		nterva		ē	5				San	nples				BANIC VA				OR METER INFO	
- 1			Depth	ndwa	Graphic Log	틸	ple	Blows per 6 inches	£ _	Recovered (feet)	ROD	Time	Bkg	READING Sample	S Head	MANUF./MO	DEL	LAMP (eV) S	DURCE
- 1	INTERVAL DESCRIPTION	Sample		Grou	Grap	Stratum	Sample No.	Blow 6 inc	Driven (feet)	Reco (feet)						REMARKS			
ب	0-4' 36" Recovery 0-4" Organic m		- 0 -																
	4-10" Strong b 10-15" Ash	rown sandy loam		ı												Collected AM	-1 from	ash at 10-10	6" at 8:30 for
-	İ		1 										ĺ			copper and le	ad ana	ilysis	
	15-36" Orange	silty sand														Collected AM copper and le			5 for
			2 										See - 10 110 10 100 - 1						
			3 	il				:											
-			4 I							· ··· · · · · · · · · · · · · · · · ·									
أيسيا			l 5 I					i	:										
						٠								:					
			l																******************************
			 7																
-																			
			 8																
									; 										
			 9			ı													
4																<u> </u>			
			 · _10_ ·																
-			_ ' <u>"</u>											1					
		-	_11_																
	C:\Documents and Settings\mgllmore\D	- esktop\[1667 Soil Boring Logs.xis]AM	12 · -1														·**		************************

				L-\		•	•		OIN.	ING		\\\\\						
PROJECT NAME Camden Labo	pratories		PROJEC 070235					DATE/		TARTED			ME COM 06/23/0		GROUN	DELEVATION (FT.	MSL)	TOTAL DEPTH (ft) 4'
PROJECT LOCAT	TON							REC-2										
BÖRING LOCATION		N •	DRILLING Direct I			orob	e					DRILLIN Enviro		RACTOR				
			BORING	_					2"			DRILLE				INSPECTOR		ORILLING EQUIPMENT
			ORILLING						NA 2"			John	D MEIOL	F (15-2)		MAG HAMME	- OBOB	Geoprobe
			SAMPLE	K OI			MENT						R WEIGH		NS (depti	h in ft bgs)	Observ	
			METHOO)	_		Backf	ill .		Oepth			Oate/Tim				Seasor	al High WT
			MATERIA QUANTIT			So	il/Beto NA	onite	_	Oepth Oepth			Oate/Tim				\vdash	
		av.		_	01				San	nples			ORG	SANIC VA				OR METER INFORMATION
		ole Inte	Depth (ft bgs)	ndwate	Graphic Log	Ę	ole	s per hes	<u> </u>	vered	RQO	Time	Bkg	READING Sample		MANUF./MO	OEL	LAMP (eV) SOURCE
INTERVAL	DESCRIPTION	Sam	(ft bgs)	gg	Grap	Strati	Sam No.	Blow 6 inc	Driven (feet)	Recover (feet)					l	REMARKS		·
0-4'	40" Recovery 0-12" Strong brown silty sand		- 0 -													Callasted AN	2 6	n ash at 12-18" at 8:45 for
	12-19" Ash		1_	! -						:						copper and le		
	19-40" Orange silty sand															Collected AM copper and le		20-26" at 8:50 for alysis
			2_ -	Ĩ.														
		-	3_	 - 														
]							-	:					?		
			4_ -]														
			 5_ 	 - 														
			 6_ 	· 			*****	······································	··········				••••••					
			 ⁷ -	 -				ļ !										
			 - 															
			8_ 	-														
			9_ 	-														
			10_ 															
			11															

¥

le sse				LC)G	OF	so	IL B	ORI	NG	^	\M-3					Pag	e 1 of 2
السينت	PRDJECT NAME Camden Laboratories		PROJECT 070235	803	MBER				06/2	ARTED 3/08			ME CDM 06/23/0		GRDUN	D ELEVATION (FT.	MSL) TDTAL DEPTH (ft) 4'	
	PRDJECT LOCATION 1667 Davis Street							REC-2			l							
	BORING LDCATION (sketch)	N	ORILLING			nenh	_			-		ORILLIN Enviro	G CONTE	RACTOR				
		T	Direct F				e		2"		$\overline{}$		RNAME			INSPECTOR	DRILLING EQUIPMENT	
		_	ORILLING			,			NA			John				MAG	Geoprobe	
			SAMPLE	R DIA	M./TYF	Æ			2"			HAMME	R WEIGH	T (lbs)		HAMME	R DRDP (in)	
Ü					ABA		MENT								NS (depti	h in fl bgs)	Dbserved WT	
			METHDO	_			Backf il/Beto			Depth			Date/Tim				Seasonal High WT	
			MATERIA QUANTIT			30	NA	mile		Depth Depth			Oate/Tim Oate/Tim					
¥/		nterva	20/1111	٦	_				San	nples			_	ANIC VA	PDR	DRGA	IC VAPOR METER INFORMATIO	
			D#-	indwate	ic Log	E	le l	es e		rered	500	T		READING		MANUF./MO	DEL LAMP (eV) SDURCE	
	INTERVAL DESCRIPTION	Sample	Depth (ft bgs)	unous	Graphic Log	Stratu	Sample No.	Slows inch	Orlven feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head Spece	REMARKS		
	0-4' 42" Recovery	- 0	- 0 -	Ĭ			0) 2	ш 6		н)								
-	0-4" Asphalt 4-16" Strong brown sandy loam																	
	4-10 Oliblig blown sailey loan	Н		П					•							Collected AM	3 at 10-16" at 9:45 for	
		11	1	:												copper and le	ad analysis	
	10.101.0	11		Н		1												
	16-42" Orange silty sand	Н	-	Н														
			2_					ļ				·						
												ŀ						
				H								ŀ		1				
			3_	<u>'</u>		ļ		ļ				1						
1		i		H														
		-											1					
:			١ ,	!														
•			4_ I	ī	• ••• • • • • • • • • • • • • • • • • •								i					
				╽╏														
				l											İ			
أنعينا			5_ I			1												
				Н					ļ									
]				
: التستا			6_	-, I	***********	ļ	······································						**. *. * . * . * . * . * . *					
7			<u> </u>															
				 														
Į.			7_	:											l			
أيجينا														1				
			-				1						ŀ					
1			ι 8_	<u>.</u>					ļ	ļ		.		ļ				
نسنا				 										[
				 									ł		1			
		İ	i 9_	<u> </u>				:										
-				H								1			Ī			
												ŀ		İ				
		1	 10_							.	<u> </u>				l			
4		1		Ñ				1				l			[
		1																
				l														
			· _11_ 	ij														
												į						
			l <u></u>															
	C:\Documents and Settings\mgilmore\Desktop\[1667 Soil Boring Logs.	xls]AM	12_ -3	•••••	*****											· · · · · · · · · · · · · · · · · · ·		

					LC	OG (OF	SO	IL B	ORI	NG	^	\M-4	<u> </u>					Page 1 of 2
-	PROJECT NAME Camden Labor			PROJECT 070235						TIME ST 06/2		-		IME COM 06/23/0		GROUN	D ELEVATION (FT.	MSL)	TOTAL DEPTH (ft) 4'
	PROJECT LOCATI 1667 Davis Str	on reet							REC-2				ļ						
	BORING LOCATIO		N	DRILLING Direct P			prob	e					DRILLIN Enviro		RACTOR		•		
إسجا				BORING D	DIAM	ETER (in)			2"			DRILLE	RNAME			INSPECTOR		DRILLING EQUIPMENT
				DRILLING						NA O"			John				MAG		Geoprobe
;				SAMPLER	DLA		_	MENT		2"				R WEIGH		NC (deat	HAMME	т —	ed WT
Vermal.				METHOD		ABAN		MENT Backf	il		Depth			Dete/Tin		NS (dept	n in n ugs)	-	nal High WT
				MATERIA				il/Beto			Depth			Dete/Tin					
			,	QUANTIT	Y			NA			Depth	,		Dete/Tin			T.		
(1000)			nterva		ater	Ď,		<u> </u>	_		nples	_			GANIC VA READING		MANUF./MO		POR METER INFORMATION LAMP (eV) SOURCE
			nple Ir	Depth (ft bgs)	mdw	Graphic Log	trum	Sample No.	Blows per 6 inches	Driven (feet)	covere t)	RQD	Time	Bkg	Sample		NO STOT SINO		But (0)
,		DESCRIPTION	San		g	E U	Stra	Sar No.	Blo 6 in	ź 🌡	Rec (fee					Space	REMARKS		
أعيننا		36" Recovery		- 0 -														* *	
		0-4" Organic matter, grass 4-16" Strong brown sandy loam					Ш]			
Ì										İ							Collected AM	-4 at 1	0-16" at 10:05 for
-				1						İ							copper and le	ad an	alysis
		16-36" Orange silty sand								l		1							
	1	To do Stango sity dama															1		
أنسينا	,			2_ ·					· ··· · · · · · · · · · · · · · · · ·	l				······································					
										l	1	ļ				t i			
	:									Ì									
				3	:					•				ļ					
							H										-		
														l					
				I															
-				_															
				l	┇ ┃														
-					H						ŀ			l					
														l					
:				 6							İ						l		
4					1														
														l					
				 - 7	! 														
ني				7_ · 	il														
										l					1				
															i	Ī			
-				8 								[[]	1	** ** *******************************		
													[
				ايا	l														
ليسما				9 															
														1					
				_															
أنعيننا				· _10_ ·										i	····				
_															1		1		
	'				H										1				
				· _11_ 	· [
				_															
, }	C:\Documents end	Settings\mgilmore\Desktop\[1667 Soil Boring Logs.	xis]AM	12 -4	~													**********	

-					LC	og (OF	so	IL B	ORI	NG	^	\M-5						Page 1 c	of 2
	PROJECT NAME Camden Labor	ratories		PROJECT 070235						06/2	ARTED 3/08			ME COM 06/23/0		GROUN	DELEVATION (FT.	MSL)	TOTAL DEPTH (ft) 4'	
	PROJECT LOCATI	ON reet							REC-2				<u> </u>							
	BORING LOCATIO		N	DRILLING Direct F			nroh	۵.					ORILLIN Enviro	G CONTI	RACTOR					
wi				BORING			_			2"		$\overline{}$	ORILLE				INSPECTOR		ORILLING EQUIPMENT	
١				ORILLING	FLL	(D				NA		_	John				MAG		Geoprobe	
1				SAMPLE	R DIA					2"	,	_	_	R WEIGH			HAMME			
-				METHOO		ABAN		MENT Backt	711		Oepth		UNOWA	Oate/Tim		NS (depti	n in ft bgs)	Observ	ed WT nal High WT	—
ı				MATERIA				il/Bet			Depth		13	Oete/Tim				300301	iai i aga se	
ı				QUANTIT	_			NA			Depth			Oate/Tim						
_			nterva		ē	D)			,		nples				SANIC VA				OR METER INFORMATION	
1			ole Int	Depth	ndwa	일	Ę	e e	s per	_	vered	RQO	Time	Bkg	READING Sample		MANUF./MO	DEL	LAMP (eV) SOURCE	
ı	INTERVAL	DESCRIPTION	Sample	Depth (ft bgs)	Grou	Graphic Log	Strat	Sam No.	Blows per 6 inches	Drive (feet)	Recc (feet)					l .	REMARKS		<u></u>	
	0-4'	36" Recovery 0-4" Organic matter, grass 4-18" Strong brown sandy loam 18-36" Orange silty sand		- 0 - 1_													Collected AM copper and le		2-18" at 9:55 for alysis	
				2 3_ 4_																
				5_ 5_ 6_	-															***********
I. I.				7_ 8_	-															
				9_ 	-															
4	C:\Documents and	Settings\mgilmore\Desktop\{1667 Soil Boring Logs.	xisiAM	11_ 11_ 12_	-			Sit de management								or all 70 To				

1

į

أبعينا	<u></u>																			Page '	1 of 2
					L	OG	OF	SC)IL E	3OR	ING		\М-6								
	PROJECT NAME Camden Labor	atories		PROJECT 070235					DATE	/TIME \$1 06/2	7ARTEC 23/08	Ó		IME COM 06/23/0		GROUN	D ELEVATION (FT. I	MSL)	TOTAL DE	PTH (ft) 8'	
	PROJECT LOCATI 1667 Davis Str								REC-2	2											
	BORING LOCATIO	N (sketch)	₽ Z	DRILLING Direct F				ne	_					ig conti probe	RACTOR					•	
Year				BORING						2"				RNAME			INSPECTOR		DRILLING (EQUIPMENT	
				DRILLING			n=			NA 2"	_		John	R WEIGH	CT (lba)		MAG HAMMER	DBOB	Geoprob	<u>e</u>	
1 1 1 A				SAMPLER				MENT				GRO				NS (depti		Observ			
العينيا				METHOD				Back			Depth		15'	Date/Tim				Seesor	nel High WT		
				MATERIA QUANTIT			Sc	oil/Bet NA	onite		Depth Depth			Date/Tim Date/Tim							
			erva	207.11111	ě	ان ان	Τ			Şan	nples			ORG	SANIC VA				 	NFORMATION	
			ple Int	Depth	undwat	Graphic Log	Ę	륁	s per	[Recovered (feet)	RQD	Time	Bkg	Semple		MANUF./MOD	EL	LAMP (eV)	SOURCE	
,		DESCRIPTION	Sam	(ft bgs)		Grap	Stratum	Sample No.	Blow 6 Inc	Driven (feet)	Reco (feet)						REMARKS				
		32" Recovery 0-4" Organic matter, grass		- 0 -			l														
		4-32" Strong brown sandy loam										į									
			ı		IJ																
لسا			ı	1_ ·	il																
				2_ ·	<u>.</u>															******	
أنتعها																					
longs:				3_	:										1						
															1						
أعسا	4-8'	33" Recovery 48-60" SAA	l	4_ · 	i				1								·				
								ŀ							1						
		60-70" Ash		5_ ·	! -												Collected AM-6	6 at 6	0-66" at 9	:30 for	
لسنا																	copper and lea				
																	:				
		70-81" Orange silty sand		6_ ·	-												***********************		******************	*****	
, 1															l		!				
			H																		
			l	7_ ·	i																
			Н		l									İ							
			1	8_ ·	1																
-			۱		Ιĺ																
					П																
			ו ו	9_ ·	<u>'</u>												:				
أتعتا																					
			;	_10_	- 1					-											
											1										
	:		ī	_11_	ا آ																
	i		$ \ $																		
			[_12_	<u>.</u>]		<u></u>		_	ļ		ļ				************			****************	atatutututurururururu	
	C:\Documents and	Settings\mgilmore\Desktop\[1667 Soil Boring Logs.xis	IAM	-6													•				

	- · · · · ·		LO	G ()F	so	IL B	ORI	NG	^	\M-7				···	·	Pag	e 1 of 2
	PROJECT NAME Camden Laboratories	PROJECT 070235		BER			OATE/	TIME ST 06/2				ME COM 06/23/0		GROUN	DELEVATION (FT.	MSL)	TOTAL OEPTH (ft) 4'	
	PROJECT LOCATION 1667 Davis Street						REC-2											
		ORILLING Direct F			orob	е					ORILLIN Enviro		RACTOR					
_]	BORING I			_			2"			DRILLE	RNAME			INSPECTOR		ORILLING EQUIPMENT	
		ORILLING SAMPLER	_		 F			NA 2"		_	John HAMME	R WEIGH	IT (lbs)		MAG HAMMER	R DROP	Geoprobe (in)	-
_				ABAN		MENT								NS (depti	n in fl bgs)	Observe		
		METHOO MATERIA				Backf il/Betc			Oepth Oepth		15'	Oate/Tim				Season	el High WT	
		QUANTIT			30	NA	ишо		Oepth			Oete/Tim						
	nterva		ater	ğ			L	Sam	nples				SANIC VA		ORGAN MANUF./MOI		OR METER INFORMATION LAMP (eV) SOURCE)N
	INTERVAL DESCRIPTION	Depth	Mpuno	Graphic Log	Stratum	Sample No.	ows pe	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample	Heed				
;	INTERVAL DESCRIPTION 5	(ft bgs)	δ 		<i>₹</i>	S S	Blc 6 ir	Ę Đ	Re (fe					Spece	REMARKS			
	0-6" Organic matter, grass 6-22" Medium brown loam	1_ ·													Collected AM- copper and lea		2-28" at 10:30 for llysis	
	22-28" Ash	 2_ ·		******					prost \$2.000						Collected AM- copper and lea		32-38" at 10:35 for llysis	ad 200 (ad 100 (ad 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100
اسم	28-40" Orange silty sand																	
-		- <u>_</u> 3		:										:				
		 4_ 													: 			
أنت		5_ · 																
<u>.</u>		 6 				, ,								30.00				
-		 7 										:						
		8 																
		9 																
		· _10_ -																:
_	C∴Documents and Settings\mgilmore\Desktop\f1667 Soil Boring Logs.xls]AM	 12_	•								art art ar tart ar t					and and and and and		

-	····				LC)G	OF	so	IL B	ORI	ING		8 			· ·			Page 1	of 2
	PROJECT NAME Camden Labora	atories		PROJECT 070235				•	OATE/	TIME ST 06/2	ARTEO)		IME COM 06/23/0		GROUN	O ELEVATION (FT.	MSL)	TOTAL OEPTH (ft) 4'	
	PROJECT LOCATION	N .							REC-2											
	BORING LOCATION		N	ORILLING						_					RACTOR					
لستلا			Î	Direct F	_			е		2"			Enviro ORILLE	•			INSPECTOR		ORILLING EQUIPMENT	
				ORILLING			,			NA			John				MAG		Geoprobe	
				SAMPLER	ROIA					2"	_		•	R WEIGH			HAMMER			_
لنسينا				METHOO		ABAI		MENT Backf	ill		Oepth		UNOWA	Oete/Tim		NS (dept		Observe Seesona	d WT Il High WT	_
				MATERIA				il/Beto			Oepth			Oete/Tim						
			æ	QUANTIT	Y			NA		0	Oepth			Oete/Tim		200	0004	UO 1 /4 DC	D METER INFORMATION	
أسينا			nterva		vater	Ę			<u>.</u> و		nples	T		4	SANIC VA		MANUF./MOO		DR METER INFORMATION LAMP (eV) SOURCE	
	[A(TCC) /A]	DESCRIPTION	Sample	Depth	Grounde	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample		DEMARKS			
		DESCRIPTION	Š	(ft bgs)	Ō	Ō	S	ΰŽ	<u> </u>	ã € 	æ €					Spece	REMARKS			
لتكمين		0-5" Organic matter, grass			l										1					
		5-26" Medium brown loam	П														Collected AM-	8 at 28	-34" at 10:34 for	
				- 1_ ·	<u> </u>												copper and le			
(1			П							ŀ	1									
				-													copper and le		34-38" at 10:50 for lvsis	
	-			2_ ·	.															
		26-34" Ash																		
		34-38" Orange silty sand	•											ĺ						
la const				3_				ŀ												
			Γ]				İ												
										ŀ										
أسينها				4_ ·	7															
					П							:					:			
				 -																
لنستا				5_ · 	il															
				 6_																
				_ <u>_</u>	Ï															
			İ		П															
ļ				l 7_ ·	! -										1					
الجلا																				
				8_ ·	<u>.</u>															
•																				
				-										ĺ						
				9_ ·	:											l				
لتجهية				 				:												
										[•							
			1.	10_ i	7					ļ		ļ	ļ		ļ					
(Sept.)																	1			
				l													ŀ			
h			-	11_ 	il															
	1			-											}					
				12										<u> </u>						
أنصدة	C:\Documents end S	ettings\mgilmore\Desktop\[1667 Soil Boring Logs.x	is]AM								1	L	r		I		I		et dat entrattat de tratta en de conservat sur des des des des des des de l'autorités de l'autor	

است					LC)G	OF	so	IL B	ORI	NG		 \M-9	<u> </u>			.			Page	1 of 2
	PROJECT NAME Camden Labor	atories		PROJECT 070235					DATE/	TIME \$1 06/2	ARTED			IME COM 06/23/0		GROUNI	DELEVATION (FT.	MSL)	TOTAL DE	PTH (ft) 4'	
	PROJECT LOCATI								REC-2												
	BORING LOCATIO			ORILLING				_	•					IG CONTI	RACTOR				-		
العندا				Direct F				HE .	-	2"				probe R NAME			INSPECTOR		ORILLING	EQUIPMENT	
-			-	ORILLING			VA			NA			John				MAG		Geoprol		
١				SAMPLER	ROM	_				2"			•	R WEIGH			HAMME	r			
<u>_</u>			ŀ			ABA		MENT	CH		_			1		NS (depti	n in ft bgs)	Observ			
ł			- 1	METHOO MATERIA				Back il/Bet			Oepth Oepth		15'	Oate/Tim				Seeson	el High WT		
- 1			·	QUANTIT				NA			Depth			Date/Tim							
			terva		je.	<u> </u>				_	ples			4	SANIC VA					INFORMATION	
-			eld In	Depth	ındwa	Graphic Log	Ę	eld	rs per thes	Driven (feet)	Recovered (feet)	ROD	Time	Bkg	READING Sample		MANUF./MO	UEL	LAMP (eV)	SOURCE	
I		DESCRIPTION	Sam	Depth (ft bgs)	D D D D	Grap	Stratum	Sample No.	Blow 6 inc	(feet)	Reck (feet					Space	REMARKS				
لنسبنا		36" Recovery	П	- 0 -	H									·····							
		0-4" Organic matter, grass 4-22" Medium brown loam																			
1		modum brom roull		-																	
-			ŀ	1_	;									ł							
				_						1											
		22-32" Ash		-										1							
لعسنا				· _2_ ·	-		<u> </u>		ļ	ļ . .				.							
															ļ						
		32-36" Orange sity sand		-																	
			F.	· _3_ ·	: [
									1												
استا			:	· _4_ ·					ļ	ļ	 	 	ļ	.	ļ						
			$\ \ $								[:						
				· _5_ ·	:]				ł					1							
لسنت								l		1											
J														1							
				· _6_ ·			ļ		ļ					.				n.n	**.*************		
-														1							
														Į.							
				7	<u> </u>																
-																					
- [$ \ $																		
				8	l 					.	.					ļ 	·				
				_						ĺ											
				· _9	' 																
لنسين														ļ							
				10	<u>.</u>]				ļ								******************************				
									"												
			$\ \ $																		
				11	<u> </u>											i					
است	:		1	,_	Ιl																
-				12			ļ							ļ			***********************	******	19g Ph. 19g 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· atatat	
	:\Documents end	Settings\mglimore\Desktop\[1667 Soil Boring Logs.xls	JAM-					L	1												

					LC	G C)F	SOI	L B	ORII	NG .	A	.M-10	0	<u> </u>		 .		•	Page	1 of 2
لسيا	PROJECT NAME Camden Labor	ratories		PROJEC 07023					DATE	TIME ST 06/2	ARTED 3/08)		IME COM 06/23/0		GROUN	D ELEVATION (FT. N	/ISL)	TOTAL O	EPTH (ft) 4'	
	PROJECT LOCATI 1667 Davis Str	ON			_				REC-2												
	BORING LOCATIO		N	DRILLING Direct I			prob	e					DRILLIN		RACTOR						
لسننا			ı	BORING						2"				R NAME			INSPECTOR		1	EQUIPMENT	
				DRILLING SAMPLE	_					NA_ 2"			John	R WEIGH	FT ((ba)		MAG HAMMER	DBOE	Geopro	be	
				SAMPLE	K OF			MENT				GRO	٠.			NS (dept		_	red WT		
لنست				METHOD)			Backf	ill		Oepth		15'	Oete/Tin					nel High WT		
				MATERIA OUANTII			So	il/Beto NA	nite		Oepth Oepth			Dete/Tin							
استنا			<u>8</u> Z	OUANTI	٦		П	11/7		San	nples		·		GANIC VA	POR	ORGANI	C VAP		INFORMATION	٧
			ple Inte	Depth	ındwate	Graphic Log	Ę	pje	s per hes	E _	Recovered (feet)	RQD	Time	Bkg	READING Sample	_	MANUF./MOD	EL	LAMP (eV) SOURCE	
	INTERVAL	DESCRIPTION	Serrig	(ft bgs)		Grap	Stratum	Sетрів No.	Blow: 6 incl	Driven (feet)	Reco (feet)		· · · · · ·		C	Spece	REMARKS		<u> </u>		
		32" Recovery 0-4" Organic matter, grass 4-20" Medium brown loam		- 0 -						*****											
		720 Moduli Domi odili	- 11		H						ŀ										
-				1_	;]									
					$\ \ $						ŀ										
		20-30" Ash		- <u>_2</u> _						<u> </u>]	l					
أعسوا				2_ 	Ī																
		20.20 Orango sibraand																			
İ		30-32" Orange sity sand		3_	<u> </u>																
لتعط					$\ \ $:				
											}					ŀ					
limed				4_	-											ļ	<				
			l		П																
				[
ا ست ا				5_ I	- -																
										1						•					
			ŀ	١	1										i		:				
لنحنا				6_ 	ì	************					··········	İ		1			· · · · · · · · · · · · · · · · · · ·				***************************************
																	:				
				 7_	<u> </u>																:
-				[$\ \ $																
				ı 8_ ı	;					ļ	l				ļ						
السيدا					$\ \ $:							
														F							
			ł	9_ I	;																
					$\ \ $												1				
			- :	10																	
لسنا				_10_	П							Ì	}		1						
				[· _11_	1									İ							
أنستا																					
ļ	CilDeni	Setting and the set of		12_	.								ada * .a * .a * .a*					tatututute	***********		
	C. Wocuments end	Settings\mgilmore\Desktop\[1667 Soil Boring Logs	.xısjAM	-10																_	

ا ند		i	LO	G O	F	SOI	L B	ORII	NG _	A	M-1′	1						Page	1 of 2
	PROJECT NAME Camden Laboratories	PROJECT 0702358	NUM 803	BER			ОАТЕЛ	TIME ST 06/2				IME COM 06/23/0		GROUN	DELEVATION (FT.	MSL)	TOTAL DEF	РТН (ft) 4'	
ı	PROJECT LOCATION	7.02000					REC-2		_,								<u>. </u>		
		ORILLING			-							IG CONTI	RACTOR						
لنست	1	Direct P				<u> </u>		2"			-	probe RNAME			INSPECTOR		OBILLING	QUIPMENT	
		DRILLING			n)			NA			John	IN NOWIE			MAG		Geoprob		
		SAMPLER	OIAM	A./TYPI				2"			HAMME	R WEIGH	T (lbs)		HAMME	RDROP	(in)		
ر نـــــ				ABAN								T		NS (deptr	n in fl bgs)	Observ			
		METHOO MATERIAL				Backfi I/Beto			Oepth Oepth		15'	Date/Tim Oate/Tim				Seeson	al High WT		
		QUANTITY				NA			Oepth		-	Oate/Tim							
/	ilerva		ater	8					ples			4	SANIC VA		ORGAN MANUF./MOI		OR METER I	NFORMATION	1
	INTERVAL DESCRIPTION	Depth	Mpund	Graphic Log	Stratum	Sample No.	Blows per 6 inches	ven xt)	Recovered (feet)	RQD	Time		Semple		WD-GVOT STATES		Law (cv)	I	
1			S S	ğ.	έξ	Sar	Blo 6 in	Driven (feet)	Rec (fee					Space	REMARKS				
	0-4' 44" Recovery 0-30" Orange sand	- 0 - - 1									- NA - NO - OF THE		an an an an an						
		2							w 11° 11° 1						.	***************************************			
	30-40" Ash	 3																	
	40-44" Orange sity sand																		
		4 																	
		5 																	
-		6 				***	**********					· • • • • • • • • • • • • • • • • • • •				***************************************		\$ 74\$ 74\$ - 74\$ - 74\$ TO \$ 10\$ - 10\$	
		7 													:				
		8 -																	
		9 -														**************			
		11		:															
	- C:\Documents and Settings\mgilmore\Desktop\[1667 Soil Boring Logs.xis\alpha\]	_12				***************************************										***********			**************

-																			4 77
-																		Page	1 of 2
1			L	0	G C)F	SOI	L B	ORI	NG	_ A	M-12	2						
			_		_			_			_								
	·	_						12				- · ·		D. F	05.5	n = (m / t = 1 = 1 = 1 = 1	1.00° 1.	TOTAL DESCRIPTION	
	PROJECT NAME		ROJECT!		BER			DATE	TIME ST		'		IME COM		GROUN	DELEVATION (FT. I	MSL)	TOTAL DEPTH (ft)	
	Camden Laboratories PROJECT LOCATION	10	702358	U.S				REC-2		3/08			06/23/0	<u>.</u>	Ц				
	1667 Davis Street											·							
			RILLING N							_				RACTOR					
أنسنووا	1	₽	irect Pu	ıch	Geo	prob	е						probe						
است		В	DRING DI	AME	TER	(in)			2"			DRILLE	R NAME			INSPECTOR		DRILLING EQUIPMENT	
		DF	RILLING F	LUI	D				NΑ			John				MAG		Geoprobe	
-		SA	MPLER	DIAN	A./TYF	Έ			2"			HAMME	R WEIGH	fT (lbs)		HAMMER	R DROP (in)	
		Г			ABAI	IDON	MENT				GRO	UNDWA	TER OBS	ERVATIO	NS (dept	n in ft bgs)	Observe	d WT	
سيسا		M	ETHOD				Backt	fill		Depth		15'	Dete/Tim	10			Seasone	l High WT	
		M	ATERIAL			So	il/Bet	onite		Depth			Date/Tirr	10					
ı		QI	JANTITY				NA			Depth			Date/Tirr	10					
	T	ğ	<u> </u>	T					Sar	nples				GANIC VA	POR	ORGAN	IC VAPO	R METER INFORMATION	Ī
	į	휠	1	//ate	9			· 6	Ţ ·				<u> </u>	READING	S	MANUF./MOD	EL	LAMP (eV) SOURCE	
	i i	Sample (f	Depth	Š	Graphic Log	Stratum	Semple No.	rs p	[E &	S &	RQD	Time	Bkg	Sample	Head				
1	INTERVAL DESCRIPTION	්ස් (f	t bgs)	2	Gra	Stra	Sen No.	Blo 6 in	Oriven (feet)	Rec (fee					Spece	REMARKS			
	0-4' 44" Recovery	1-	0 -																
-	0-4" Organic matter, grass	1		ı															
- 1	4-20" Medium brown loam	-	-	ł					1		ł	Ì	l						
1		1	- 1					l	1		l	1	I		1	Collected AM-	12 at 1	0-16" at 10:30 for	
		ſ.	_1					l	1		l	l	I		1	copper and lea	ad anal	ysis	
Winner,				1		l		I	I							1			
		-	-			l		l	1				•		1	1			
1	20-44" Orange silty sand		- 1	1		H			1	1	ļ.		1	[1				:
	<u> </u>	-	_2					ļ					!	ļ				* *** * * * *** * * * * * * * * * * * *	
اسجينا		ı	- 1	ı		Ш		ļ			Ì					ŀ			
		-	-	ł		l		i				ŀ							
			- 1	ı				ł	ł	Į.	1		:						
	1	-	_3	ı						i]			
-			ĺ	ł				į	ł			ŀ		1		1			
		-	-	ı				1	1										
1				ı											İ				
		-	_4											}					
limini			- 1	ı		l				l									
		-	-	ı				i						1					
ı			1					ŀ		l		!			Ī	1			
1		-	_5_ :	ı				İ						l					
-		1	1	ı															
- 1		-	-	ı					1			ŀ							
- 1		1	- 1	ı					ł			ĺ		i		1			
		-	_6	∤		ļļ			- }	ļ	ļ			ļ					
-																1			
		-	-	I					1						1				
			- 1	I		l		1	1	1									:
1		-	_7	1		l			1										
أخسينا			- 1			l		1	1				1		1]			
J		-	-	1		l			1						İ				
1		l	_	1					1				1			ł			
		ī.	_8	+				 	1	ļ	ł			ļ	<u> </u>				
	1		- 1	1					1	•	•		l		l				
		-	-]	1				ŀ	Ī						ŀ				
1	1	l	_ 1	1					1			1	l		l				
		ï.	_9_ ;	1				1			1	1		1					
-				1		ll					l	l	l						
		-	-												1				
1		ı	.					ĺ	1			ŀ	ļ			1			
ł			_10 I	Ī				f	1	l	<u> </u>		i						
إستا				ļ					1	1						}			
		-	-[1	l									
	[l	, I										ŀ						
ı		ï-	_11 I	1				1					l						
-			- 1	1		l			1				1						
										1									
		1	I _12 ⊶						1	l									
ŀ	C:\Documents and Settings\mgilmore\Desktop\[1667 Soll Boring Logs.xls]A								1	ŀ~				<u> </u>					
	2 manual and a sering Loga Major	14	-																

نعيدا			L	.0	G C	F	SOI	L B	ORI	NG .	A	M-1:	3					Page 1 o
أعسط	PROJECT NAME Camden Laboratories		DECT 02358		MBER			OATE/		ARTEC)		IME COM 06/23/0		GROUN	DELEVATION (FT.	MSL)	TOTAL OEPTH (ft) 4'
	PROJECT LOCATION 1667 Davis Street							REC-2										
			LLING			n sok		<u> </u>				ORILLIN Enviro		RACTOR		•		
	I		ect P				HC .		2"				R NAME			INSPECTOR		ORILLING EQUIPMENT
		-	LLING						NA			John				MAG		Geoprobe
		SAN	IPLER	DIA					2"	_	000		R WEIGH		NC (44	HAMME	Observ	
أعيدنا		ME	гноо		ABAN	_	MENT Backf	īll		Oepth		15'	Oete/Tin		NS (depi	n in ft bgs)		nal High WT
		_	rerial			Sc	il/Beto			Oepth			Oate/Tin					
	To the state of th	QU/	ANTITY	<u> </u>	-	_	NA		Cor	Oepth nples			Oete/Tin	ne SANIC VA	non.	ORCAN	IIC VAE	POR METER INFORMATION
	interv		I	weter	9		-	۵ ۵			l -			READING		MANUF./MO		LAMP (eV) SOURCE
	INTERVAL DESCRIPTION		epth	Ground	Graphic Log	Stratum	Semple No.	Blows per 6 inches	iven set)	Recovered (feet)	RQD	Time	Bkg	Semple	1	REMARKS		
	INTERVAL DESCRIPTION 55 0-4' 42" Recovery	-	bgs)	9	Ö	σ	ďŽ	ã o	ءَ ق	æ &					Spece	REMARKS		
	0-4" Organic matter, grass 4-30" Medi∪m brown loam	_	1											:				
		-	- 2		• • • • • • • • • • • • • • • • • • • •		2197 191 117 111						· · · · · · · · · · · · · · · · · · ·				aa aa 2a a a a a	
	30-38" Ash	-	3							:								
-	38-42" Orange silty sand	-	- -															
jamei (j -	4 -															
		-	5 - -					}										
		 -	6		*********			2										
		-	7 - 															
		-	8 - -		***************************************				:		C141-14. 4							
استدا		-	9												:			
أسهجا		-	10 - 1		****													
	C:\Documents end Settings\texting\texting\textit{tops.}	- - <u>- 1</u>	-				and the second	San't an't gar 1 gar 1								·····	nanan anan	

LOG OF S										ORII	NG .	A	M-14	<u> </u>		· <u>-</u>	=			Page	1 of 2
أعمينا	PROJECT NAME	and the second s		PROJEC*					DATE/	TIME \$1 06/2)		ME COM 06/23/0		GROUN	ELEVATION (FT. I	MSL)	TOTAL OF	PTH (ft) 4'	_
	Camden Labor PROJECT LOCATI	ON		070235	803	•			REC-2		3/00			00/23/0	•	L			i		
	1667 Davis Str BORING LOCATIO		_ N	DRILLING	3 ME	THOO						_	ŌRILLIN	IG CONTE	RACTOR						_
تعوذ			Ì	Direct F	Puch	n Geo		е					Enviro						Τ		
			•	BORING DRILLING			(in)			2" NA			orillei John	RNAME			INSPECTOR MAG		Geoprol	EOUIPMENT	
				SAMPLE	-		Œ			2"				R WEIGH	T (lbs)		HAMMER	DROP			
لغينوا						ABA	NDON	MENT				GRO	UNDWA	TER OBS	ERVATIO	NS (depti	1	Observ			
				METHOD				Backf			Dapth			Data/Tim				Seasor	al High WT		
				MATERIA QUANTIT			So	il/Bato NA	onite		Oapth Dapth			Oata/Tim Date/Tim				-			
			ğ	QUANTI	Ţ			1110	_		nples				ANIC VA	POR	ORGAN	IC VAP	OR METER	INFORMATIO	N
			e Inte		dwate	ic Log		6	Per s		ge g				READING		MANUF./MOD	EL	LAMP (eV)	SOURCE	
	INTERVAL	DESCRIPTION	Sample	Depth (ft bgs)		Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	ROD	Time	Bkg	Sample		REMARKS				
1		40" Recovery	Ť	- 0 -	Ĭ			0, 2										· · · · · · · · · · · · · · · · · · ·			
أسيا		0-4" Organic matter, grass 4-32" Medium brown loam		 1_	- -					i											
لعدا				 2_	 								sa ra ra ra.				1 1 1		on a se se serseros.		
أسدا		32-40" Orange silly sand		 3_ 	-				:												:
				! 4_ 							i					· · · · · · · · · · · · · · · · · · ·				***************************************	
				5_ 	<u>'</u>																:
(6_ 		*********		, +1. +1. +11. +7.										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	g\$, = - 1 \$ g	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
السحا				7_ 8_	<u>.</u>							·						,,, .,,			or 101201 de 20120 180 180 1
				9_	 - -																
				 10_						}				Ç di - di - 111 - 111 - 1							1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·
				11	-									:							
ts_ct	C:\Documents and	Sattings\mgilmore\Dasktop\[1667 Soil Boring Logs.x	ds]AM	12 -14													······································				***********

liqued.			L	og	OF	soı	L B	ORII	NG_	A	M-15	j			••••	•		Page 1 of 2
	PROJECT NAME Camden Laboratories		JECT N 23580		:		DATE/	TIME ST 06/2				ME CDMI 06/23/0		GROUNE	DELEVATION (FT.	MSL)	TOTAL DEPTH ((ft) 4'
	PROJECT LOCATION 1667 Davis Street						REC-2								· · · · · ·			
		DRIL										Ğ CDNTF	RACTOR					
لنعينا		_	ct Pu			<u>.</u>		2"			Enviro DRILLEI				INSPECTOR		DRILLING EQUI	PMENT
- [_	LING F		., ,			NA		_	John				MAG		Geoprobe	
- 1		SAM	PLER D	_				2"		_		R WEIGH				R DROP (i		
أحسوا		MET	HOD	AB		Backt	in -		Depth		UNDWA1	Date/Tim		VS (depth	n in ft bgs)	Observed Seasonal		
ı		-	ERIAL			il/Bet			Depth	_		Date/Tim						
- [_		NTITY		ψ	NΑ			Depth			Date/Tim						
نيحد		Interva	ater	3			l is	_	nples				ANIC VA		ORGAN MANUF./MOI		AMP (eV) \$0	
- 1	Ī	륄 De	pth	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recoven (feet)	RQD	Time	Bkg	Semple	Head		Ī		
		_	_	E	ξ	s S	8 6	E S	Re ê	_				Space	REMARKS			
	0-4' 42" Recovery 0-2" Organic matter, grass 2-42" Orange silty sand	- '													Collected AM- copper and le			00 for
		3 3	-															
-		■ 	 -		<u>.</u>				,,				.	;ss - 18 18 18 18 18 1	ė, a. o. a. o. o. o. o. o. o. o. o. o. o. o. o. o.			
أنسينا		-	- - - -									5						
لنبسد		-	·															,,,,
لنسا		-	/_	:														
		-	-	į														
أخصين		-	_ 															•••••
		-	- 1 															
	C.\Documents and Settings\mgilmore\Desktop\[1667 Soll Boring Logs.xis\]		- 2_ <u></u>							* , * * , * * , * * , *		and such such as the c			<u></u>	*************	***************************************	

الموساة																			Pag	e 1 of 2
					LC	G ()F	SOI	LB	ORII	NG _	_A	M-16	5						
	PROJECT NAME Camden Labor	atories		PROJECT 070235					OATE/I	TIME ST 06/2	ARTEO 3/08			ME COM 06/23/0		GROUNG	DELEVATION (FT.	MSL)	TOTAL DEPTH (ff) 8'	_
Ī	PROJECT LOCATION 1667 Davis Str	DN .	•	_					REC-2											
ľ	BORING LOCATION	(sketch)		ORILLING Direct F			prob	e					DRILLIN Enviro	G CONTE	RACTOR					
لنهيز			Ч	BORING	DIAN	ETER				2"			DRILLE				INSPECTOR		ORILLING EQUIPMENT	
				ORILLING	_		Æ			NA_ 2"			John Hamme	R WEIGH	T (lbs)		MAG HAMME	R DROP	Geoprobe (in)	
								MENT								NS (depti	n in fi bgs)	Observ		
				METHOD MATERIA				Backf il/Beto			Depth Oepth		15'	Oate/Tim				Seeson	el High WT	
ļ				QUANTIT				NA	,,,,,e	_	Depth			Oate/Tim	l 0					
أنبسا			Interva		vater	[0			.	San	rples				SANIC VA		ORGAI MANUF./MO		LAMP (eV) SOURCE	N
	INTERVAL	DESCRIPTION	Sample	Depth	Grounds	Graphic L	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample		REMARKS			
		DESCRIPTION 40" Recovery	Ö	(ft bgs) - 0 -	9	<u> </u>	S.	ΰŻ	B 0	څ ۵	£ £					Space	REMARKS			
		0-8" Organic matter, grass																		
		8-24" Medium rown loam															Collected AM	-16 at	30-36" at 12:30 for	
لسما				1_													copper and le	ad ana	alysis	
		24-36" Ash		2_								!							94 96 98 94 11 11 11 11 11 11 11 11 11 11 11 11 11	
لهيستا		24.00 / (01)																		
				3_	:															
		40li B	П		l															
1		40" Recovery 48-54" Ash	li	4_ 	Ī														. 4. 4. 14 14 14 14 14 14 14 14 14 14 14 14 14	
		54-88" Orange silty sand			Н															
		Orange sity sailu		5_	:															:
					Н									1						
					!															
-				6_ 	Ī	*******					,			8		*************			,,,	
					П															
				7_	:									İ	ľ					
المستة					Ш												-			
			Ιi	8_ 	ī										• · · · · · · · · · · · · · · · · · · ·					
					Ш															
			!	! - _ 9_	! -												:			
					П															
				-	$\ \ $															
record.			i	_10_	7		1							S			ļ			
				. -	$\ \ $															
				 11_	!															
أحسا																				
				-	 												:			
	C:\Documents end	Settings\mgilmore\Desktop\[1667 Soil Boning Logs	- s.xis]AM	12 -16			. <u>}</u>			•							<u></u>		ta praeta et est det est est est est est est est est est e	

APPENDIX C LABORATORY ANALYTICAL RESULTS AND ELECTRONIC DATA DELIVERABLES

ACCUTEST LABORATORIES

YEARS

07/08/08

Technical Report for

CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ

Accutest Job Number: J87954

Sampling Date: 04/09/08

Report to:

CMX

mgilmore@cmxengineering.com

ATTN: Mary Ann Gilmore

Total number of pages in report: 307

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Nadine Yakes 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA,

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Vincent J. Pugliese

President

Table of Contents

-1-

Section 1: Sample Summary		
Section 2: Case Narrative/Conformance Summary		
Section 3: Sample Results	9	
3.1: J87954-1: SB-1		
3.2: J87954-2: SB-2	11	
3.3: J87954-3: SB-3	12	
3.4: J87954-4: SB-4	13	
3.5: J87954-5: SB-5	14	
3.6: J87954-6: SB-6		
3.7: J87954-7: SB-7		
3.8: J87954-8: SB-8		
3.9: J87954-9: SB-9	44	
3.10: J87954-10: TRIP BLANK	53	
Section 4: Misc. Forms		
4.1: Chain of Custody	56	
4.2: Sample Tracking Chronicle	57	
4.3: Internal Chain of Custody		
Section 5: GC/MS Volatiles - QC Data Summaries	70	
5.1: Method Blank Summary		
5.2: Blank Spike Summary		
5.3: Matrix Spike/Matrix Spike Duplicate Summary	79	
5.4: Matrix Spike Summary		
5.5: Duplicate Summary		
5.6; Instrument Performance Checks (BFB)	85	
5.7: Internal Standard Area Summaries	89	
5.8: Surrogate Recovery Summaries	91	
5.9; Initial and Continuing Calibration Summaries		
Section 6; GC/MS Semi-volatiles - QC Data Summaries		
6.1: Method Blank Summary		
6.2: Blank Spike Summary		
6.3: Matrix Spike/Matrix Spike Duplicate Summary		
6.4: Instrument Performance Checks (DFTPP)		
6.5: Internal Standard Area Summaries	128	
6.6; Surrogate Recovery Summaries	133	
6.7: Initial and Continuing Calibration Summaries	134	
Section 7: GC Semi-volatiles - QC Data Summaries		
7.1: Method Blank Summary		
7.2: Blank Spike Summary		
7.3: Matrix Spike/Matrix Spike Duplicate Summary		
7,4; Internal Standard Area Summaries		
7.5: DDT/Endrin Breakdown Checks	175	
7.6: Surrogate Recovery Summaries	177	

Sections:

ъ 6

Table of Contents

-2-

7.7: GC Surrogate Retention Time Summaries	181
7.8: Initial and Continuing Calibration Summaries	187
Section 8: Metals Analysis - QC Data Summaries	217
8.1: Inst QC MA20753: Sb,As,Be,Cd,Cr,Cu,Pb,Ni,Se,Ag,Tl,Zn	218
8.2: Inst QC MA20758; Cd	246
8.3: Inst QC MA20769: Hg	267
8.4: Prep QC MP43273: Sb,As,Be,Cd,Cr,Cu,Pb,Ni,Se,Ag,Tl,Zn	275
8.5: Prep QC MP43326: Hg	
Section 9: General Chemistry - QC Data Summaries	
9.1: Method Blank and Spike Results Summary	285
9.2: Duplicate Results Summary	286
9.3: Matrix Spike Results Summary	
9.4: Inst QC GN13773: Phenols	
9.5: Inst QC GN13868: Phenois	293
9.6: Inst QC GN14077: Cyanide	297
9.7: Inst QC GN14099: Phenois	302
	304
9.9: Percent Solids Raw Data Summary	306

Accutest LabLink@450775 11:35 08-Jul-2008

Sample Summary

CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ

Job No: J87954

Sample Number	Collected Date	i Time By	Received	Matr Code		Client Sample ID	· -
J87954-1	04/09/08	09:05 MG	04/10/08	so	Soil	SB-1	
J87954-Ž	04/09/08	09:35 MG	04/10/08	so	Soil	SB-2	
J87954-3	04/09/08	10:20 MG	04/10/08	so	Soil	SB-3	y seems!
J87954-4	04/09/08	11:00 MG	04/10/08	so	Soil	SB-4	
J87954-5	04/09/08	11:30 MG	04/10/08	SO	Soil	SB-5	
J87954-6	04/09/08	14:00 MG	04/10/08	so	Soil	SB-6	
J87954-7°	04/09/08	14:30 MG	04/10/08	so	Soil	SB-7	
J87954-8	04/09/08	15:10 MG	04/10/08	so	Soil	SB-8 1 4-2	
187954-9	04/09/08	16:00 MG	04/10/08	so	Soil	SB-9	
87954-10	04/09/08	16:00 MG	04/10/08	AQ	Trip Blank Soil	TRIP BLANK	De la seri

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

ST.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: CMX Job No J87954

Site: Camden Laboratories, 1667 Davis Street, Camden, NJ Report Date 4/29/2008 12:20:52 PM

On 04/10/2008, 9 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.2 C. Samples were intent and properly preserved, unless noted below. An Accutest Job Number of 187954 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ	Batch ID:	V3A2092	

- All samples were analyzed within the recommended method holding time.
- Sample(s) J87904-1MS, J87904-3DUP, J87904-1MS were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 2-Chloroethyl vinyl ether are outside control limits. Outside control limits due to acid preservation.

Matrix:	SO	Batch ID: VD5601

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J87833-1MS, J87833-1MSD were used as the OC samples indicated.
- Blank Spike Recovery(s) for 2-Chloroethyl vinyl ether, Acrolein, Bromomethane are outside control limits.
- Matrix Spike Recovery(s) for Bromomethane are outside control limits. Outside control limits due to matrix interference,
- Matrix Spike Duplicate Recovery(s) for Bromomethane are outside control limits. Probable cause due to matrix interference.
- VD5601-BS for Acrolein: High percent recoveries and no associated positive found in the OC batch.
- VD5601-BS for 2-Chloroethyl vinyl ether: High percent recoveries and no associated positive found in the QC batch.
- VD5601-BS for Bromomethane: High percent recoveries and no associated positive found in the QC batch.

Tuesday, April 29, 2008 Page 1 of 4

Extractables by GCMS By Method SW846 8270C

Matrix: SO Batch ID: OP32143

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteris.
- Sample(s) 187968-8MS, J87968-8MSD were used as the QC samples indicated,
- Matrix Spike Recovery(s) for Benzidine, Butyl benzyl phthalate are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Benzidine, Butyl benzyl phthalate are outside control limits. Probable cause due to matrix interference.
- RPD(s) for MSD for 2,4-Dinitrophenol, 4,6-Dinitro-o-cresol, Benzo(k)fluoranthene are outside control limits for sample OP32143-MSD. Probable cause due to sample homogeneity.
- J87954-7: Confirmation run.
- J87954-6: Confirmation run.
- OP32143-MSD for 2,4-Dinitrophenol: Outside control limits due to matrix interference.
- OP32143-MSD for 4,6-Dinitro-o-cresol: Outside control limits due to matrix interference.
- OP32143-MSD for Benzo(k)fluoranthene: Outside control limits due to matrix interference.

Extractables by GC By Method OQA-QAM-025

Matrix: SO	Batch ID: 0	OP32144	

- · All samples were extracted within the recommended method holding time.
- = All samples were analyzed within the recommended method holding time.
- · All method blanks for this batch meet method specific criteria.
- Sample(s) J88003-1MS, J88003-1MSD were used as the QC samples indicated.
- Matrix Spike Duplicate Recovery(s) for Total PHC are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- Matrix Spike Recovery(s) for Total PHC are outside control limits. Outside control limits due to high level in sample relative to spike amount.

Extractables by GC By Method SW846 8081A

Matrix: SO	Batch ID:	OP32147	

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J87954-6MS, J87954-6MSD, OP32147-MSMSD were used as the QC samples indicated.
- J87954-8 for 4.4'-DDD: Reported from 2nd signal due to interference on 1st signal.
- J87954-9 for 4,4'-DDD: Reported from 2nd signal due to interference on 1st signal.

Extractables by GC By Method SW846 8082

Matrix: SO	Batch ID:	OP32146	

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J87954-6MS, J87954-6MSD, OP32146-MSMSD were used as the QC samples indicated.
- · All method blanks for this batch meet method specific criteria.

Tuesday, April 29, 2008 Page 2 of 4

Wet Chemistry By Method SW846 9066 M/LACHAT

 All samples were prepared within the recommended method holding time. Batch ID: GP43587

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) 186351-10RDUP, 186351-10RMS were used as the QC samples for Phenols.
- m 187954-7 for Phenola: NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory reporting use in New Jersey v 187954-6 for Phenols: WJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory
- reporting use in New Jersey
- Batch 1D: GP43763 reporting use in New Jersey = 187954-8 for Phenols: NUDEP does not offer laboratory accreditation for this compound which excludes it from regulatory
- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

OS :XITIBM

- Sample(s) 188612-1MS, 188612-1DUP were used as the QC samples for Phenols.
- RPD(s) for Duplicate for Phenols are outside control limits for sample GP43763-D1. High RPD due to possible sample
- reporting use in New Jersey # 187954-9 for Phenols: NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory

produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted. Acculest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were

standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for

used in its entirety. Data release is authorized by Accutest Laboratorics indicated via signature on the report cover Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this this report be

> Batch ID: OP32131 OS :xinsM Extractables by GC By Method SW846-8015

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) 187954-2MS, 187954-2MSD were used as the QC samples indicated.

Metals By Method SW846 6010B

All samples were analyzed within the recommended method holding time. All samples were digested within the recommended method holding time. Batch ID: MP43273 OS :xinteM

- All method blanks for this batch meet method specific criteria.
- Sample(s) 187950-1MS, 187950-1MSD, 187950-1SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony are outside control limits. Spike recovery indicates possible matrix interference and/or
- difference acceptable due to low initial sample concentration (< 50 times IDL). ■ RPD(s) for Serial Dilution for Cadmium, Copper, Thallium are outside control limits for sample MP43273-SDI. Percent Mark Spike Duplicate Recovery(s) for Animony are outside control famils. Probable cause due to matrix interference.

Batch ID: MP43326

Befch ID: GNI3987

Batch ID: GN13757

Metals By Method SW846 747 IA

 All samples were analyzed within the recommended method holding time. m All samples were digested within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) 187943-76MS, 187943-76MSD were used as the QC samples for metals.

Wet Chemistry By Method ASTM 4643-00

OS :xinteM

□ The data for ASTM 4643-00 meets quality control requirements.

Wet Chemistry By Method EPA 160.3 M

■ The data for EPA 160.3 M meets quality control requirements.

Wet Chemistry By Method SW846 9012 M/LACHAT

- and samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.

Tuesday, April 29, 2008

- All method blanks for this batch meet method specific criteria.
- Sample(s) 188158-1DUP, 188158-1MS were used as the QC samples for Cyanide.

Tuesday, April 29, 2008

ACCUTEST: 7 of 307 Page 3 of 4

TESTUDDA N Page 4 of 4

Report of Analysis

Page 1 of 1

ဒ

Client Sa Lab Sam Matrix: Method: Project:	SO - SW8	54-2 Soil 46-8015 S	:W846 3545 lorles, 1667 Dav	is Street,	Date Sampled Date Received Percent Solids Camden, NJ	1: 04/10/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	3Y4821.D	1	04/14/08	PM	04/11/08	OP32131	G3Y165

Rur #2	<u> </u>		 	
Run #1 Run #2	Initial Weight 15.2 g	Final Volume 1.0 ml		

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH-DRO (C10-C28)	8.40	7.6	1.6	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	51%		31-1	52%	
16416-32-3	Tetracosane-d50	72%		34-1	53%	
438-22-2	5a-Androstane	76%		36-1	51%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Chlorobenzene

o-Terphenyl

16416-32-3 Tetracosane-d50

Report of Analysis

Page 1 of 1

Client Sar Lab Samp Matrix: Method: Project:			il AM-025	SW846 3550B ies, 1667 Davi		Date I Percer	Sampled: Received: nt Solids: J	04/10/08	
Run #1 Run #2	File ID 2Z8399		DF 1	Analyzed 04/16/08	By VDT	Prep D 04/11/0		Prep Batch OP32144	Analytical Batch G2Z321
Run #1 Run #2	Initial \ 15.2 g	Weight	Final Vo 1.0 ml	lume					
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	<u> </u>
	Total I	HC		ND	1.4	0.91	mg/kg		
CAS No.	Surrog	gate Rec	overies	Run# 1	Run# 2	Lim	its		

50-120%

50-120%

50-120%

93%

93%

98%

ND = Not detected MDL - Method Detection Limit

108-90-7

84-15-1

RL = Reporting Limit
E = Indicates value exceeds calibration range

 $\begin{array}{ll} J = & Indicates \ an \ estimated \ value \\ B = & Indicates \ analyte \ found \ in \ associated \ method \ blank \\ N = & Indicates \ presumptive \ evidence \ of \ a \ compound \end{array}$

Report of Analysis

Page 1 of 1

Ü

Client Sar Lab Sam Matrix: Method: Project:	•	SB-4 J87954-4 SO - Soil OQA-QAM-025 Camden Laborate			Date Sampled: Date Received: Percent Solids: Camden, NJ	04/10/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	2Z8400.	D 1	04/16/08	VDT	04/11/08	OP32144	G2Z321

		Final Volume	
Run #1 Run #2	15.4 g	1.0 ml	
Run #2			

CAS No.	Compound	Result	RL	MDL	Units
	Total PHC	ND	1.5	0.97	mg/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
108-90-7	Chlorobenzene	100%		50-1	20%
84-15-1	o-Terphenyl	95%		50-1	20%
16416-32-3	Tetracosane-d50	101%		50-1	20%

ND = Not detected MDL - Method Detected RL = Reporting Limit E = Indicates value exceeds calibration range MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Q

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

ယ

Client Sample ID:	SB-5			
Lab Sample ID:	J87954-5	Date Sampled:	04/09/08	
Matrix:	SO - Soil	Date Received:	04/10/08	
Method:	OQA-QAM-025 SW846 3550B	Percent Solids:	93.5	
Deniant:	Camdan Laboratorice 1667 Davis Street	Camdon NI		

Run #1	File ID 2Z8401.D	DF 1	Analyzed 04/16/08	By VDT	Prep Date 04/11/08	Prep Batch OP32144	Analytical Batch G2Z321	
Run #2								ı

Run #1 Run #2	Initial Weight 15.0 g	Final Volum 1.0 ml	8						
CAS No.	Compound		Result	RT.	MDI.	I Inite	n		

	Total PHC	22.8	1.4	0.92	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
108-90-7	Chlorobenzene	92%		50-1	20%	
84-15-1	o-Terphenyl	95%		50-1	20%	
16416-32-3	Tetracosane-d50	99%		50-1	20%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Report of Analysis

3.6

ယ

Page 1 of 2

Client Sample ID:	SB-6			
Lab Sample ID:	J87954-6		Date Sampled:	04/09/08
Matrix:	SO - Soil		Date Received:	04/10/08
Method:	SW846 8260B	SW846 5035	Percent Solids:	84.0

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	D140143.D	1	04/12/08	YL	04/10/08 15:00	n/a	VD5601

	Initial Weight 5.5 g	Final Volume 5.0 ml	Methanol Aliquot 100 ul		
--	-------------------------	------------------------	----------------------------	--	--

VOA PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
107-02-8	Acrolein	ND	3200	1500	ug/kg	
107-13-1	Acrylonitrile	ND	3200	270	ug/kg	
71-43-2	Benzene	ND	64	22	ug/kg	
75-27-4	Bromodichloromethane	ND	320	17	ug/kg	
75-25-2	Bromoform	ND	320	21	ug/kg	
74-83-9	Bromomethane	ND	320	56	ug/kg	
56-23-5	Carbon tetrachloride	ND	320	60	ug/kg	
108-90-7	Chlorobenzene	ND	320	19	ug/kg	
75-00-3	Chloroethane	ND	320	43	ug/kg	
110-75-8	2-Chloroethyl vinyl ether	ND	1600	87	ug/kg	
67-66-3	Chloroform	ND	320	30	ug/kg	
74-87-3	Chloromethane	ND	320	45	ug/kg	
124-48-I	Dibromochloromethane	ND	320	17	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	320	23	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	320	19	ug/kg	
106-46-7	1,4-Dichiorobenzene	ND	320	20	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	320	100	ug/kg	
75-34-3	1,1-Dichloroethane	ND	320	25	ug/kg	
107-06-2	1,2-Dicbloroethane	ND	64	27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	320	33	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	320	23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	320	20	ug/kg	
78-87-5	1,2-Dichloropropane	ND	320	25	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	320	15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	320	16	ug/kg	
100-41-4	Ethylbenzene	ND	64	26	ug/kg	
75-09-2	Methylene chloride	ND	320	19	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	320	16	ug/kg	
127-18-4	Tetrachloroethene	ND	320	30	ug/kg	
108-88-3	Тојцеле	ND	64	21	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	320	34	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	320	16	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 2 ယ

Client Sample ID:	SB-6		
Lab Sample ID:	J87954-6	Date Sampled:	04/09/08
Matrix:	SO - Soil	Date Received:	04/10/08
Method:	SW846 8260B SW846 5035	Percent Solids:	84.0
Project:	Camden Laboratories, 1667 Davis Stre	eet, Camden, NJ	

/OA	PPL	Li

79-01-6 Trichloroethene ND 320 19 ug/kg 75-69-4 Trichlorofhoromethane ND 320 180 ug/kg 75-01-4 Vlnyl chloride ND 320 40 ug/kg 1330-20-7 Xylene (total) ND 130 19 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 88% 68-123% 17060-07-0 1,2-Dichloroethane-D4 89% 59-136% 2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Unit	CAS No.	Compound	Result	RL	MDL	Unit	ı Q	
Trichlorofluoromethane	79-01-6	Trichloroethene	ND	320	19	ug/ki	,	
75-01-4 Vinyl chloride ND 320 40 ug/kg 1330-20-7 Xylene (total) ND 130 19 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 88% 68-123% 17060-07-0 1,2-Dichloroethane-D4 89% 59-136% 2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Uni	75-69-4	Trichlorofluoromethane	ND	320	180			
1330-20-7 Xylene (total) ND 130 19 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 88% 68-123% 17060-07-0 1,2-Dichloroethane-D4 89% 59-136% 2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Unit	75-01-4	Vinyl chloride	ND					
1868-53-7 Dibromofluoromethane 88% 68-123% 17060-07-0 1,2-Dichloroethane-D4 89% 59-136% 2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Uni	1330-20-7							
17060-07-0 1,2-Dichloroethane-D4 89% 59-136% 2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Uni	CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Unit	1868-53-7	Dibromofluoromethane	88%		68-1	23%		
2037-26-5 Toluene-D8 97% 75-123% 460-00-4 4-Bromofluorobenzene 90% 65-140% CAS No. Tentatively Identified Compounds R.T. Est. Conc. Uni	17060-07-0	1.2-Dichloroethane-D4	89%		59-1	36%		
CAS No. Tentatively Identified Compounds R.T. Est. Conc. Uni	2037-26-5		97%					
The state of the s	460-00-4	4-Bromofluorobenzene	90%		65-1	40%		
and the second s	CAS No.	Tentatively Identified Comp	pounds	R.T.	Est.	Conc.	Units	Q
Total TIC, Volatile 0 ug/		Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

ယ

Page 1 of 3

Client Sample ID:	SB-6			
Lab Sample ID:	J87954-6	Date Sampled:	04/09/08	
Matrix:	SO - Soil	Date Received:	04/10/08	
Method:	SW846 8270C SW846 3550B	Percent Solids:	84.0	
Project:	Camden Laboratories, 1667 Davis Street, Ca	mden. NI		

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3M4536.D	1	04/18/08	LP	04/11/08	OP32143	E3M174
Run #2 a	3M4589.D	1	04/19/08	LP	04/11/08	OP32143	E3M176

1	Initial Weight	Final Volume	
Run #1	30.5 g	1.0 ml	
Run #2	30.5 g	1.0 ml	

ABN PPL List

CAS No.	Compound	Resuit	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	200	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	53	ug/kg	
120-83-2	2,4-Dichlorophenoi	ND	200	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	48	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	780	43	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	780	72	ug/kg	
88-75-5	2-Nitrophenol	ND	200	45	ug/kg	
100-02-7	4-Nitrophenol	ND	780	69	ug/kg	
87-86-5	Pentachlorophenol	ND	390	41	ug/kg	
108-95-2	Phenol	ND	78	37	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	79	ug/kg	
83-32-9	Acenaphthene	ND	78	12	ug/kg	
208-96-8	Acenaphthylene	ND	78	7.9	ug/kg	
120-12-7	Anthracene	ND	78	36	ug/kg	
92-87-5	Benzidine	ND	780	6.2	ug/kg	
56-55-3	Benzo(a)anthracene	ND	78	8.1	ug/kg	
50-32-8	Benzo(a) pyrene	ND	78	19	ug/kg	
205-99-2	Benzo(b) fluoranthene	ND	78	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	78	16	ug/kg	
207-08-9	Benzo(k) fluoranthene	ND	78	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	12	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
218-01-9	Chrysene	ND	78	16	ug/kg	
111-91-1	bls(2-Chloroethoxy)methane	ND	78	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	18	ug/kg	
108-60-1	bis(2-Chloroisopropyi)ether	ND	78	23	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	11	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	78	13	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	78	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	78	12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

J87954-6

SO - Soil

Report of Analysis

Camden Laboratories, 1667 Davis Street, Camden, NJ

Page 2 of 3

ယ

Date Sampled: 04/09/08 Date Received: 04/10/08 SW846 8270C SW846 3550B Percent Solids: 84.0

ABN PPL List

Matrix:

Method:

Project:

Client Sample ID: SB-6 Lab Sample ID: J8795

CAS No.	Compound	Result	RL	MDL	Unita	Q	
106-46-7	1,4-Dichlorohenzene	ND	78	10	ug/kg	!	
121-14-2	2,4-Dinitrotoluene	ND	78	13	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	78	16	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	200	28	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	78	10	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	78	11	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	78	16	ug/kg		
84-66-2	Diethyl phthalate	ND	78	14	ug/kg		
131-11-3	Dimethyl phthalate	ND	78	11	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	78	24	ug/kg		
206-44-0	Fluoranthene	ND	78	7.3	ug/kg		
86-73-7	Fluorene	ND	78	7.9	ug/kg		
118-74-1	Hexachlorobenzene	ND	78	19	ug/kg		
87-68-3	Hexachlorobutadiene	ND	78	18	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	780	18	ug/kg		
67-72-1	Hexachloroethane	ND	200	16	ug/kg		
193-39-5	Indeno(1,2,3-cd)рутепе	ND	78	36	ug/kg		
78-59-1	Isophorone	ND	78	13	ug/kg		
91-20-3	Naphthalene	ND	78	8.8	ug/kg		
98-95-3	Nitrobenzene	ND	78	13	ug/kg		
62-75-9	n-Nitrosodimethylamine	ND	78	17	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	78	13	ug/kg		
86-30-6	N-NitrosodiphenylamIne	ND	200	8.6	ug/kg		
85-01-8	Phenanthrene	ND	78	9.8	ug/kg		
129-00-0	Pyrene	ND	78	14	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	78	12	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluorophenol	48%	50%	29-1	14%		
4165-62-2	Phenol-d5	51%	52%	31-1	11%		
118-79-6	2,4,6-Tribromophenol	80%	77%	27-1	33%		
4165-60-0	Nitrobenzene-d5	45%	45%	36-1	16%		
321-60-8	2-Fluorobiphenyl	47%	47%	44-1	11%		
1718-51-0	Terpbenyl-d14	68%	67%	37-1	31%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est.	Cone.	Units	Q
	Total TIC, Semi-Volatile			0		ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Report of Analysis

Page 3 of 3

3.6

Client Sampla ID: Lab Sample ID: Matrix: SB-6
187954-6
20 - Data Sampled: 04/09/08
SO - Soil Data Received: 04/10/08
SW846 8270C SW846 3550B Percent Solids: 84.0
Camden Laboratories, 1667 Davis Street, Camden, NJ

ABN PPL List

Project: Method:

CAS No. Compound

Result

굗

MDI

Units Ø

(a) Confirmation run.

ND = Not detected MDL - Method Detected RL = Reporting Limit E = Indicates value exceeds calibration range MDL - Method Detection Limit

J = Indicates an estimated value
B = Indicates analyte found in associated method biank
N = Indicates presumptive evidence of a compound

ACCUTEST.

Accutest LabLink@450775 11:35 08-Jui-2008

Report of Analysis

Page 1 of 1

8. 8.8

Run #1 Run #2 Matrix: Method: Project: Client Sample ID: Lab Sampla ID: File ID 2Z8402.D SB-6
J87954-6
Data Sampled: 04/09/08
SO - Soil
Data Received: 04/10/08
OQA-QAM-025 SW846 3550B
OQA-QAM-025 SW846 3550B
Percent Solids: 84.0
Camden Laboratories, 1867 Davis Street, Camden, NJ - 및 Analyzed 04/16/08 VDŢ Prep Date 04/11/08 Prep Batch OP32144 Analytical Batch G2Z321

Total PHC Surrogate Repoveries Chiorobenzene o-Terphene,450	Run #1 Run #2 CAS No.	15.0 g 1.0 ml	Result	25	MDL	`
Surrogate Recoveries Run# 1 Chiorobenzene 95% o-Terpheny! 95%		Totai PHC	ND ·	1.6	1.0	
Chiorobenzene o-Terphenyl	CAS No.	Surrogate Recoveries	Run# 1	Run#2		Limits
Tenacosane-mon	دُنَّ	Chiorobenzene o-Terphenyl Tetracosane-d50	95% 95% 95%			50-120% 50-120% 50-120%

Initial Weight 15.0 g

Final Voluma 1.0 ml

ND = Not detected MDL - Method Deter RL = Reporting Limit E = Indicates value exceeds calibration range MDL - Method Detection Limit

 $J = \mbox{ Indicates an estimated value}$ $B = \mbox{ Indicates analyte found in associated method blank }$ $N = \mbox{ Indicates presumptive evidence of a compound }$

Report of Analysis

Page 1 of 1

3.6 ເນ

Client Sample ID: SB-6 Lab Sample ID: J8795

J87954-6 Matrix: SO - Soil

Date Sampled: 04/09/08 Date Received: 04/10/08

Method: Project:

Run #1

Run #2

SW846 8081A SW846 3545 Camden Laboratories, 1667 Davis Street, Camden, NJ

Percent Solids: 84.0

File ID Run #1 1G36433.D Run #2

By OPM Analyzed 04/22/08 1

Prep Date Prep Batch 04/11/08 OP32147

Analytical Batch G1G1317

Initial Weight Final Volume 15.1 g 10.0 ml

Pesticide PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.6	0.32	ug/kg	
319-84-6	alpha-BHC	ND	1.6	0.29	ug/kg	
319-85-7	beta-BHC	ND	1.6	0.53	ug/kg	
319-86-8	delta-BHC	ND	1.6	0.29	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.6	0.39	ug/kg	
12789-03-6	Chlordane	ND	39	17	ug/kg	
60-57-1	Dieldrin	ND	1.6	0.31	ug/kg	
72-54-8	4,4'-DDD	ND	1.6	0.26	ug/kg	
72-55-9	4,4'-DDE	ND	1.6	0.39	ug/kg	
50-29-3	4,4'-DDT	ND	1.6	0.37	ug/kg	
72-20-8	Endrin	ND	1.6	0.34	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.6	0.34	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.6	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	1.6	0.32	ug/kg	
33213-65-9	Endosulfan-II	ND	1.6	0.52	ug/kg	
76-44-8	Heptachlor	ND	1.6	0.42	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.6	0.32	ug/kg	
72-43-5	Methoxychlor	ND	1.6	0.42	ug/kg	
8001-35-2	Toxaphene	ND	20	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	72%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	76%		38-1	30%	
2051-24-3	Decachlorobiphenyl	99%		32-1	42%	
2051-24-3	Decachlorobiphenyl	100%		32-1	42%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

3.6 ເປ

Client Sar Lab Samp Matrix: Method: Project:		 oil 6 8082 - 5	SW846 3545 atories, 1667 Dav	is Street,	Date Sampled: Date Received: Percent Solids: Camden, NJ		
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	AB7309	1	04/12/08	JSE	04/11/08	OP32146	GAB4089

Run #1 Run #2	15.1 g	10.0 ml	

CB	

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	39	7.5	ug/kg	
11104-28-2	Aroclor 1221	ND	39	24	ug/kg	
11141-16-5	Aroclor 1232	ND	39	21	ug/kg	
53469-21-9	Aroclor 1242	ND	39	13	ug/kg	
12672-29-6	Aroclor 1248	ND	39	14	ug/kg	
11097-69-1	Aroclor 1254	ND	39	19	ug/kg	
11096-82-5	Aroclor 1260	ND	39	8.0	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	76%		37-1	40%	
877-09-8	Tetrachloro-m-xylene	78%			40%	
2051-24-3	Decachlorobiphenyi	97%			51%	
2051-24-3	Decachlorobiphenyl	103%			51%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SO - Soil

Report of Analysis

Page 1 of 1

ယ

Client Sample ID: SB-6 Lab Sample ID: J87954-6 Date Sampled: 04/09/08

Date Received: 04/10/08 Percent Solids: 84.0

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Metals Analysis

Matrix:

Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Antimony	< 2.3	2.3	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B ³
Arsenic	9.7	2.3	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B ³
Beryllium	< 0.58	0.58	mg/kg	1	04/17/08		ND	SW846 6010B 1	SW846 3050B ³
Cadmium	< 0.58	0.58	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B 3
Chromium	26.8	1.2	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B ³
Copper	6.9	2.9	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B ³
Lezd	7.1	2.3	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B 3
Мегсигу	< 0.039	0.039	mg/kg	1	04/22/08	04/22/08	JW.	SW846 7471A 2	SW846 7471A 4
Nickel	5.7	4.6	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B I	SW846 3050B 3
Selenlum	< 2.3	2.3	mg/kg	1	04/17/08	04/18/08	ND	SW846 8010B 1	SW846 3050B ³
Silver	< 1.2	1.2	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B I	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	04/17/08	04/18/08	ND	SW846 6010B 1	SW846 3050B ³
Zinc	20.9	2.3	mø/kø	1	04/17/08	04/18/08	ND	SWAME ROLDS 1	CINGAE INCHE 3

Instrument QC Batch: MA20753
 Instrument QC Batch: MA20769
 Prep QC Batch: MP43273

(4) Prep QC Batch: MP43326

RL = Reporting Limit

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

မ

Client Sample ID: Lab Sample ID: J87954-6

SO - Soll

Date Sampled: 04/09/08 Date Received: 04/10/08

Percent Solids: 84.0

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

General Chemistry

Matrix:

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Phenols ^a Solids, Percent	<0.31 <2.7 84	0.31 2.7	mg/kg mg/kg %	1 1 1	04/23/08 11:02 04/16/08 16:16 04/21/08	•	SW846 9012 M/LACHAT SW846 9086 M/LACHAT EPA 160.3 M

(a) NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory reporting use in New Jersey

RL = Reporting Limit

Report of Analysis

Page 1 of 2

ຜ

Client Sample ID:	SB-7		
Lab Sample ID:	J87954-7	Date Sampled:	04/09/08
Matrix:	SO - Soil	Date Received:	04/10/08
Method:	SW846 8260B SW846 5035	Percent Solids:	85.0
Project:	Camden Laboratories, 1667 Davis Street, Car	nden, NJ	

File ID DF By YL Prep Date Prep Batch Analytical Batch Analyzed Run #1 Run #2 D140144.D 1 04/12/08 04/10/08 15:00 n/a VD5601

Run #1	Initial Weight	Final Volume	Methanol Aliquot	
Run #2	6.0 g	5.0 ml	100 ul	

VOA PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q		
107-02-8	Acrolein	ND	2900	1300	ug/kg			
107-13-1	Acrylonitrile	ND	2900	240	ug/kg			
71-43-2	Benzene	ND	58	20	ug/kg			
75-27-4	Bromodichloromethane	ND	290	15	ug/kg			
75-25-2	Bromoform	ND	290	19	ug/kg			
74-83-9	Bromomethane	ND	290	51	ug/kg			
56-23-5	Carbon tetrachloride	ND	290	54	ug/kg			
108-90-7	Chlorobenzene	ND	290	17	ug/kg			
75-00-3	Chloroethane	ND	290	39	ug/kg			
110-75-8	2-Chloroethyl vinyl ether	ND	1400	79	ug/kg			
67-66-3	Chioroform	ND	290	27	ug/kg			
74-87-3	Chloromethane	ND	290	41	ug/kg			
124-48-1	Dibromochloromethane	ND	290	16	ug/kg			
95-50-1	1,2-Dichlorobenzene	ND	290	21	ug/kg			
541-73-1	1,3-Dichlorobenzene	ND	290	18	ug/kg			
106-46-7	1,4-Dichlorobenzene	ND	290	18	ug/kg			
75-71-8	Dichlorodifluoromethane	ND	290	93	ug/kg			
75-34-3	1,1-Dichloroethane	ND	290	23	ug/kg			
107-06-2	1,2-Dichloroethane	ND	58	25	ug/kg			
75-35-4	1,1-Dichforoethene	ND	290	30	ug/kg			
156-59-2	cis-1,2-Dichloroethene	ND	290	21	ug/kg			
156-60-5	trans-1,2-Dichloroethene	ND	290	19	ug/kg			
78-87-5	1,2-Dichloropropane	ND	290	23	ug/kg			
10061-01-5	cis-1,3-Dichloropropene	ND	290	14	ug/kg			
10061-02-6	trans-1,3-Dichioropropene	ND	290	14	ug/kg			
100-41-4	Ethylbenzene	ND	58	23	ug/kg			
75-09-2	Methylene chloride	ND	290	17	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	290	15	ug/kg			
127-18-4	Tetrachloroethene	ND	290	27	ug/kg			
108-88-3	Toluene	ND	58	19	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	290	30	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	290	15	ug/kg			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LahLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 2

ယ

Client Sample ID: Lab Sample ID: Matrix: Method:	J87954-7 SO - Soil SW846 8260B SW846 5035	Date Sampled: Date Received: Percent Solids:	04/10/08				
Project:	Camden Laboratories, 1667 Davis Street, Camden, NJ						

VO/	\ PPL	Lis
-----	-------	-----

CAS No.	Compound	Result RL		MDL	Units	Q	
79-01-6	Trichloroethene	ND	290	17	ug/kg		
75-69-4	Trichlorofluoromethane	ND	290	170	ug/kg		
75-01-4	Vinyl chloride	ND	290	37	ug/kg		
1330-20-7	Xylene (total)	ND	120	17	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	89%		68-1	23%		
17060-07-0	1.2-Dichioroethane-D4	90%	59-136%				
2037-26-5	Toluene-D8	96%	75-123%				
460-00-4	4-Bromofluorobenzene	89%		65-1	40%		
CAS No.	Tentatively Identified Com-	pounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile		e ^c	0	1	ug/kg	

MDL - Method Detection Limit

ND = Not detected MDL - Method Detected RL = Reporting Limit E = Indicates value exceeds calibration range

 $J = Indicates \ an \ estimated \ value \\ B = Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

ယ

Client Samp Lab Sample Matrix: Method: Project:	ID: J879: SO - SW8	54-7 Soil 46 8270C	SW846 3550B ories, 1667 Dav	ris Street,	Date Sampled: Date Received: Percent Solids: Camden, NJ	04/10/08	
1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	3M4537.D	1	04/18/08	LP	04/11/08	OP32143	E3M174

Run #2 a	3M4590.D	1 04/19/08 LP 04/11/08				OP32143	E3M176	
	Initial Weight		Volume					
Run #1 Run #2	30.5 g 30.5 g	1.0 ml						

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenoi	ND	190	25	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	52	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	40	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	47	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	770	42	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	770	71	ug/kg	
88-75-5	2-Nitrophenol	ND	190	45	ug/kg	
100-02-7	4-Nitrophenol	ND	770	68	ug/kg	
87-86-5	Pentachlorophenol	ND	390	41	ug/kg	
108-95-2	Phenol	ND	77	36	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	78	ug/kg	
83-32-9	Acenaphthene	ND	77	12	ug/kg	
208-96-8	Acenaphthylene	ND	77	7.8	ug/kg	
120-12-7	Anthracene	ND	77	36	ug/kg	
92-87-5	Benzidine	ND	770	6.1	ug/kg	
56-55-3	Benzo(a) anthracene	ND	77	8.0	ug/kg	
50-32-8	Вепzо(а) ругеле	ND	77	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	77	13	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	77	15	ug/kg	
207-08-9	Benzo(k) fluoranthene	ND	77	17	ug/kg	
101-55-3	4-Bromopbenyl phenyl ether	ND	77	17	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	14	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	12	ug/kg	
106-47-8	4-Chloroanlline	ND	190	14	ug/kg	
218-01-9	Chrysene	ND	77	16	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	77	18	ug/kg	
108-60-1	bis(2-Chloroisopropyi)ether	ND	77	23	ug/kg	
7005-72-3	4-Chloropbenyl phenyl ether	ND	77	11	ug/kg	
95-50-1	1,2-Dicblorobenzene	ND	77	13	ug/kg	
122-66-7	1,2-Diphenylhydrazine	ND	77	13	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	77	12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 3

Client Sample ID: Lab Sample ID:	SB-7 187954-7	Date Sampled:	04/00/08			
Matrix:	SO - Soil	Date Received:				
Method: Project:	SW846 8270C SW846 3550B Percent Solids: 85.0 Camden Laboratorles, 1667 Davis Street, Camden, NI					

AF	IN	PP	I. I	1.34

CAS No.	Compound	Result	RL	MDL	Units	Q	
106-46-7	1,4-Dichlorohenzene	ND	77	10	ug/kg	Ţ	
121-14-2	2.4-Dinitrotoluene	ND	77	12	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	77	15	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	190	28	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	77	9.9	ug/kg		
84-74-2	Di-n-hutyl phthalate	ND	77	11	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	77	16	ug/kg		
84-66-2	Diethyl phthalate	ND	77	14	ug/kg		
131-11-3	Dimethyl phthalate	ND	77	10	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	77	23	ug/kg		
206-44-0	Fluoranthene	ND	77	7.2	ug/kg		
86-73-7	Fluorene	ND	77	7.8	ug/kg		
118-74-1	Hexachlorobenzene	ND	77	19	ug/kg		
87-68-3	Hexachlorobutadiene	ND	77	18	ug/kg		
77-47-4	Hexacblorocyclopentadiene	ND	770	18	ug/kg		
67-72-1	Hexachloroethane	ND	190	16	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	77	36	ид/кр		
78-59-1	Isophorone	ND	77	12	ug/kg		
91-20-3	Naphthalene	ND	77	8.7	ug/kg		
98-95-3	Nitrobenzene	ND	77	13	ng/kg	ĺ	
62-75-9	n-Nitrosodimethylamine	ND	77	17	ug/kg	į	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	13	ug/kg	į	
86-30-6	N-Nitrosodiphenylamine	ND	190	8.5	ug/kg	į.	
85-01-8	Phenanthrene	ND	77	9.6	ug/kg	į	
129-00-0	Ругепе	ND	77	13	ug/kg	į	
120-82-1	1,2,4-Trichlorobenzene	ND	77	12	ug/kg	ļ	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluoropheaol	73%	72%		14%		
4165-62-2	Phenol-d5	76%	76%	31-1	11%		
118-79-6	2,4,6-Tribromophenol	92%	92%	27-1	33%		
4165-60-0	Nitrobenzene-d5	70%	70%	36-1	16%		
321-60-8	2-Fluorobiphenyl	67%	67%	44-1	11%		
1718-51-0	Terphenyl-d14	75%	76%	37-1	31%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Semi-Volatile			0		ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 3 of 3

ယ

Client Sample ID: SB-7 Lab Sample ID: J8795

J87954-7 Matrix:

SO - Soil SW846 8270C SW846 3550B

Date Sampled: 04/09/08 Date Received: 04/10/08 Percent Solids: 85.0

Camden Laboratories, 1667 Davis Street, Camden, NJ

ABN PPL List

Method:

Project:

CAS No. Compound

Result RLMDL Units Q

(a) Confirmation run.

ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

MDL - Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of t

ယ

	Report of Analysis								
Client Sample ID: SB-7				Date Sampled: Date Received: W846 3550B Percent Solids: es, 1667 Davis Street, Camden, NJ			04/10/08		
Run #1 Run #2	File III 2Z840		DF 1	Analyzed 04/16/08	By VDT	Prep D 04/11/0		Prep Batch OP32144	Analytical Batch G2Z321
Run #1 Run #2	Initial 15.1 g	Weight	Final Vo 1.0 ml	olume					
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
	Total	PHC		ND	1.6	1.0	mg/kg		
CAS No.	Surro	gate Rec	overies	Run# 1	Run# 2	Lim	its		
108-90-7 84-15-1 16416-32-3	o-Ter	obenzene phenyl cosane-d5		86% 90% 92%		50-1	.20% .20% .20%		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

ယ

Client Sa Lab Sam Matrix: Method: Project:	ple ID: J87954 SO - S SW846	oll 8 8081A	SW846 3545 orles, 1667 Dav	ris Street. (Date Sampled: Date Received: Percent Solids: Camden, NI	04/10/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	1G36434.D	1	04/22/08	OPM	04/11/08	OP32147	G1G1317

Pesticide I	PPL L	ia
-------------	-------	----

15.2 g

10.0 ml

Run #1

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.31	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.29	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.52	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.28	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.38	ug/kg	
12789-03-6	Chlordane	ND	39	17	ug/kg	
60-57-1	Dieldrin	ND	1.5	0.30	ug/kg	
72-54-8	4,4'-DDD	ND	1.5	0.25	ug/kg	
72-55-9	4,4'-DDE	ND	1.5	0.39	ug/kg	
50-29-3	4,4'-DDT	ND	1.5	0.36	ug/kg	
72-20-8	Endrin	ND	1.5	0.33	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.5	0.33	ug/kg	
7421-93-4	Endrin aldebyde	ND	1.5	0.36	ug/kg	
959-98-8	Endosulfan-l	ND	1.5	0.32	ug/kg	
33213-65-9	Endosulfan-II	ND	1.5	0.51	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.41	ug/kg	
1024-57-3	Heptachior epoxide	ND	1.5	0.31	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.41	ug/kg	
8001-35-2	Toxaphene	ND	19	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	51%		38-13	30%	
877-09-8	Tetrachloro-m-xylene	53%		38-13	30%	
2051-24-3	Decachlorobiphenyl	81%		32-14	12%	
2051-24-3	Decachlorobiphenyl	82%		32-14	12%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

င်း

Client Sample ID: Lab Sample ID: Matrix:	J87954-7 SO - Soil		Date Sampled: Date Received:	
Method:	SW846 8082		Percent Solids:	85.0
Project:	Camden Labo	ratories, 1667 Davis Stre	et, Camden, NJ	

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	AB73097.D	1	04/12/08	JSE	04/11/08	OP32146	GAB4089

Run #1 Run #2	Initial Weight 15.2 g	Final Volume 10.0 ml		

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	39	7.4	ug/kg	
11104-28-2	Aroclor 1221	ND	39	23	ug/kg	
11141-16-5	Aroclor 1232	ND	39	21	ug/kg	
53469-21-9	Aroclor 1242	ND	39	12	ug/kg	
12672-29-6	Aroclor 1248	ND	39	13	ug/kg	
11097-69-1	Aroclor 1254	ND	39	18	ug/kg	
11096-82-5	Aroclor 1260	ND	39	7.8	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	55%		37-1	40%	
877-09-8	Tetrachloro-m-xylene	53%		37-1	40%	
2051-24-3	Decachlorobiphenyl	82%		40-1	51%	
2051-24-3	Decachlorobiphenyl	84%		40-1	51%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

ယ

Client Sample ID:	SB-7		
Lab Sample ID:	J87954-7	Date Sampled:	04/09/08
Matrix:	SO - Soil	Date Received:	04/10/08
		Percent Solids:	85.0
Project:	Camden Laboratories, 1667 Davis Street, Cam	ides, NJ	

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	< 2.5	2.5	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B ³
Arsenic	5.4	2.5	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 3
Beryffium	< 0.62	0.62	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 3
Cadmium	< 0.62	0.62	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 3
Chromium	12.2	1.2	mg/kg		04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 3
Copper	10.6	3.1	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 3
Lead	10.4	2.5	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 3
Mercury	< 0.036	0.036	mg/kg	1	04/22/08	04/22/08 IW	SW846 7471A 2	SW846 7471A 4
Nickel	< 5.0	5.0	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050R 3
Selenium	< 2.5	2.5	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 3
Silver	< 1.2	1.2	mg/kg		04/17/08	04/18/08 ND	SW846 8010B 1	SW846 3050B ³
Thailium	< 1.2	1.2	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B ³
Zinc	8.4	2.5	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B ³

- (1) Instrument QC Batch: MA20753 (2) Instrument QC Batch: MA20769 (3) Prep QC Batch: MP43273 (4) Prep QC Batch: MP43326

Accutest LabLink@450775 11:35 08-Jul-2008

J87954-7

SO - Soil

Report of Analysis

Page 1 of 1

Ü

Date Sampled: 04/09/08 Date Received: 04/10/08 Percent Solids: 85.0

General Chemistry

Matrix:

Project:

Client Sample ID: SB-7 Lab Sample ID: J8795

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Phenols ^a Solids, Percent	< 0.31 < 2.7 85	0.31 2.7	mg/kg mg/kg %	1 1 1	04/23/08 11:03 04/16/08 16:17 04/21/08		SW846 9012 M/LACHAT SW846 9066 M/LACHAT EPA 160.3 M

(a) NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory reporting use in New Jersey

Camden Laboratories, 1667 Davis Street, Camden, NJ

RL = Reporting Limit

RL = Reporting Limit

Report of Analysis

Page 1 of 2

ယ

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analy
Project:	Сап	iden Labora	itories, 1667 Dav	is Street,	, Camden, NJ		
Method:			SW846 5035		Percent Solids:	79.2	
Matrix:	SO -	- Soll			Date Received:	04/10/08	
Lab Sample		54-8			Date Sampled:	04/09/08	
Client Samp	ole ID: SB-1	3					

1	Initial Wa	icht Einel	Volume Met	and Alien	at		
	nn #1 D140145.I nn #2	U 1	04/12/08	YL	04/10/08 15:00	п/а	VD5601
ln.	41 D14014F I	n .	0.4/4.6/00	N/T	04/10/00 15 00		

Run #1	Initial Weight	Final Volume	Methanol Aliquot	
Run #2	2.7 g	5.0 ml	100 ul	

VOA	PPL	List
-----	-----	------

CAS No.	Compound	Result	RL	MDL	Units	Q
107-02-8	Acrolein	ND	6500	3000	ug/kg	
107-13-1	Acrylonitrile	ND	6500	550	ug/kg	
71-43-2	Benzene	ND	130	46	ug/kg	
75-27-4	Bromodichloromethane	ND	650	34	ug/kg	
75-25-2	Bromoform	ND	650	44	ug/kg	
74-83-9	Bromomethane	ND	650	110	ug/kg	
56-23-5	Carbon tetrachloride	ND	650	120	ug/kg	
108-90-7	Chlorobenzene	ND	650	39	ug/kg	
75-00-3	Chloroethane	ND	650	88	ug/kg	
110-75-8	2-Chloroethyl vinyl ether	ND	3300	180	ug/kg	
67-66-3	Chloroform	ND	650	60	ug/kg	
74-87-3	Chloromethane	ND	650	92	ug/kg	
124-48-1	Dibromochloromethane	ND	650	35	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	650	48	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	650	39	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	650	41	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	650	210	ug/kg	
75-34-3	1,1-Dichloroethane	ND	650	51	ug/kg	
107-06-2	1,2-Dichloroethane	ND	130	56	ug/kg	
75-35-4	1,1-Dichloroethene	ND	650	68	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	650	47	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	650	42	ug/kg	
78-87-5	1,2-Dichloropropane	ND	650	51	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	650	32	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	650	32	ug/kg	
100-41-4	Ethylbenzene	ND	130	53	ug/kg	
75-09-2	Methylene chloride	ND	650	38	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	650	33	ug/kg	
127-18-4	Tetrachloroethene	ND	650	61	ug/kg	
108-88-3	Toluene	ND	130	43	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	650	69	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	650	33	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 2

Client Sample ID: Lab Sample ID: Matrix: Method:	SB-8 J87954-8 SO - Soil SW846 8260B SW846 5035	Date Sampled: Date Received: Percent Solids:	04/10/08	
Project:	Camden Laboratories, 1667 Davis St	reet, Camden, NJ		

VOA PPL List						
CAS No.	Compound	Result	RL	MDL	Units	Q

	•					•		
79-01-6	Trichloroethene	ND	650	38	ug/kg	2		
75-69-4	Trichlorofluoromethane	ND	650	370	ug/kg			
75-01-4	Vinyl chloride	ND	650	82	ug/kg			
1330-20-7	Xylene (total)	ND	260	39	ug/ka			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibromofluoromethane	89%		68-1	23%			
17060-07-0	1,2-Dichloroethane-D4	88%		59-1	36%			
2037-26-5	Toluene-D8	96%		75-1	23%			
460-00-4	4-Bromofluorobenzene	89%		65-1	40%			
CAS No.	Tentatively Identified Cor	npounds	R.T.	Est.	Cono.	Units	Q	
	Total TIC. Volatile			Ò		uo/ko		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 2 မ

	Initial Weight	Final V	/olume			·	
Run #1 Run #2	File ID 3M4538.D	DF 1	Analyzed 04/18/08	By LP	Prep Date 04/11/08	Prep Batch OP32143	Analytical Batch E3M174
Client Sa Lab Sam Matrix: Method: Project:	SO - S SW846	oil 5 8270C	SW846 3550B ories, 1667 Dav	is Street,	Date Sampled: Date Received Percent Solids: Camden, NJ	04/10/08	

Run #1 Run #2	5.1 g	rinai volume 1.0 mf

Run #2							
ABN PPL	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	1200	160	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	1200	340	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	1200	260	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	1200	300	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	5000	270	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	5000	450	ug/kg		
88-75-5	2-Nitrophenol	ND	1200	290	ug/kg		
100-02-7	4-Nitrophenol	ND	5000	440	ug/kg		
87-86-5	Pentachlorophenol	ND	2500	260	ug/kg		
108-95-2	Phenol	ND	500	230	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	1200	500	ug/kg		
83-32-9	Acenaphthene	ND	500	79	ug/kg		
208-96-8	Acenaphthylene	ND	500	50	ug/kg		•
120-12-7	Anthracene	ND	500	230	ug/kg		
92-87-5	Benzidine	ND	5000	40	ug/kg		
56-55-3	Benzo(a)anthracene	ND	500	51	ug/kg		
50-32-8	Benzo(a) pyrene	ND	500	120	ug/kg		
205-99-2	Benzo(b)fluoranthene	109	500	82	ug/kg	J	
191-24-2	Benzo(g,h,i)perylene	ND	500	99	ug/kg		
207-08-9	Benzo(k)fluoranthene	ND	500	110	ug/kg		
101-55-3	4-Bromophenyl phenyl ether	ND	500	110	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	500	90	ug/kg		
91-58-7	2-Chloronaphthalene	ND	500	75	ug/kg		
106-47-8	4-Chloroaniline	ND	1200	90	ug/kg		
218-01-9	Chrysene	ND	500	100	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	500	97	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	500	110	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	500	150	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	500	71	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	500	85	ug/kg		
122-66-7	1,2-Diphenylhydrazine	ND	500	81	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	500	75	ug/kg		

ND = Not	detected	MDL - Method	Detection Limit
----------	----------	--------------	-----------------

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 2

ယ

Client Sample ID: SB-8 Lab Sample ID: J8795 Date Sampled: 04/09/08 Date Received: 04/10/08 J87954-8 Matrix: SO - Soil Method: SW846 8270C SW846 3550B Percent Solids: 79.2 Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

110,000.							
ABN PPL L	ist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
106-46-7	1,4-Dichlorobenzene	ND	500	67	ug/kg	3	
121-14-2	2,4-Dinitrotoluene	ND	500	81	ug/kp	į	
606-20-2	2,6-Dinitrotoluene	ND	500	99	ug/kg	į	
91-94-1	3,3'-Dichlorobenzidine	ND	1200	180	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	500	64	ug/kg	ĺ	
84-74-2	Di-n-butyl phthalate	ND	500	69	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	500	100	ug/kg	į	
84-66-2	Diethyl phthalate	ND	500	87	ug/kp	į	
131-11-3	Dimethyl phthalate	ND	500	67	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	150	ug/kp		
206-44-0	Fluoranthene	120	500	46	ug/kp		
86-73-7	Fluorene	ND	500	50	ug/kg		
118-74-1	Hexachlorobenzene	ND	500	120	ug/kg	į	
87-68-3	Hexachlorobutadiene	ND	500	120	ug/kg		
77-47-4	Hexachlorocyclopentadiene	ND	5000	120	ug/kg		
67-72-1	Hexachloroethane	ND	1200	100	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	230	ug/kg		
78-59-1	Isophorone	ND	500	80	ug/kg		
91-20-3	Naphthalene	ND	500	56	ug/kg		
98-95-3	Nitrobenzene	ND	500	84	ug/kg		
62-75-9	n-Nitrosodimethylamine	ND	500	110	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	500	85	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	1200	55	ug/ks		
85-01-8	Phenanthrene	ND	500	62	ug/kg		
129-00-0	Рутепе	111	500	86	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	500	78	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
367-12-4	2-Fluorophenol	72 %			114%		
4165-62-2	Phenol-d5	80%		31-	111%		
118-79-6	2,4,6-Trihromophenol	80%		27-	133%		
4165-60-0	Nitrobenzene-d5	74%			116%		
321-60-8	2-Fluorobiphenyl	70%			111%		
1718-51-0	Terphenyl-d14	73%		37-	131%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est	Conc.	Units	Q
	unknown		23.64	130		ug/kg	J
	Total TIC, Semi-Volatile			130	0	ug/kg	J

ND = Not detected MDL - Method Detection Limit

B = Indicates analyte found in associated method blank

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

RL = Reporting Limit
E = Indicates value exceeds calibration range

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Page 1 of 1

ယ

Client Sam Lab Sampl Matrix: Method: Project:	e ID:		il AM-025	SW846 3550B ries, 1667 Davi		Date l Percer	Sampled: Received: nt Solids: J	04/10/08	
Run #1 Run #2	File ID 2Z8404.1	D	DF 1	Analyzed 04/16/08	By VDT	Prep D 04/11/0		Prep Batch OP32144	Analytical Batch G2Z321
Run #1 Run #2	Initial W 5.4 g	eight	Final Vo	lume					
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
	Total Pl	HC		64.4	4.7	3.0	mg/kg		
CAS No.	Surroga	te Rec	overies	Run# 1	Run# 2	Lim	its		
108-90-7 84-15-1 16416-32-3	Chlorob o-Terph Tetracos	enyi	0	88% 88% 91%		50-1	20% 20% 20%		

ND = Not detected MDL - Method Detection Limit E = Indicates value exceeds calibration range

RL = Reporting Limit

J = Indicates an estimated value

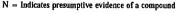
B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

Client Sa Lab Sam Matrix: Method: Project:	ple ID: J87954 SO - S SW846	oil 8081A	SW846 3545 tories, 1667 Dav	is Street, (Date Sampled: Date Received: Percent Solids: Camden, NJ	04/10/08	
Run #1 Run #2	File ID 1G36435.D	DF 1	Analyzed 04/22/08	By OPM	Prep Date 04/11/08	Prep Batch OP32147	Analytical Batch G1G1317
Run #1	Initial Weight 15.1 g	Final 10.0 n	Volume al		· •		


Pesticide PP	L _. List					
CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.7	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.7	0.31	ug/kg	
319-85-7	beta-BHC	ND	1.7	0.56	ug/kg	
319-86-8	delta-BHC	ND	1.7	0.31	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.7	0.41	ug/kg	
12789-03-6	Chlordane	ND	42	18	ug/kg	
60-57-1	Dieldrin	ND	1.7	0.33	ug/kg	
72-54-8	4,4'-DDD a	1.9	1.7	0.27	ug/kg	
72-55-9	4,4'-DDE	18.5	1.7	0.42	ug/kg	
50-29-3	4,4'-DDT	9.1	1.7	0.39	ug/kg	
72-20-8	Endrin	ND	1.7	0.36	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.7	0.36	ug/kg	
7421-93-4	Endrin aldebyde	ND	1.7	0.39	ug/kg	
959-98-8	Endosulfan-l	ND	1.7	0.34	ug/kg	
33213-65-9	Endosulfan-H	ND	1.7	0.55	ug/kg	
76-44-8	Heptachlor	ND	1.7	0.44	ug/kg	
1024-57-3	Heptachior epoxide	ND	1.7	0.33	ug/kg	
72-43-5	Methoxychlor	ND	1.7	0.45	ug/kg	
8001-35-2	Toxaphene	ND	21	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# i	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	71%		38-1	30%	
877-09-8	Tetrachloro-m-xylene	92%		38-1	30%	
2051-24-3	Decachlorobiphenyl	105%		32-1	42%	
2051-24-3	Decachlorobiphenyl	107%		32-1	42%	

(a) Reported from 2nd sign	al due to interference on 1st signal.
----------------------------	---------------------------------------

ND = Not detected MDL - Method Detection Limit

J = Indicates an estimated value

 $B = \text{Indicates analyte found in associated method blank} \\ N = \text{Indicates presumptive evidence of a compound}$ RL = Reporting Limit
E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

ယ

Client Sample ID:	SB-8				
Lab Sample ID:	J87954-8			Date Sampled:	04/09/08
Matrix:	SO - Soil			Date Received:	04/10/08
Method:	SW846 8082	SW846 35	5	Percent Solids:	79.2
Project:	Camden Labo	ratories, 16	7 Davis Street, Can	iden, NJ	

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	AB73098.D	1	04/12/08	JSE	04/11/08	OP32146	GAB4089

Run #1 Run #2	Initial Weight 15.1 g	Final Volum 10.0 ml	ie				_		
PCB List									
CAS No.	Compound		Result	RL	MDL	Units	Q		

CAS No.	Сотроша	Result	KL	MIDE	Units
12674-11-2	Aroclor 1016	ND	42	8.0	ug/kg
11104-28-2	Aroclor 1221	ND	42	25	ug/kg
11141-16-5	Aroclor 1232	ND	42	23	ug/kg
53469-21-9	Aroclor 1242	ND	42	13	ug/kg
12672-29-6	Aroclor 1248	ND	42	14	ug/kg
11097-69-1	Arocior 1254	ND	42	20	ug/kg
11096-82-5	Aroclor 1260	ND	42	8.4	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
877-09-8	Tetrachloro-m-xylene	86%		37-1	40%
877-09-8	Tetracbloro-m-xylene	88%			40%
2051-24-3	Decachlorobiphenyl	106%		40-1	51%
2051-24-3	Decachlorobiphenyl	112%		40-1	51%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

J87954-8 SO - Soil

Report of Analysis

Page 1 of 1

ယ

Date Sampled: 04/09/08 Date Received: 04/10/08 Percent Solids: 79.2

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Metals Analysis

Client Sample ID: SB-8 Lab Sample ID: J87954 Matrix: SO - S

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	2.6	2.6	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B ⁴
Arsenic	14.5	2.6	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Beryllium	1.0	0.66	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Cadmium	7.2	0.66	mg/kg	1	04/17/08	04/18/08 DM	SW846 6010B ²	SW846 3050B ⁴
Cbromium	26.5	1.3	mg/kg	1	04/17/08	04/18/08 ND	SW846 8010B 1	SW846 3050B 4
Copper	1380	3.3	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Lead	667	2.6	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 4
Mercury	0.13	0.038	mg/kg	1	04/22/08	04/22/08 JW	SW846 7471A 3	SW846 7471A 5
Nickel	57.4	5.3	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Selenium	< 2.6	2.6	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Silver	2.5	1.3	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 4
Thallium	< 1.3	1.3	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	5W846 3050B 4
Zinc	626	2.6	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B ⁴

(1) Instrument QC Batch: MA20753 (2) Instrument QC Batch: MA20758 (3) Instrument QC Batch: MA20769 (4) Prep QC Batch: MP43273 (5) Prep QC Batch: MP43326

RL = Reporting Limit

Report of Analysis

Page 1 of 1

မ

Client Sample ID: SB-8 Lab Sample ID: J8795 J87954-8 Date Sampled: 04/09/08 Matrix: SO - Soil Date Received: 04/10/08 Percent Solids: 79.2 Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Phenols ^a Solids, Percent	< 0.32 < 3.4 79.2	0.32 3.4	mg/kg mg/kg %	1 1 1	04/23/08 11:04 04/16/08 16:59 04/21/08		SW846 9012 M/LACHAT SW846 9066 M/LACHAT EPA 160.3 M

(a) NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory reporting use in New Jersey

RL = Reporting Limit

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 2 မ

Client Sample ID: SB-9 Lab Sample ID: J87954-9 Date Sampled: 04/09/08 SO - Soil Date Received: 04/10/08 Matrix: Method: SW846 8260B SW846 5035 Percent Solids: 77.9 Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

File ID DF Analyzed Prep Date Prep 04/10/08 15:00 n/a Ву Prep Batch Analytical Batch D140146.D 04/12/08 ΥĹ VD5601 Run #1 1 Run #2

Initial Weight Final Volume Methanol Aliquot Run #1 2.5 g 5.0 ml 100 ul Run #2

VOA PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q
107-02-8	Acrolein	ND	7100	3300	ug/kg	
107-13-1	Acrylonitrile	ND	7100	600	ug/kg	
71-43-2	Benzene	ND	140	50	ug/kg	
75-27-4	Bromodichloromethane	ND	710	37	ug/kg	
75-25-2	Bromoform	ND	710	48	ug/kg	
74-83-9	Bromomethane	ND	710	130	ug/kg	
56-23-5	Carbon tetrachloride	ND	710	130	ug/kg	
108-90-7	Chlorobenzene	ND	710	42	ug/kg	
75-00-3	Chloroethane	ND	710	97	ug/kg	
110-75-8	2-Chloroethyl vinyl ether	ND	3600	200	ug/kg	
67-66-3	Chloroform	ND	710	66	ug/kg	
74-87-3	Chloromethane	ND	710	100	ug/kg	
124-48-1	Dibromochloromethane	ND	710	38	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	710	53	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	710	43	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	710	45	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	710	230	ug/kg	
75-34-3	1,1-Dichloroethane	ND	710	56	ug/kg	
107-06-2	1,2-Dichloroethane	ND	140	61	ug/kg	
75-35-4	1,1-Dichloroethene	ND	710	75	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	710	51	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	710	46	ug/kg	
78-87-5	1,2-Dichloropropane	ND	710	56	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	710	35	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	710	35	ug/kg	
100-41-4	Ethylbenzene	ND	140	58	ug/kg	
75-09-2	Methylene chloride	ND	710	41	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	710	36	ug/kg	
127-18-4	Tetrachloroethene	ND	710	66	ug/kg	
108-88-3	Тојцеле	ND	140	47	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	710	75	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	710	36	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID:	SB-9		
Lab Sample ID:	J87954-9	Date Sampled:	04/09/08
Matrix:	SO - Soil	Date Received:	
Method:	SW846 8260B SW846 5035	Percent Solids:	77.9
Project:	Camden Laboratories, 1667 Davis Street, Cam		

မ

VOA	DDI	T in

CAS No.	Compound	Result	RL	MDL	Unite	Q	
79-01-6	Trichloroethene	ND	710	42	ug/kg		
75-69-4	Trichlorofluoromethane	ND	710	410	ug/kg		
75-01-4	Vinyl chloride	ND	710	90	ug/kg		
1330-20-7	Xylene (total)	ND	290	43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	90%		68-12	23%		
17060-07-0	1,2-Dichloroethane-D4	89%		59-13	36%		
2037-26-5	Toluene-D8	97%		75-12	23%		
460-00-4	4-Bromofluorobenzene	88%		65-14	10%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 2

ယ

Client Sample ID: SB-9 Lab Sample ID: J8795 Date Sampled: 04/09/08 Date Received: 04/10/08 J87954-9 Matrix: SO - Soil Method: SW846 8270C SW846 3550B Percent Solids: 77.9 Project: Camden Lahoratories, 1667 Davis Street, Camden, NJ By LP File ID Analyzed 04/18/08 Prep Date 04/11/08 Prep Batch OP32143 Analytical Batch 3M4557.D Run #1 Run #2 1 E3M175

Initial Weight Final Volume
սո #1 5.0 g 1.0 ml սո #2

ABN PPL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	1300	160	ug/kg		
59-50-7	4-Chioro-3-methyl phenol	ND	1300	350	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	1300	270	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	1300	310	ug/kg		
51-28-5	2,4-Dinitrophenoi	ND	5100	280	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	5100	470	ug/kg		
88-75-5	2-Nitrophenol	ND	1300	300	ug/kg		
100-02-7	4-Nitrophenol	ND	5100	450	ug/kg		
87-86-5	Pentachlorophenol	ND	2600	270	цg/kg		
108-95-2	Phenol	ND	510	240	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	1300	520	ug/kg		
83-32-9	Acenaphthene	ND	510	82	ug/kg		
208-96-8	Acenaphthylene	ND	510	52	ug/kg		
120-12-7	Anthracene	ND	510	240	ug/kg		
92-87-5	Benzidine	ND	5100	41	ug/kg		
56-55-3	Benzo (a) anthracene	108	510	53	ug/kg	J	
50-32-8	Велго(а) ругепе	ND	510	130	ug/kg		
205-99-2	Benzo(b) fluoranthene	ND	510	84	ug/kg		
191-24-2	Benzo(g,h,i)perylene	ND	510	100	ug/kg		
207-08-9	Benzo(k)fluoranthene	ND	510	110	ug/kg		
101-55-3	4-Bromophenyi phenyl ether	ND	510	110	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	510	93	ug/kg		
91-58-7	2-Chloronaphthalene	ND	510	78	ug/kg		
106-47-8	4-Chloroaniline	ND	1300	93	ug/kg		
218-01-9	Chrysene	105	510	100	ug/kg	J	
111-91-1	bis(2-Chloroethoxy)methane	ND	510	100	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	510	120	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	510	150	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	510	73	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	510	87	ug/kg		
122-66-7	1,2-Diphenylhydrazine	ND	510	83	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	510	77	ug/kg		

ND = Not detected MDL - Method Detection Limit

 $\begin{aligned} RL &= \text{Reporting Limit} \\ E &= \text{Indicates value exceeds calibration range} \end{aligned}$

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

မ

Client Sample ID:				
Lab Sample ID:	J87954-9	Date Sampled:	04/09/08	
Matrix:	SO - Soil	Date Received:	04/10/08	
Method:	SW846 8270C SW846 3550B	Percent Solids:	77.9	
Project:	Camden Laboratories, 1667 Davis Street	, Camden, NJ		

	ABN	PPL	List
--	-----	-----	------

1011111	25271						
CAS No.	Compound	Result	RL	MDL	Unit	s Q	
106-46-7	1,4-Dichlorobenzene	ND	510	69	ug/k	σ	
121-14-2	2.4-Dinitrotoluene	ND	510	83	ug/k		
606-20-2	2,6-Dinitrotoluene	ND	510	100	ug/k		
91-94-1	3.3'-Dichiorobenzidine	ND	1300	190	ug/k		
53-70-3	Dibenzo(a,h)anthracene	ND	510	66	ug/k		
84-74-2	Di-n-butyl phthalate	ND	510	71	ug/k		
117-84-0	Di-n-octyl phthalate	ND	510	110	ug/k		
84-66-2	Diethyl phthalate	ND	510	90	ug/k		
131-11-3	Dimethyl phthalate	ND	510	70	ug/k		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	510	150	ug/k		
206-44-0	Fluoranthene	201	510	48	ug/kg		
86-73-7	Fluorene	ND	510	52	ug/k		
118-74-1	Hexachlorobenzene	ND	510	120	ug/kj		
87-68-3	Hexachlorobutadiene	ND	510	120	ug/k		
77-47-4	Hexachlorocyclopentadiene	ND	5100	120	ug/kj		
67-72-1	Hexachioroethane	ND	1300	110	ug/k		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	510	240	ug/kg		
78-59-1	Isophorone	ND	510	83	ug/kg		
91-20-3	Naphthalene	ND	510	58	ug/kg		
98-95-3	Nitrobenzene	ND	510	87	ug/kg		
62-75-9	n-Nitrosodimethylamine	ND	510	110	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	510	88	ug/kį		
86-30-6	N-Nitrosodiphenylamine	ND	1300	56	ug/kg		
85-01-8	Phenanthrene	182	510	64	ug/kg		
129-00-0	Pyrene	177	510	89	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	510	81	ug/ka		
					~6° 14	•	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluorophenol	71%		29-1	14%		
4165-62-2	Phenol-d5	78%		31-1			
118-79-6	2,4,6-Tribromophenol	81%		27-1			
4165-60-0	Nitrobenzene-d5	70%		36-1			
321-60-8	2-Fluorobiphenyl	67%		44-1			
1718-51-0	Terpbenyl-d14	72%		37-1			
CAS No.	Tentatively Identified Comp	aundo	R.T.			Units	_
-1 to 110.		- marco	к. 1.	Est.	COHO.	OHIG	ų
	Total TIC, Semi-Volatile			0		ug/kg	
				•		-0'-6	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

ယ်

				Kepo	at Ot Am	arasıs			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:			oil QAM-025	SW846 3550B les, 1667 Dav		Date I Percer	Sampled: Received: nt Solids: J	04/10/08	
Run #1 Run #2	File ID 2Z840		DF 1	Analyzed 04/16/08	By VDT	Prep D 04/11/0		Prep Batch OP32144	Analytical Batch G2Z321
Run #1 Run #2	Initial 5.4 g	Weight	Final Vo	lume					
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
	Total	РНС		53.8	4.8	3.1	mg/kg		
CAS No.	Surro	gate Rec	coveries	Run# 1	Run# 2	Lim	its		
108-90-7	Chlore	obenzene	;	85%		50-1	20%		

90%

98%

ND = Not detected MDL - Method Detection Limit

84-15-1

o-Terphenyl

16416-32-3 Tetracosane-d50

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

50-120%

50-120%

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

3

Lab Sam Matrix: Method: Project:	SO - SW8	Soil 46 8081A	SW846 3545 ories, 1667 Dav	vis Street, (Date Sampled: Date Received Percent Solids Camden, NJ	: 04/10/08	
	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	1G36436.D	1	04/22/08	OPM	04/11/08	OP32147	G1G1317

Pesticide PPL List

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.7	0.34	ug/kg	
319-84-6	alpha-BHC	ND	1.7	0.32	ug/kg	
319-85-7	beta-BHC	ND	1.7	0.57	ug/kg	
319-86-8	delta-BHC	ND	1.7	0.31	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.7	0.42	ug/kg	
12789-03-6	Chlordane	ND	43	19	ug/kg	
60-57-1	Dieldrin	ND	1.7	0.33	ug/kg	
72-54-8	4,4'-DDD ²	3.3	1.7	0.28	ug/kg	
72-55-9	4,4'-DDE	14.8	1.7	0.43	ug/kg	
50-29-3	4,4'-DDT	3.6	1.7	0.40	ug/kg	
72-20-8	Endrin	ND	1.7	0.37	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.7	0.36	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.7	0.40	ug/kg	
959-98-8	Endosulfan-I	ND	1.7	0.35	ug/kg	
33213-65-9	Endosulfan-II	ND	1.7	0.57	ug/kg	
76-44-8	Heptachlor	ND	1.7	0.45	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.7	0.34	ug/kg	
72-43-5	Methoxychlor	ND	1.7	0.46	ug/kg	
8001-35-2	Toxaphene	ND	21	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	8	
877-09-8	Tetrachloro-m-xylene	63%		38-13	0%	
877-09-8	Tetrachloro-m-xylene	73%		38-13	0%	
2051-24-3	Decachlorobiphenyl	106%		32-14	2%	
2051-24-3	Decachlorobiphenyl	110%		32-14	2%	

(a) Reported from 2nd signal due to interference on 1st signal.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Prep Batch Analytical Batch

Page 1 of 1

ယံ

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytica
Project:		Camden Labo	ratories, 1667 Dav	vis Street,	Camden, NJ		
Method:		SW846 8082	SW846 3545		Percent Solids:	77.9	
Matrix:		SO - Soil			Date Received:	04/10/08	
Lab Samp		J87954-9			Date Sampled:	04/09/08	
Client San	aple ID:	SB-9					

Run #1 Run #2	AB73099.D	1	04/12/08	JSE ————	04/11/08	OP32146	GAB4089	
Run #I	Initial Weight 15.0 g	Final V 10.0 m						

Prep Date

CB	

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	43	8.1	ug/kg	
11104-28-2	Aroclor 1221	ND	43	26	ug/kg	
11141-16-5	Aroclor 1232	ND	43	23	ug/kg	
53469-21-9	Arocior 1242	ND	43	14	ug/kg	
12672-29-6	Aroclor 1248	ND	43	15	ug/kg	
11097-69-1	Aroclor 1254	ND	43	20	ug/kg	
11096-82-5	Aroclor 1260	NĐ	43	8.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	77%		37-1	40%	
877-09-8	Tetrachloro-m-xylene	74%		37-1	40%	
2051-24-3	Decachlorobiphenyl	105%		40-1	51%	
2051-24-3	Decachlorobiphenyl	116%			51%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

အ

Client Sample ID:	SB-9				
Lab Sample ID:	J87954-9		Date Sampled:	04/09/08	
Matrix:	SO - Soil		Date Received:	04/10/08	
			Percent Solids:	77.9	
Project:	Camden Laborate	ries 1667 Davis Street	Camdon NI		

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	< 2.7	2.7	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 4
Arsenic	11.0	2.7	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Beryllium	0.89	0.68	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B ¹	SW846 3050B 4
Cadmium	3.4	0.68	mg/kg	1	04/17/08	04/18/08 DM	SW846 6010B 2	SW846 3050B 4
Chromium	9.9	1.4	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Copper	271	3.4	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Lead	146	2.7	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Мегсшгу	0.27	0.041	mg/kg	1	04/22/08	04/22/08 JW	SW846 7471A 3	SW846 7471A 5
Nickel	14.8	5.4	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Selenium	< 2.7	2.7	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B L	SW846 3050B 4
Silver	3.9	1.4	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Thallium	< 1.4	1.4	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3050B 4
Zinc	231	2.7	mg/kg	1	04/17/08	04/18/08 ND	SW846 6010B 1	SW846 3056B 4

- (1) Instrument QC Batch: MA20753 (2) Instrument QC Batch: MA20758 (3) Instrument QC Batch: MA20769 (4) Prep QC Batch: MP43273 (5) Prep QC Batch: MP43326

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 1 of 1

ယ

Client Sample ID:	SBO		
			0.1/00/00
Lab Sample ID:	J87954-9	Date Sampled:	04/09/08
Matrix:	SO - Soil	Date Received:	04/10/08
		Percent Solids:	77.9
Project:	Camden Laboratories, 1667 Davis Street, 0		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Phenols ^a Solids, Percent	< 0.34 < 3.2 77.9	0.34 3.2	mg/kg mg/kg %	1 1 1	04/23/08 11:06 04/28/08 08:58 04/21/08	•	SW846 9012 M/LACHAT SW846 9066 M/LACHAT EPA 160.3 M

⁽a) NJDEP does not offer laboratory accreditation for this compound which excludes it from regulatory reporting use in New Jersey

RL = Reporting Limit

RL = Reporting Limit

Report of Analysis

Page 1 of 2

3.10 ယ

Client Sa Lab Sam Matrix: Method: Project:	AQ - SW8	54-10 Trip Blank 46 8260B	Soil ories, 1667 Dav	is Street,	Date Sampled: Date Received: Percent Solids: Camden, NJ	04/10/08	
Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	3A49658.D	1	04/12/08	LY	n/a	n/a	V3A2092

Run #2		 	
	Pur ge Volume	 	
Run #1 Run #2	5.0 ml		

VOA	PPL	List
-----	-----	------

107-02-8 Acrolein ND 50 4.3 ug/l	
107-13-1 Acrylonitrile ND 50 1.3 ug/l	
71-43-2 Benzene ND 1.0 0.26 ug/l	
75-27-4 Bromodichloromethane ND 1.0 0.14 ug/l	
75-25-2 Bromoform ND 4.0 0.18 ug/l	
74-83-9 Bromomethane ND 2.0 0.32 ug/l	
56-23-5 Carbon tetrachloride ND 1.0 0.18 ug/l	
108-90-7 Chlorobenzene ND 1.0 0.14 ug/l	
75-00-3 Chloroethane ND 1.0 0.22 ug/l	
110-75-8 2-Chloroethyl vinyl ether ND 10 1.0 ug/l	
67-66-3 Chioroform ND 1.0 0.16 ug/l	
74-87-3 Chloromethane ND 1.0 0.29 ug/l	
124-48-1 Dibromochloromethane ND 1.0 0.12 ug/l	
95-50-1 1,2-Dichlorobenzene ND 1.0 0.18 ug/l	
541-73-1 1,3-Dichlorobenzene ND 1.0 0.26 ug/l	
106-46-7 1,4-Dichlorobenzene ND 1.0 0.32 ug/l	
75-71-8 Dichlorodifluoromethane ND 5.0 0.88 ug/l	
75-34-3 1,1-Dichloroethane ND 1.0 0.16 ug/l	
107-06-2 1,2-Dichloroethane ND 1.0 0.35 ug/l	
75-35-4 1,1-Dichloroethene ND 1.0 0.29 ug/l	
156-59-2 cis-1,2-Dichloroethene ND 1.0 0.19 ug/l	
156-60-5 trans-1,2-Dichloroethene ND 1.0 0.16 ug/l	
78-87-5 1,2-Dichloropropane ND 1.0 0.18 ug/l	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.15 ug/l	
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.11 ug/t	
100-41-4 Ethylbenzene ND 1.0 0.27 ug/l	
75-09-2 Methylene chloride ND 2.0 0.16 ug/l	
79-34-5 1,1,2,2-Tetrachloroethane ND 1.0 0.13 ug/l	
127-18-4 Tetrachloroethene ND 1.0 0.29 ug/l	
108-88-3 Toluene ND 1.0 0.15 ug/l	
71-55-6 1,1,1-Trichloroethane ND 1.0 0.24 ug/l	
79-00-5 1,1,2-Trichloroethane ND 1.0 0.17 ug/l	

ND	= 1	lot	dete	cted	l	MDL - Method Detection	Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

Accutest LabLink@450775 11:35 08-Jul-2008

Report of Analysis

Page 2 of 2

ယ

Client Sample ID: Lab Sample ID:	TRIP BLANK J87954-10	Date Sampled:	04/09/08	
Matrix:	AQ - Trip Blank Soil	Date Received:	04/10/08	
Method:	SW846 8260B	Percent Solids:	n/a	
Project:	Camden Laboratories, 1667 Davis	Street, Camden, NJ		

٧O		Lis

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-01-6	Trichloroethene	NĎ	1.0	0.18	ug/l		
75-69-4	Trichiorofluoromethane	ND	5.0	0.25	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.39	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	105%		76-1	23%		
17060-07-0	1,2-Dichloroethane-D4	107%		63-1	40%		
2037-26-5	Toluene-D8	95%		78-1	17%		
460-00-4	4-Bromofluorobenzene	102%		73-1	.25%		
CAS No.	Tentatively Identified Con	npounds	R.T.	Est.	Conc.	Units Q	
	Total TIC, Volatile			0		ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

J = Indicates an estimated value
B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody Sample Tracking Chronicle Internal Chain of Custody

	SAGE	Ł			E (ж	ΑI	N	Ďн	Œ	Ü	ST	ծ	ΣY			Ŀ				В.			E.
	i r CCI TEST		_					35 Roes 2-329-8						FED	EK Trac	king #	_	_	_	Dotte (Profess Class	ộ để		
	Laboratories	•	/						T.10				77,5480	Acces	est Que	to F				Accute	a del t	70	795	
	Chart / Reporting telement	* 1	wisens		S. 156	-24		'ojeci lak	nafor		R	State:	6.1.					100	Provi	Glid An	nia.			Mosts Codes
C'M	Υ			_ Č	indi	nl	<u>ab</u>	cy a	<u>10</u>	rit	9			_]	l				T	Т		CM - Crysleg Water CM - Oround Water
"ICL	Lawlooked			المحم	067			> ?						١.,	S	١.		i	İ					OM - Maler
Cock	hos no c	80	45°	٦ (الانحر	- 1	en	Set	7					25	ather O write	184								SA - Bartes Water SO - Bot
Super Course	ok De tucha	E-ra	d	Project			-							E 3	le≎	5			2	IJ			1	EL-Design
Ptong" -5	0.783.190C			Face #	8 56	78	37	10	٥		_	_			뜅	00	5	_	ĕ					CT-CE
Sampler's Harris	an Aun Gilmo	LP.			Polisio Oc		<u> </u>	_	_		_		_		₫₹ 00	<u>0</u> 0	-0	0	9	اء'	3	ı	1	A9-44
Accurate Servolo 8	Field ID / Point of Collection		B.Beck F	曲	affector		_		Ξ,	Auriber Territori	ol ore	emad D	#a		2 to 0 to 0 to 0 to 0 to 0 to 0 to 0 to	2.2	ģ	ţ,	4	g	d	.		SOL-CRU-Edill
	5(3-1 ¥		NEOHVAR	Date 44908	17mg	S-67	Matrix	bottles	2 2	ij	8	8 8	ş §	86	88	89	+	۷	+		· ā	<u>· </u>	丄	LAS USE CONT
	78-7 ¥	÷		4965	935	m6	8	H	+	╀	Н	4	11	#-	⊢	Н	λ λ				+	+	╀	/403
	38·3¥¥			4908	1020	m	ž	Н	+	✝	Н	ż	Η'	+	-	-	-	-	ų	\dashv	+	+	+-	C755
	98-4 **			4908	100	m,	8	\vdash †	+	t	Н	4	Ħ	+	-	Н			4	┪	+	┿	+-	123/
	5B-5 **			4908	1130	m	8		1	I	П	\perp						٦	*	寸	+	十	+	
	58 -6 98-7			1490	1400	m	56	Ш	1	\perp		\perp	П		Ц				Y		Υ	工		
' 2	70° (:		4400	1434	ny.	56	\vdash	+	╀	Н	4	Н	╄				4	×	4	Ϋ́ .	\perp	T	
-5 4	30-9 ××	-		498	1300	₩	3	\vdash	╁	╁	Н	- -	╁	┿	Н			\dashv		-	\dashv	+-	4	
-10	moblank	_		466	43	46	QE.	H	칸	+	H	╁	H	╁	Н	Н	-1	ᅱ	\dashv	\dashv	+	+	+	
129 54 :58±±	Yumaround Time (Business Days)	Oeta			Conne		_7	Data Defi	D R			10				1/2	E. 13.2	11.97	e Co	ar est	(Berei	5	der.	uli automi,
o iso⇔arz	× <u> </u>			. 0	Common	SE SE			□ m	rase c	-				抖	ĊC	ıta	nge	nJ	60	10	or	برلمد	515
☐ 5 Cay PUBH					Phurado Nu fad					n for	75				¥	¥	CR	<u>6'a</u>	ıng	en	+ Pc	ih	<u>ań</u>	alvsis
☐ 7 Day ENGR				_ -	Oner_	-			O 81	00 Fers	70d	-			ļ.	**	<u> </u>	010	1 7	an	alu	515	ما	الخه
C) Ores	IGDRY			-	Comm	ocial 'A'	• Rese	ats Only				esc	us Kaz		Ĺ	دەن	g.	we.	tu	Nυ	<u>. 1 }</u>	h P	ነሳሳ	
Emergency & I	Rook 76A data avaltable VIA LabiLink	Section 1	HE STATE	Sample C	ation) must	be docur	newyd t	sion end	1 tiğ i	Liveles		R.	4.10	-01	er del-	n (#8	#4.55D	10.5		Designation of the last of the	4	1		
THOUGH	Change 49	CON TIME		TO T	ne	<u> </u>	>4	67	ηÚ	7	'n	7		ub.	3		3	₹,	9	coloned by	7	17	5	bek-5075(747)
Patrocher M	1 11/ 4	ŔΓ	M.	**************************************			~	F~ B	1	acts	el by			4	_		Orbi 1	#	1	-		₩	94	,
Territor St.	" 	Can Draw	14	**** <u>(</u>	_			·	i i	erody C	# 1				Pesa	***		**	-14	<u> </u>	_	_	ph/4	40
15		·	15							-	_						-			⋍	_		74	<u> </u>
				_		_		_		_	_			_			_							, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

J87954: Chain of Custody

Page 1 of 1

Internal Sample Tracking Chronicle

CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ

Job No: J87954 4.2

4

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
j8 7954-1 SB-1	Collected: 09-APR-	08 09:05 By: MG	Recei	ved: 10-APR	-08 B	y: MP
J87954-1 J87954-1	ASTM 4643-00 SW846-8015	12-APR-08 15-APR-08 00:09	NS PM	11-APR-06	в јрв	%SOLFT B8015DROFT
J87954-2 SB-2	Collected: 09-APR-	08 09:35 By: MG	Recei	ved: 10-APR	-08 By	Y. M.P.
J87954-2 J87954-2	ASTM 4643-00 SW846-8015	12-APR-08 14-APR-08 23:29	NS PM	11-APR-08	з јрв	%SOLFT B8015DROFT
j8 7954-3 S B -3	Collected: 09-APR-	08 10:20 By: MG	Recei	ved: 10-APR	l-08 By	y: MP
J87954-3 J87954-3	ASTM 4643-00 OQA-QAM-025	12-APR-08 16-APR-08 01:32	NS VDT	11-APR-08	3 TKF	%SOLFT BNJ025TPHCFT
87954-4 SB-4	Collected: 09-APR-	08 11:00 By: MG	Recei			EMP
J87954-4 J87954-4	ASTM 4643-00 OQA-QAM-025	12-APR-08 16-APR-08 02:12	NS VDT	11-APR-08	TKF	%SOLFT BNJ025TPHCFT
87954-5 SB-5	Collected: 09-APR-	08 11:30 By: MG	Recel	ved: 10-APR	-08 By	r: MP
87954-5 87954-5	ASTM 4643-00 OQA-QAM-025	12-APR-08 16-APR-08 02:52	NS VDT	11-APR-08	TKF	%SOLFT BNJ025TPHCFT
187954-6 SB-6	Collected: 09-APR-	08 14:00 By: MG	Recei	ved: 10-APR	-08 By	AMP of the state of
J87954-6 J87954-6 J87954-6 J87954-6 J87954-6 J87954-6	SW846 8260B SW846 8082 OQA-QAM-025 SW846 9066 M/LA SW846 8270C SW846 6010B	12-APR-08 06:52 12-APR-08 19:01 16-APR-08 03:32 CHAG-APR-08 16:16 18-APR-08 00:35 18-APR-08 02:31	WP LP	11-APR-08 11-APR-08 16-APR-08 11-APR-08	TKF NR TKF	V8260PPL + P8082PCBAO BNJ025TPHC PN AB8270PPL + AG,AS,BE,CD,CR,CU,NI,PB,S SE,TL,ZN

Page 1 of 3

Internal Sample Tracking Chronicle

CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ

Job No:

J87954

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
J87954-6	SW846 8270C	19-APR-08 03:51	LP	11-APR-08	TKF	AB8270PPL+
J87954-6	EPA 160.3 M	21-APR-08	BR			%SOL
J87954-6	SW846 8081A	22-APR-08 03:19	OPM	11-APR-08	WSH	P8081PESTPPL
J87954-6	SW846 7471A	22-APR-08 16:02	JW	22-APR-08	JW	HG
J87954-6	SW846 9012 M/LACH	AZB-APR-08 11:02	JΑ	19-APR-08	NR	CN
j 87954-7 SB-7				ved: 10-APR		
3D-1	ali pri sa a i l'ali minalità pri rest.	Dallash Baramana (199	area esti	Company	(BE) (BE)	
J87954-7	SW846 8260B	12-APR-08 07:22	YL			V8260PPL+
J87954-7	SW846 8082	12-APR-08 19:45	JSE	11-APR-08	WSH	P8082PCBAO
J87954-7	OQA-QAM-025	16-APR-08 04:12	VDT	11-APR-08	TKF	BNJ025TPHC
J87954-7	SW846 9066 M/LACH	ATG-APR-08 16:17	WP	16-APR-08	NR	PN
J87954-7	SW846 8270C	18-APR-08 01:08	LP	11-APR-08	TKF	AB8270PPL+
J879 5 4-7	SW846 6010B	18-APR-08 02:37	ND	17-APR-08	TG	AG,AS,BE,CD,CR,CU,NI,PB,SE SE,TL,ZN
J87954-7	SW846 8270C	19-APR-08 04:24	LP	11-APR-08	TKF	AB8270PPL+
JB7954-7	EPA 160.3 M	21-APR-08	BR			%SOL
J87954-7	SW846 8081A	22-APR-08 03:52	OPM	11-APR-08	WSH	P8081PESTPPL
J87954-7	SW846 7471A	22-APR-08 16:04	JW	22-APR-08	IW	HG
J87954-7	SW846 9012 M/LACH	AZB-APR-08 11:03	ĴΑ	19-APR-08		CN
J87954-8			Receiv	ed: 10-APR	08 By	MP State of the state
SB-8	e meta distribution di series di series di series di series di series di series di series di series di series					计模型设置 为最级。1995年,1995年
J87954-8	SW846 8260B	12-APR-08 07:52	YL			V8260PPL+
J87954-8	SW846 8082	12-APR-08 20:12	JSE	11-APR-08	WSH	P8082PCBAO
87954-8	OQA-QAM-025	16-APR-08 04:53	VDT	11-APR-08	TKF	BNJ025TPHC
J87954-8	SW846 9066 M/LACH	4T6-APR-08 16:59	WP	16-APR-08	NR	PN
J87954-8	SW846 8270C	18-APR-08 01:41	LP	11-APR-08	TKF	AB8270PPL+
87954-8	SW846 6010B	18-APR-08 02:43	ND	17-APR-08	TG	AG,AS,BE,CR,CU,NI,PB,SB,SE TL.ZN
87954-8	SW846 6010B	18-APR-08 12:33	DM	17-APR-08	TG	CD
87954-8	EPA 160.3 M	21-APR-08	BR	2111 N-00		%SOL
	SW846 8081A	22-APR-08 04:25	OPM	11-APR-08	WSH	P8081PESTPPL
187954-8						-
87954-8 87954-8	SW846 7471A	22-APR-08 16:05	.TW	22-APR-08	IW	HG

Accutest Laboratories

CMX

Internal Sample Tracking Chronicle

4

Camden Laboratories, 1667 Davis Street, Camden, NJ

187954

Job No:

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
J87954-9 SB-9	Collected: 09-APR-	08 16:00 By: MG	Receiv	ved: 10-APR		: MP
J87954-9	SW846 8260B	12-APR-08 08:22	YL			V8260PPL+
J87954-9	SW846 8082	12-APR-08 20:56	JSE	11-APR-08	WSH	P8082PCBAO
J87954-9	OQA-QAM-025	16-APR-08 05:33	VDT	11-APR-08	TKF	BNJ025TPHC
J87954-9	SW846 6010B	18-APR-08 02:49	ND	17-APR-08	TG	AG,AS,BE,CR,CU,NI,PB,SB,SE TL,ZN
J87954-9	SW846 6010B	18-APR-08 12:40	DM	17-APR-08	TG	CD
J87954-9	SW846 8270C	18-APR-08 13:09	LP	11-APR-08	TKF	AB8270PPL+
J87954-9	EPA 160.3 M	21-APR-08	BR			%SOL
J87954-9	SW846 8081A	22-APR-08 04:58	OPM	11-APR-08	WSH	P8081PESTPPL
J87954-9	SW846 7471A	22-APR-08 16:06	JW	22-APR-08	JW	HG
J87954-9	SW846 9012 M/LA	CHAZE-APR-08 11:06	JA	19-APR-08	NR	CN
J87954-9		CHAB-APR-08 08:58	WP	26-APR-08		PN
J87954-10 TRIP BLA	Collected: 09-APR- NK	08 16:00 By: MG	Recel	ved: 10-APR	08 By	: MB
J87954-10	SW846 8260B	12-APR-08 19:51	LY			V8260PPL+

Page 3 of 3

Accutest Internal Chain of Custody
Job Number: J87954
Account: DEPALMA CMX
Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Received: 04/10/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J87954-1.1	Secured Storage	Adam Scott		Retrieve from Storage
J87954-1.1	Adam Scott	Dayu Song		Custody Transfer
J87954-1.1	Dayu Song	Jolecia Bartholomew		Custody Transfer
J87954-1.1	Jolecia Bartholomew	Funmilayo Ogundare		Custody Transfer
J87954-1.1	Funmilayo Ogundare	Secured Storage		Return to Storage
J87954-1.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-1.1	Erik Moody	Niyati Shah		Custody Transfer
J87954-1.1	Niyati Shah	Secured Storage		Return to Storage
J87954-1.1	Dave Hunkele		05/19/08 05:58	Disposed
J87954-1.1.1	Jolecia Bartholomew	Organics Prep		Extract from J87954-1.1
J87954-1.1.1	Organics Prep	Jolecia Bartholomew	04/11/08 16:42	Extract from J87954-1.1
J87954-1.1.1	Jolecia Bartholomew	Extract Storage		Return to Storage
J87954-1.1.1	Extract Storage	Punita Muir		Retrieve from Storage
J87954-1.1.1	Punita Muir	GC3Y	04/15/08 08:15	Load on Instrument
J87954-1.1.1	GC3Y	Punita Muir	04/16/08 16:44	Unload from Instrument
J87954-1.1.1	Punita Muir	Extract Freezer		Return to Storage
J87954-1.1.1	Extract Freezer		05/22/08 09:00	Disposed
J87954-1.3	Secured Storage	Frank Zhu	04/10/08 15:38	Retrieve from Storage
J87954-1.3	Frank Zhu	Secured Storage	04/10/08 15:55	Return to Storage
J87954-1.3	Dave Hunkele	_	05/19/08 05:58	Disposed
J87954-2.1	Secured Storage	Adam Scott	04/11/08 07:13	Retrieve from Storage
J87954-2.1	Adam Scott	Dayu Song		Custody Transfer
J87954-2.1	Dayu Song	Jolecia Bartholomew		Custody Transfer
J87954-2.1	Jolecia Bartholomew	Fuumilayo Ogundare	04/11/08 08:18	Custody Transfer
J87954-2.1	Funmilayo Ogundare	Secured Storage	04/11/08 15:17	Return to Storage
J87954-2.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-2.1	Erik Moody	Niyati Shah		Custody Transfer
J87954-2.1	Niyati Shah	Secured Storage		Return to Storage
J87954-2.1	Dave Hunkele		05/19/08 05:58	Disposed
J87954-2.1.1	Jolecia Bartholomew	Organics Prep	04/11/08 08:10	Extract from J87954-2.1
J87954-2.1.1	Organics Prep	Jolecia Bartholomew	04/11/08 16:42	Extract from J87954-2.1
J87954-2.1.1	Jolecia Bartholomew	Extract Storage		Return to Storage
J87954-2.1.1	Extract Storage	Punita Muir		Retrieve from Storage
J87954-2.1.1	Punita Mulr	GC3Y	04/15/08 08:15	Load on Instrument
J87954-2.1.1	GC3Y	Punita Muir	04/16/08 16:44	Unload from Instrument
J87954-2.1.1	Punita Muir	Extract Freezer		Return to Storage
J87954-2.1.1	Extract Freezer		05/22/08 09:00	Disposed
J87954-2.3	Secured Storage	Frank Zhu	04/10/08 15:38	Relrieve from Storage
J87954-2.3	Frank Zhu	Secured Storage		Return to Storage
				-

Page 1 of 10

4

Page 2 of 10

Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ

Project: Received: 04/10/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
87954-2.3	Dave Hunkele		05/19/08 05:58	Disposed
87954-3.1	Secured Storage	Tyler Strauss	04/11/00 12:44	Database 5 04
87954-3.1	Tyler Strauss	Secured Storage		Retrieve from Storage
87954-3.1	Dave Hunkele	Secured Storage		Return to Storage
1,6-46616	Dave nunkele		05/19/08 05:58	Disposed
37954-3.2	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
87954-3.2	Tyler Strauss	Taher K. Fatakdawala	04/11/08 17:08	Custody Transfer
87954-3.2	Taher K. Fatakdawala	Secured Storage	04/12/08 00:50	Return to Storage
87954-3.2	Secured Storage	Erik Moody	04/12/08 07:38	Retrieve from Storage
37954-3.2	Erik Moody	Niyati Shah		Custody Transfer
87954-3.2	Niyati Shah	Secured Storage		Return to Storage
87954-3.2	Dave Hunkele	ū	05/19/08 05:58	
87954-3.2.1	Taher K. Fatakdawala	Organics Prep	04/11/08 17:11	Extract from J87954-3.2
87954-3.2.1	Organics Prep	Taher K. Fatakdawala		Extract from J87954-3.2
87954-3.2.1	Taher K. Fatakdawala	Extract Storage		Return to Storage
87954-3.2.1	Extract Storage	Vincent Drago		Retrieve from Storage
87954-3.2.1	Vincent Drago	GC2Z		Load on Instrument
87954-3.2.1	GC2Z	Vincent Drago		Unload from Instrument
87954-3.2.1	Vincent Drago	Extract Freezer		Return to Storage
87954-3.2.1	Extract Freezer	Daniel Henry	05/22/08 09:00	
3,001 0.2.1	Enduct I I CCECI		03/22/06 03:00	Disposeu
87954-4.1	Secured Storage	Tyler Strauss		Retrieve from Storage
87954-4.1	Tyler Strauss	Taher K. Fatakdawala		Custody Transfer
87954-4.1	Taher K. Fatakdawala	Secured Storage		Return to Storage
37954-4.1	Secured Storage	Erik Moody		Retrieve from Storage
37954-4.1	Erik Moody	Niyati Shah	04/12/08 07:44	Custody Transfer
87954-4.1	Niyati Shah	Secured Storage	04/12/08 11:46	Return to Storage
87954-4.1	Dave Hunkele		05/19/08 05:58	Disposed
87954-4.1.1	Taher K. Fatakdawala	Organics Prep	04/11/08 17:11	Extract from [87954-4.1
87954-4.1.1	Organics Prep	Taher K. Fatakdawala		Extract from J87954-4.1
37954-4.1.1	Taher K. Fatakdawala	Extract Storage		Return to Storage
87954-4.1.1	Extract Storage	Vincent Drago		Retrieve from Storage
37954-4.1.1	Vincent Drago	GC2Z		Load on Instrument
37954-4.1.1	GC2Z	Vincent Drago		Unload from Instrument
37954-4.1.1	Vincent Drago	Extract Freezer		Return to Storage
37954-4.1.1	Extract Freezer	Paract Licebei	05/22/08 09:00	
			50/22/00 09.00	Бароси
87954-4.2	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
87954-4.2	Tyler Strauss	Secured Storage		Return to Storage
87954-4.2	Dave Hunkele	=	05/19/08 05:58	Disnosed

Accutest Internal Chain of Custody
Job Number: J87954
Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Received: 04/10/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
107054 5 1	0 10	T. 1. C:		
J87954-5.1	Secured Storage	Tyler Strauss		Retrieve from Storage
J87954-5.1	Tyler Strauss	Taher K. Fatakdawala		Custody Transfer
J87954-5.1	Taher K. Fatakdawala	Secured Storage		Return to Storage
J87954-5.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-5.1	Erik Moody	Niyati Shah		Custody Transfer
J87954-5.1	Niyati Shah	Secured Storage		Return to Storage
J87954-5.1	Dave Hunkele		05/19/08 05:58	Disposed
J87954-5.1.1	Taher K. Fatakdawala	Organics Prep		Extract from J87954-
J87954-5.1.1	Organics Prep	Taher K. Fatakdawala	04/12/08 00:46	Extract from J87954-
J87954-5.1.1	Taher K. Fatakdawala	Extract Storage	04/12/08 00:46	Return to Storage
J87954-5.1.1	Extract Storage	Vincent Drago	04/15/08 18:12	Retrieve from Storage
J87954-5.1.1	Vincent Drago	GC2Z	04/15/08 18:12	Load on Instrument
J87954-5.1.1	GC2Z	Vincent Drago	04/17/08 18:31	Unload from Instrume
J87954-5.1.1	Vincent Drago	Extract Freezer	04/17/08 18:31	Return to Storage
J87954-5.1.1	Extract Freezer		05/22/08 09:00	
187954-5.2	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
J87954-5.2	Tyler Strauss	Secured Storage		Return to Storage
J87954-5.2	Dave Hunkele	- -	05/19/08 05:58	
J87954-6.1	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
J87954-6.1	Tyler Strauss	Taher K. Fatakdawala		Custody Transfer
187954-6.1	Taher K. Fatakdawala	Tyler Strauss		Custody Transfer
87954-6.1	Tyler Strauss	Secured Storage		Return to Storage
87954-6.1	Secured Storage	William Shew		Retrieve from Storage
87954-6.1	William Shew	Secured Storage		Return to Storage
87954-6.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
[87954-6.1	Todd Shoemaker	Natalie Romanoff		Custody Transfer
J87954-6.1	Natalie Romanoff	Secured Storage		Return to Storage
187954-6.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
87954-6.1	Todd Shoemaker	Teresa Guziak		Custody Transfer
87954-6.1	Teresa Guziak	Secured Storage		Return to Storage
I87954-6.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-6.1	Dave Hunkele	Natalie Romanoff		Custody Transfer
187954-6.1	Natalie Romanoff	Secured Storage		Return to Storage
187954-6.1	Secured Storage	Erik Moody		Retrieve from Storage
87954-6.1	Erik Moody	Brenda Rodriguez		Custody Transfer
87954-6.1	Brenda Rodriguez	Secured Storage		Return to Storage
87954-6.1	Secured Storage	Dave Hunkele		Retrieve from Storage
87954-6.1	Dave Hunkele	Jieyu Wang		Custody Transfer
87954-6.1	Jieyu Wang	Secured Storage		Return to Storage
187954-6.1	Dave Hunkele		05/19/08 05:58	

4

Page 3 of 10

Project:

Camden Laboratories, 1667 Davis Street, Camden, NJ Received:

04/10/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J87954-6.1.1	Taher K. Fatakdawala	Organics Prep	04/11/08 15:31	Extract from J87954-6.1
J87954-6.1.1	Organics Prep	Taher K. Fatakdawala		Extract from J87954-6.1
J87954-6.1.1	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-6.1.1	Extract Storage	Larisa Pejdah		Retrieve from Storage
J87954-6.1.1	Larisa Pejdah	GCMS3M		Load on Instrument
J87954-6.1.1	GCMS3M	Kristi Schollenberger	04/18/08 09:24	Unload from Instrument
J87954-6.1.1	Kristi Schollenberger	Extract Freezer	04/18/08 09:24	Return to Storage
J87954-6.1.1	Extract Freezer		05/22/08 09:00	
J87954-6.1.2	Taher K. Fatakdawala	Organics Prep	04/11/08 15:58	Extract from J87954-6.1
J87954-6.1.2	Organics Prep	Taher K. Fatakdawala		Extract from J87954-6.1
J87954-6.1.2	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-6.1.2	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-6.1.2	Vincent Drago	GC2Z		Load on Instrument
]87954-6.1.2	GC2Z	Vincent Drago		Unload from Instrument
J87954-6.1.2	Vincent Drago	Extract Freezer		Return to Storage
J87954-6.1.2	Extract Freezer		05/22/08 09:00	
J87954-6.1.3	William Shew	Organics Prep	04/11/08 17:42	Extract from J87954-6.1
]87954-6.1.3	Organics Prep	William Shew		Extract from J87954-6.1
J87954-6.1.3	William Shew	Extract Storage		Return to Storage
J87954-6.1.3	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-6.1.3	Vincent Drago	GCAB		Load on Instrument
J87954-6.1.3	GCAB	Iennifer Elliott		Unload from Instrument
J87954-6.1.3	Jennifer Elliott	Extract Freezer		Return to Storage
J87954-6.1.3	Extract Freezer		05/22/08 09:00	
J87954-6.1.4	William Shew	Organics Prep	04/11/08 18:01	Extract from J87954-6.1
J87954-6.1.4	Organics Prep	William Shew		Extract from 187954-6.1
J87954-6.1.4	William Shew	Extract Storage		Return to Storage
J87954-6.1.4	Extract Storage	Owen McKenna		Retrieve from Storage
J87954-6.1.4	Owen McKenna	GC1G		Load on Instrument
J87954-6.1.4	GC1G	Owen McKenna		Unload from Instrument
J87954-6.1.4	Owen McKenna	Extract Freezer		Return to Storage
J87954-6.1.4	Extract Freezer		05/22/08 09:00	
J87954-6.1.5	Teresa Guziak	Metals Digestion	04/17/08 11:52	Digestate from J87954-6.1
J87954-6.1.5	Metals Digestion	Deepa Muralidharan		Digestate from J87954-6.1
J87954-6.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J87954-6.1.5	Metals Digestate Storage	Deepa Muralidharan		Retrieve from Storage
J87954-6.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J87954-6.1.5	Metals Digestate Storage		06/24/08 09:00	
J87954-6.3	Secured Storage	Frank Zhu	04/10/08 15:38	Retrieve from Storage

Accutest Internal Chain of Custody
Job Number: J87954
Account: DEPALMA CMX
Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Received: 04/10/08

Sample. Bottle	Transfer	Transfer		
Number	FROM	TO	Date/Time	Reason
J87954-6.3	Frank Zhu	Secured Storage	04/10/08 15:55	Return to Storage
J87954-6.3	Secured Storage	Ying Li		Retrieve from Storage
J87954-6.3	Ying Li	Secured Storage		Return to Storage
J87954-6.3	Dave Hunkele	J	05/19/08 05:58	
J87954-7.1	Secured Storage	Tyler Strauss		Retrieve from Storage
J87954-7.1	Tyler Strauss	Taher K. Fatakdawala		Custody Transfer
J87954-7.1	Taher K. Fatakdawala	Tyler Strauss		Custody Transfer
J87954-7.1	Tyler Strauss	Secured Storage		Return to Storage
J87954-7.1	Secured Storage	William Shew	04/11/08 17:42	Retrieve from Storage
J87954-7.1	William Shew	Secured Storage	04/11/08 22:16	Return to Storage
J87954-7.1	Secured Storage	Todd Shoemaker	04/16/08 08:32	Retrieve from Storage
J87954-7.1	Todd Shoemaker	Natalie Romanoff	04/16/08 08:34	Custody Transfer
J87954-7.1	Natalie Romanoff	Secured Storage	04/16/08 14:40	Return to Storage
J87954-7.1	Secured Storage	Todd Shoemaker	04/17/08 08:11	Retrieve from Storage
J87954-7.1	Todd Shoemaker	Teresa Guzlak		Custody Transfer
J87954-7.1	Teresa Guziak	Secured Storage		Return to Storage
J87954-7.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-7.1	Dave Hunkele	Natalie Romanoff		Custody Transfer
J87954-7.1	Natalie Romanoff	Secured Storage		Return to Storage
J87954-7.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-7.1	Erik Moody	Brenda Rodriguez		Custody Transfer
J87954-7.1	Brenda Rodriguez	Secured Storage		Return to Storage
J87954-7.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-7.1	Dave Hunkele	Jieyu Wang		Custody Transfer
J87954-7.1	Jieyu Wang	Secured Storage		Return to Storage
J87954-7.1	Dave Hunkele	•	05/19/08 05:58	
J87954-7.1.1	Taher K. Fatakdawala	Organics Prep	04/11/08 15:31	Extract from J87954-7.
J87954-7.1.1	Organics Prep	Taher K. Fatakdawala		Extract from J87954-7.
J87954-7.1.1	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-7.1.1	Extract Storage	Larisa Pejdah		Retrieve from Storage
87954-7.1.1	Larisa Peldah	GCMS3M		Load on Instrument
87954-7.1.1	GCMS3M	Kristi Schollenberger		Unload from Instrumen
87954-7.1.1	Kristi Schollenberger	Extract Freezer		Return to Storage
J87954-7.1.1	Extract Freezer		05/22/08 09:00	
J87954-7.1.2	Taher K. Fatakdawala	Organics Prep	04/11/08 15:58	Extract from J87954-7.
J87954-7.1.2	Organics Prep	Taher K. Fatakdawala		Extract from J87954-7.
J87954-7.1.2	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-7.1.2	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-7.1.2	Vincent Drago	GC2Z		Load on Instrument
J87954-7.1.2	GC2Z	Vincent Drago	04/17/08 18:31	Unload from Instrumen
87954-7.1.2	Vincent Drago	Extract Freezer		Return to Storage

4

Page 6 of 10

Account: DEPALMA CMX

Received: 04/10/08

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

> 4.3 4

Sample.Bottle	Transfer	Transfer		
Number	FROM	ТО	Date/Time	Reason
87954-7.1.2	Extract Freezer		05/22/08 09:00	Disposed
J87954-7.1.3	William Shew	Organics Prep	04/11/08 17:42	Extract from J87954-7.1
J87954-7.1.3	Organics Prep	William Shew	04/12/08 15:04	Extract from J87954-7.1
J87954-7.1.3	William Shew	Extract Storage		Return to Storage
87954-7.1.3	Extract Storage	Vincent Drago		Retrieve from Storage
87954-7.1.3	Vincent Drago	GCAB	04/12/08 15:54	Load on Instrument
87954-7.1.3	GCAB	Jennifer Elliott	04/15/08 10:59	Unload from Instrument
87954-7.1.3	Jennifer Elliott	Extract Freezer	04/15/08 10:59	Return to Storage
87954-7.1.3	Extract Freezer		05/22/08 09:00	
87954-7.1.4	William Shew	Organics Prep	04/11/08 18:01	Extract from J87954-7.1
87954-7.1.4	Organics Prep	William Shew		Extract from 187954-7.1
87954-7.1.4	William Shew	Extract Storage		Return to Storage
87954-7.1.4	Extract Storage	Owen McKenna		Retrieve from Storage
87954-7.1.4	Owen McKenna	GC1G		Load on Instrument
87954-7.1.4	GC1G	Owen McKenna		Unload from Instrument
87954-7.1.4	Owen McKenna	Extract Freezer		Return to Storage
87954-7.1.4	Extract Freezer		05/22/08 09:00	
87954-7.1.5	Teresa Guzlak	Metals Digestion	04/17/08 11:52	Digestate from J87954-7.
87954-7.1.5	Metals Digestion	Deepa Muralidharan		Digestate from J87954-7
87954-7.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
87954-7.1.5	Metals Digestate Storage	Deepa Muralidharan		Retrieve from Storage
87954-7.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
87954-7.1.5	Metals Digestate Storage	0 0	06/24/08 09:00	
87954-7.3	Secured Storage	Frank Zhu	04/10/08 15:38	Retrieve from Storage
87954-7.3	Frank Zhu	Secured Storage		Return to Storage
87954-7.3	Secured Storage	Ying Li		Retrieve from Storage
87954-7.3	Ying Li	Secured Storage		Return to Storage
87954-7.3	Dave Hunkele	-	05/19/08 05:58	
87954-8.1	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
87954-8.1	Tyler Strauss	Taher K. Fatakdawala	04/11/08 15:27	Custody Transfer
87954-8.1	Taher K. Fatakdawala	Tyler Strauss	04/11/08 16:01	Custody Transfer
87954-8.1	Tyler Strauss	Secured Storage		Return to Storage
87954-8.1	Secured Storage	William Shew		Retrieve from Storage
87954-8.1	William Shew	Secured Storage		Return to Storage
87954-8.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
87954-8.1	Todd Shoemaker	Natalie Romanoff		Custody Transfer
87954-8.1	Natalie Romanoff	Secured Storage		Return to Storage
87954-8.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
87954-8.1	Todd Shoemaker	Teresa Guziak		Custody Transfer

Accutest Internal Chain of Custody Job Number: J87954 Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Received:

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J87954-8.1	Teresa Guziak	Secured Storage	04/17/08 12:05	Return to Storage
J87954-8.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-8.1	Dave Hunkele	Natalie Romanoff		Custody Transfer
J87954-8.1	Natalie Romanoff	Secured Storage		Return to Storage
J87954-8.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-8.1	Erik Moody	Brenda Rodriguez		Custody Transfer
J87954-8.1	Brenda Rodriguez	Secured Storage		Return to Storage
J87954-8.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-8.1	Dave Hunkele	Jieyu Wang		Custody Transfer
J87954-8.1	Jieyu Wang	Secured Storage		Return to Storage
J87954-8.1	Dave Hunkele	•	05/19/08 05:58	Disposed
J87954-8.1.1	Taher K. Fatakdawala	Organics Prep	04/11/08 15:31	Extract from J87954-8.1
J87954-8.1.1	Organics Prep	Taher K. Fatakdawala	04/12/08 00:47	Extract from J87954-8.1
J87954-8.1.1	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-8.1.1	Extract Storage	Larisa PeJdah		Retrieve from Storage
J87954-8.1.1	Larisa Pejdah	GCMS3M		Load on Instrument
J87954-8.1.1	GCMS3M	Kristi Schollenberger		Unload from Instrument
J87954-8.1.1	Kristi Schollenberger	Extract Freezer		Return to Storage
J87954-8.1.1	Extract Freezer		05/22/08 09:00	Disposed
J87954-8.1.2	Taher K. Fatakdawala	Organics Prep		Extract from J87954-8.1
J87954-8.1.2	Organics Prep	Taher K. Fatakdawala		Extract from J87954-8.1
J87954-8.1.2	Taher K. Fatakdawaia	Extract Storage		Return to Storage
J87954-8.1.2	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-8.1.2	Vincent Drago	GC2Z		Load on Instrument
J87954-8.1.2	GC2Z	Vincent Drago		Unload from Instrument
J87954-8.1.2	Vincent Drago	Extract Freezer		Return to Storage
J87954-8.1.2	Extract Freezer		05/22/08 09:00	Disposed
J87954-8.1.3	William Shew	Organics Prep	04/11/08 17:42	Extract from J87954-8.1
J87954-8.1.3	Organics Prep	William Shew		Extract from J87954-8.1
J87954-8.1.3	William Shew	Extract Storage		Return to Storage
J87954-8.1.3	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-8.1.3	Vincent Drago	GCAB		Load on Instrument
J87954-8.1.3	GCAB	Jennifer Elliott		Unload from Instrument
J87954-8.1.3	Jennifer Elliott	Extract Freezer		Return to Storage
J87954-8.1.3	Extract Freezer		05/22/08 09:00	Disposed
J87954-8.1.4	William Shew	Organics Prep		Extract from J87954-8.1
J87954-8.1.4	Organics Prep	William Shew		Extract from J87954-8.1
J87954-8.1.4	William Shew	Extract Storage		Return to Storage
J87954-8.1.4	Extract Storage	Owen McKenna		Retrieve from Storage
J87954-8.1.4	Owen McKenna	GC1G	04/21/08 17:24	Load on Instrument

4

Page 7 of 10

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Received: 04/10/08

Sample.Bottle Number	Transfer FROM	Transf er TO	Date/Time	Reason
J87954-8.1.4	GC1G	Owen McKenna	04/23/08 11:52	Unload from Instrument
J87954-8.1.4	Owen McKenna	Extract Freezer		Return to Storage
J87954-8.1.4	Extract Freezer		05/22/08 09:00	Disposed
J87954-8.1.5	Teresa Guziak	Metals Digestion	04/17/08 11:52	Digestate from J87954-8.1
J87954-B.1.5	Metals Digestion	Deepa Muralidharan	04/17/08 15:00	Digestate from J87954-8.1
J87954-8.1.5	Deepa Muralidharan	Metals Digestate Storage	04/17/08 16:58	Return to Storage
J87954-8.1.5	Metals Digestate Storage	Deepa Muralidharan		Retrieve from Storage
J87954-8.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J87954-8.1.5	Metals Digestate Storage		06/24/08 09:00	Disposed
J87954-8.3	Secured Storage	Frank Zhu	04/10/08 15:38	Retrieve from Storage
J87954-8.3	Frank Zhu	Secured Storage		Return to Storage
J87954-8.3	Secured Storage	Ying Li		Retrieve from Storage
J87954-8.3	Ying Li	Secured Storage	04/11/08 13:12	Return to Storage
J87954-8.3	Dave Hunkele		05/19/08 05:58	Disposed
J87954-9.1	Secured Storage	Tyler Strauss	04/11/08 13:44	Retrieve from Storage
J87954-9.1	Tyler Strauss	Taher K. Fatakdawala	04/11/08 15:27	Custody Transfer
J87954-9.1	Taher K. Fatakdawala	Tyler Strauss	04/11/08 16:01	Custody Transfer
J87954-9.1	Tyler Strauss	Secured Storage	04/11/08 17:31	Return to Storage
J87954-9.1	Secured Storage	William Shew	04/11/08 17:42	Retrieve from Storage
J87954-9.1	William Shew	Secured Storage		Return to Storage
J87954-9.1	Secured Storage	Todd Shoemaker	04/16/08 08:32	Retrieve from Storage
J87954-9.1	Todd Shoemaker	Natalie Romanoff	04/16/08 08:34	Custody Transfer
J87954-9.1	Natalie Romanoff	Secured Storage	04/16/08 14:40	Return to Storage
J87954-9.1	Secured Storage	Todd Shoemaker	04/17/08 08:11	Retrieve from Storage
J87954-9.1	Todd Shoemaker	Teresa Guziak		Custody Transfer
J87954-9.1	Teresa Guziak	Secured Storage	04/17/08 12:05	Return to Storage
J87954-9.1	Secured Storage	Dave Hunkele	04/19/08 08:10	Retrieve from Storage
J87954-9.1	Dave Hunkele	Natalie Romanoff		Custody Transfer
J87954-9.1	Natalie Romanoff	Secured Storage	04/19/08 15:04	Return to Storage
J87954-9.1	Secured Storage	Erik Moody		Retrieve from Storage
J87954-9.1	Erik Moody	Brenda Rodriguez	04/21/08 08:51	Custody Transfer
J87954-9.1	Brenda Rodriguez	Secured Storage	04/21/08 11:15	Return to Storage
J87954-9.1	Secured Storage	Dave Hunkele		Retrieve from Storage
J87954-9.1	Dave Hunkele	Jieyu Wang	04/22/08 08:09	Custody Transfer
J87954-9.1	Jieyu Wang	Secured Storage		Return to Storage
J87954-9.1	Secured Storage	Erik Moody	04/26/08 08:24	Retrieve from Storage
J87954-9.1	Erik Moody	Komal Patel		Custody Transfer
J87954-9.1	Komal Patel	Secured Storage		Return to Storage
J87954-9.1	Dave Hunkele		05/19/08 05:58	Disposed
J87954-9.1 . 1	Taher K. Fatakdawala	Organics Prep	04/11/08 15:31	Extract from J87954-9.1

4

Accutest Internal Chain of Custody
Job Number: J87954
Account: DEPALMA CMX

Project: Camden Lahoratories, 1667 Davis Street, Camden, NJ

Received:

Page 9 of 10

Sample. Bottle	Transfer	Transfer		
Number	FROM	то	Date/Time	Reason
J87954-9.1.1	Organics Prep	Taher K. Fatakdawala	04/12/08 00:47	Extract from J87954-9.1
J87954-9.1.1	Taher K. Fatakdawala			Return to Storage
J87954-9.1.1	Extract Storage	Kristi Schollenberger		Retrieve from Storage
J87954-9.1.1	Kristi Schollenberger	GCMS3M	04/18/08 09:26	Load on Instrument
J87954-9.1.1	GCMS3M	Larisa Pejdah	04/21/08 19:29	Unload from Instrument
J87954-9.1.1	Larisa Pejdah	Extract Freezer	04/21/08 19:29	Return to Storage
J87954-9.1.1	Extract Freezer		05/22/08 09:00	Disposed
J87954-9.1.2	Taher K. Fatakdawala	Organics Prep	04/11/08 15:58	Extract from J87954-9.1
J87954-9.1.2	Organics Prep	Taher K. Fatakdawala		Extract from J87954-9.1
J87954-9.1.2	Taher K. Fatakdawala	Extract Storage		Return to Storage
J87954-9.1.2	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-9.1.2	Vincent Drago	GC2Z		Load on Instrument
J87954-9.1.2	GC2Z	Vincent Drago		Unload from Instrument
J87954-9.1.2	Vincent Drago	Extract Freezer		Return to Storage
J87954-9.1.2	Extract Freezer		05/22/08 09:00	
J87954-9.1.3	William Shew	Organics Prep	04/11/08 17:42	Extract from J87954-9.1
J87954-9.1.3	Organics Prep	William Shew		Extract from J87954-9.
J87954-9.1.3	William Shew	Extract Storage	04/12/08 15:04	Return to Storage
J87954-9.1 <i>.</i> 3	Extract Storage	Vincent Drago		Retrieve from Storage
J87954-9.1.3	Vincent Drago	GCAB	04/12/08 15:54	Load on Instrument
J87954-9.1.3	GCAB	Jennifer Elliott	04/15/08 10:59	Unload from Instrument
J87954-9.1.3	Jennifer Elliott	Extract Freezer	04/15/08 10:59	Return to Storage
J87954-9.1.3	Extract Freezer		05/22/08 09:00	Disposed
J87954-9.1.4	William Shew	Organics Prep	04/11/08 18:01	Extract from J87954-9.1
J87954-9.1.4	Organics Prep	William Shew	04/12/08 15:04	Extract from J87954-9.1
J87954-9.1.4	William Shew	Extract Storage	04/12/08 15:04	Return to Storage
J87954-9.1.4	Extract Storage	Owen McKenna	04/21/08 17:24	Retrieve from Storage
J87954-9.1.4	Owen McKenna	GC1G	04/21/08 17:24	Load on Instrument
J87954-9.1.4	GC1G	Owen McKenna	04/23/08 11:52	Unload from Instrument
J87954-9.1.4	Owen McKenna	Extract Freezer	04/23/08 11:52	Return to Storage
J87954-9.1.4	Extract Freezer		05/22/08 09:00	Disposed
J87954-9.1.5	Teresa Guziak	Metals Digestion	04/17/08 11:52	Digestate from J87954-9
J87954-9.1.5	Metals Digestion	Deepa Muralidharan		Digestate from J87954-9
J87954-9.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J87954-9.1.5	Metals Digestate Storage	Deepa Muralidharan		Retrieve from Storage
J87954-9.1.5	Deepa Muralidharan	Metals Digestate Storage		Return to Storage
J87954-9.1.5	Metals Digestate Storage	5 0	06/24/08 09:00	
,				
J87954-9.3	Secured Storage	Frank Zhu	04/10/08 15:38	Retrieve from Storage

Accutest Internal Chain of Custody

Page 10 of 10

Job Number: J87954 Account: DEPALMA CMX

Camden Lahoratories, 1667 Davis Street, Camden, NJ Project:

Received: 04/10/08

Received:	04/10/08				4.3
Sample.Bottle Number	Transfer FROM	Trensfer TO	Date/Time	Reason	4
J87954-9.3	Secured Storage	Yiog Li	04/11/08 12:47	Retrieve from Storage	
J87854-8.3	Ying Li	Secured Storage	04/11/08 13:12	Returo to Storage	
J87954-9.3	Dave Hunkele	•	05/19/08 05:58	Disposed	
J87954-10.1	Secured Storage	Li Yuan	04/11/08 14:58	Retrieve from Storage	
J87954-10.1	LI Yuan	VOA Prep Storage	04/11/08 14:58	Return to Storage	
J87954-10.1	VOA Prep Storage	Reginald Saint-Juste	04/12/08 12:58	Retrieve from Storage	
J87954-10.1	Reginald Saint-Juste	GCMS3A	04/12/08 12:58	Load on Instrument	
J87954-10.1	GCMS3A	Sophie Zhou	04/15/08 12:09	Uoload from Instrumeot	
J87954-10.1	Sophie Zhou	Secured Storage	04/15/08 12:09	Return to Storage	
I87954-10.1	Dave Hunkele	J	05/19/08 05:58	Disposed	

Section 5

I

1

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
 Matrix Spike and Dupilcate Summaries
 lostrument Performance Checks (BFB)
- · Internal Standard Area Summaries
- · Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Accutest Internal Chain of Custody Job Number: 187954

Page 10 of 10

Account:

DEPALMA CMX

Project:

Camden Laboratories, 1667 Davis Street, Camden, NJ

Received: 04/10/08

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
J87954-9.3	Secured Storage	Ying Li	04/11/08 12:47	Retrieve from Storage
J87954-9.3	Ying Li	Secured Storage		Return to Storage
]87954-9.3	Dave Hunkele	ŭ	05/19/08 05:58	
J87954-10.1	Secured Storage	Li Yuan	04/11/08 14:58	Retrieve from Storage
J87954-10.1	Li Yuan	VOA Prep Storage		Return to Storage
]87954-10.1	VOA Prep Storage	Reginald Saint-Juste		Retrieve from Storage
J87954-10.1	Reginald Saint-Juste	GCMS3A		Load on Instrument
J87954-10.1	GCMS3A	Sophie Zhou		Unload from Instrument
J87954-10.1	Sophie Zhou	Secured Storage		Return to Storage
J87954-10.1	Dave Hunkele		05/19/08 05:58	

Section 5

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
 Matrix Spike and Dupilcate Summaries
 Instrument Performance Checks (BFB)
- Internal Standard Area Summarles
- Surrogate Recovery Summaries
 Initial and Continuing Calibration Summaries

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VD5601-MB1	D140133.D	1	04/12/08	YL	n/a	n/a	VD5601

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Compound	Result	RL	MDL	Units Q
107-02-8	Acrolein	ND	2500	1100	ug/kg
107-13-1	Acrylonitrile	ND	2500	210	ug/kg
71-43-2	Benzene	ND	50	18	ug/kg
75-27-4	Bromodichloromethane	ND	250	13	ug/kg
75-25-2	Bromoform	ND	250	17	ug/kg
74-83-9	Bromomethane	ND	250	44	ug/kg
56-23-5	Carbon tetrachloride	ND	250	47	ug/kg
108-90-7	Chlorobenzene	ND	250	15	ug/kg
75-00-3	Chloroethane	ND	250	34	ug/kg
110-75-8	2-Chloroethyl vinyl ether	ND	1300	69	ug/kg
67-66-3	Chloroform	ND	250	23	ug/kg
74-87-3	Chloromethane	ND	250	35	ug/kg
124-48-1	Dibromochloromethane	ND	250	13	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	250	18	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	250	15	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	250	16	ug/kg
75-71-8	Dichlorodifluoromethane	ND	250	80	ug/kg
75-34-3	1,1-Dichloroethane	ND	250	20	ug/kg
107-06-2	1,2-Dichloroethane	ND	50	21	ug/kg
75-35-4	1,1-Dichioroethene	ND	250	26	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	250	18	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	250	16	ug/kg
78-87-5	1,2-Dichloropropane	ND	250	20	ug/kg
	cis-1,3-Dichloropropene	ND	250	12	ug/kg
	trans-1,3-Dichloropropene	ND	250	12	ug/kg
100-41-4	Ethylbenzene	ND	50	20	ug/kg
75-09-2	Methylene chloride	ND	250	15	ug/kg
79-34-5	1,1,2,2-Tetracbloroethane	ND	250	13	ug/kg
127-18-4	Tetrachloroethene	ND	250	23	ug/kg
108-88-3	Toluene	ND	50	16	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	250	26	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	250	13	ug/kg
79-01-6	Trichloroethene	ND	250	15	ug/kg
75-69-4	Trichlorofluoromethane	ND	250	140	ug/kg
75-01-4	Vinyl chloride	ND	250	32	ug/kg
1330-20-7	Xylene (total)	ND	100	15	ug/kg

ζì

Method Blank Summary
Job Number: J87954
Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample	File 1D	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VD5601-MB1	D140133.D	1	04/12/08	YL	n/a	n/a	VD5601

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-6, J87954-7, J87954-8, J87954-9

	CAS No.	Surrogate Recoveries		Limits			
	1868-53-7	Dibromofluoromethane	88%	68-123%			
	17060-07-0	1,2-Dichloroethane-D4	87%	59-136%			
	2037-26-5	Toluene-D8	97%	75-123%			
	460-00-4	4-Bromofluorobenzene	90%	65-140%			
CAS No. Tentat		Tentatively Identified Co	ompounds	R.T.	Est. Conc.	Units	Q
		Total TIC, Volatile			0	ug/kg	

Page 1 of 2

5

បា

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V3A2092-MB	3A49648.D	1	04/12/08	LY	n/a	n/a	V3A2092

The QC reported here applies to the following samples:

Method: SW846 8260B

Q

J87954-10

CAS No.	Compound	Result	RL	MDL	Units
107-02-8	Acrolein	ND	50	4.3	ug/l
107-13-1	Acrylonitrile	ND	50	1.3	ug/i
71-43-2	Вепzеле	ND	1.0	0.26	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.14	ug/l
75-25-2	Bromoform	ND	4.0	0.18	ug/l
74-83-9	Bromomethane	ND	2.0	0.32	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.18	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.14	ug/l
75-00-3	Chloroethane	ND	1.0	0.22	ug/l
110-75-8	2-Chloroethyl vinyl ether	ND	10	1.0	ug/l
67-66-3	Chloroform	ND	1.0	0.16	ug/l
74-87-3	Chloromethane	ND	1.0	0.29	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.12	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.18	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.26	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.32	ug/l
75-71-8	Dichlorodifluoromethane	ND	5.0	0.88	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.16	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.35	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.29	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.16	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.18	ug/l
10061-01-5	cls-1,3-Dichloropropene	ND	1.0	0.15	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.11	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l
75-09-2	Methylene chloride	ND	2.0	0.16	ug/l
79-34-5	1,1,2,2-Tetrachioroethane	ND	1.0	0.13	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.29	ug/l
108-88-3	Toluene	ND	1.0	0.15	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.17	ug/l
79-01-6	Trichloroethene	ND	1.0	0.18	ug/l
75-69-4	Trichlorofluoromethane	ND	5.0	0.25	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l
1330-20-7	Xylene (total)	ND	1.0	0.39	ug/l
					•

Method Blank Summary
Job Number: J87954
Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample File ID DF V3A2092-MB 3A49648.D 1 Analyzed By 04/12/08 LY Prep Batch Analytical Batch File ID DF Prep Date n/a n/a V3A2092

The QC reported here applies to the following samples:

Total TiC, Volatile

Method: SW846 8260B

ug/l

J87954-10

CAS No.	Surrogate Recoveries		Limits			
1868-53-7	Dibromofluoromethane	101%	76-123%			
17060-07-0	1,2-Dichloroethane-D4	102%	63-140%			
2037-26-5	Toluene-D8	96%	78-117%			
460-00-4	4-Bromofluorobenzene	101%	73-125%			
CAS No.	Tentatively Identified Co	mpounds	R.T.	Est. Conc.	Units	Q

5.1

5.2

5

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

mple	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
05601-BS	D140134.D	1	04/12/08	YL	n/a	n/a	VD5601

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
107-02-8	Acrolein	25000	41300	165* a	32-164
107-13-1	Acrylogitrile	12500	10400	83	58-147
71-43-2	Benzene	2500	2630	105	80-116
75-27-4	Bromodichloromethane	2500	2750	110	81-123
75-25-2	Bromoform	2500	3150	126	74-129
74-83-9	Bromomethane	2500	3340	134* a	62-132
56-23-5	Carbon tetrachloride	2500	3000	120	69-134
108-90-7	Chlorobenzene	2500	2760	110	84-116
75-00-3	Chloroethane	2500	3030	121	62-137
110-75-8	2-Chloroethyl vinyl ether	12500	18300	146* a	
67-66-3	Chloroform	2500	2570	103	78-121
74-87-3	Chloromethane	2500	2670	107	51-149
124-48-1	Dibromochloromethane	2500	2930	117	82-127
95-50-1	1.2-Dichlorobenzene	2500	2590	104	82-116
541-73-1	1,3-Dichiorobenzene	2500	2710	108	79-117
106-46-7	1.4-Dichlorobenzene	2500	2670	107	77-114
75-71-8	Dichlorodifluoromethane	2500	2120	85	45-162
75-34-3	1.1-Dichloroethane	2500	2500	100	77-123
107-06-2	1,2-Dichloroethane	2500	2600	104	74-131
75-35-4	1.1-Dichloroethene	2500	2800	112	70-125
156-59-2	cls-1,2-Dichloroethene	2500	2800	112	77-122
156-60-5	trans-1,2-Dichloroethene	2500	2700	108	74-123
78-87-5	1,2-Dichloropropane	2500	2520	101	81-119
10061-01-5	cis-1,3-Dichloropropene	2500	2430	97	82-120
	trans-1,3-Dichloropropene	2500	2460	98	80-123
100-41-4	Ethylbenzene	2500	2710	108	81-118
75-09-2	Methylene chloride	2500	2680	107	77-123
79-34-5	1.1.2.2-Tetrachloroethane	2500	2250	90	75-125
127-18-4	Tetrachloroethene	2500	3050	122	67-129
108-88-3	Toluene	2500	2710	108	82-118
71-55-6	1,1,1-Trichloroethane	2500	2660	106	74-129
79-00-5	1.1.2-Trichloroethane	2500	2560	102	82-120
79-01-6	Trichloroethene	2500	2550	102	80-119
75-69-4	Trichlorofluoromethane	2500	2600	104	60-148
75-01-4	Vinyl chloride	2500	2770	111	62-139
1330-20-7	Xylene (total)	7500	8900	119	77-124

Blank Spike Summary
Job Number: J87954
Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample VD5601-BS Analytical Batch VD5601 File ID DF Analyzed 04/12/08 By YL Prep Batch Prep Date D140134.D 1 n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Surrogate Recoveries	BSP	Limits 68-1239	
1868-53-7	Dihromofluoromethane	89%		
17060-07-0	1,2-Dichloroethane-D4	87%	59-1369	
2037-26-5	Toluene-D8	99%	75-1239	
460-00-4	4-Bromofluorobenzene	90%	65-1409	

(a) High percent recoveries and no associated positive found in the QC batch.

5.2 ហ

Blank Spike Summary Job Number: J87954

Page 1 of 2

5.2

IJ

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V3A2092-BS	3A49649.D	1	04/12/08	LY	n/a	n/a	V3A2092

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
107-02-8	Acrolein	500	682	136	37-179
107-13-1	Acrylonitrile	250	265	106	63-138
71-43-2	Benzene	50	49.9	100	77-122
75-27-4	Bromodichloromethane	50	52.2	104	76-128
75-25-2	Bromoform	50	50.0	100	60-135
74-83-9	Bromomethane	50	49.5	99	57-149
56-23-5	Carbon tetrachloride	50	50.7	101	72-140
108-90-7	Chlorobenzene	50	49.9	100	80-120
75-00-3	Chloroethane	50	50.9	102	64-139
110-75-8	2-Chloroethyl vinyl ether	250	261	104	67-137
67-66-3	Chloroform	50	50.1	100	79-125
74-87-3	Chloromethane	50	42.3	85	50-152
124-48-1	Dibromochloromethane	50	54.4	109	76-125
95-50-1	1,2-Dichlorobenzene	50	50.3	101	79-116
541-73-1	1,3-Dichlorobenzene	50	49.5	99	75-117
106-46-7	1,4-Dichlorobenzene	50	48.4	97	75-118
75-71-8	Dichlorodifluoromethane	50	34.9	70	51-166
75-34-3	1,1-Dichloroethane	50	49.8	100	74-127
107-06-2	1,2-Dichloroethane	50	55.2	110	66-137
75-35-4	1,1-Dichloroethene	50	47.9	96	69-135
156-59-2	cis-1,2-Dichloroethene	50	48.5	97	75-130
156-60-5	trans-1,2-Dichloroethene	50	50.2	100	70-124
78-87-5	1,2-Dichloropropane	50	52.0	104	80-119
10061-01-5	cis-1,3-Dichloropropene	50	52.8	106	79-120
10061-02-6	trans-1,3-Dichloropropene	50	53.9	108	78-125
100-41-4	Ethylbenzene	50	52.4	105	80-123
75-09-2	Methylene chloride	50	49.9	100	75-135
79-34-5	1,1,2,2-Tetrachloroethane	50	48.6	97	72-118
127-18-4	Tetrachloroethene	50	49.8	100	71-128
108-88-3	Toluene	50	51.5	103	79-122
71-55-6	1,1,1-Trichloroethane	50	48.9	98	77-135
79-00-5	1,1,2-Trichloroethane	50	49.6	99	83-120
79-01-6	Tricbioroethene	50	51.4	103	77-123
75-69-4	Trichlorofluoromethane	50	45.1	90	70-159
75-01-4	Vinyl chloride	50	44.7	89	55-145
1330-20-7	Xylene (total)	150	158	105	77-125

Blank Spike Summary Joh Number: J87954

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample File ID DF V3A2092-BS 3A49649.D 1 Analytical Batch V3A2092 DF Analyzed By 04/12/08 LY Prep Date Prep Batch n/a ̀ n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

CAS No.	Surrogate Recoveries	BSP	Limits	
1868-53-7	Dibromofluoromethane	95%	76-1239	
17060-07-0	1,2-Dichloroethane-D4	96%	63-140%	
2037-26-5	Toluene-D8	100%	78-1179	
460-00-4	4-Bromofluorobenzene	99%	73-125%	

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J87954 Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J87833-1MS	D140153.D	1	04/12/08	YL	n/a	n/a	VD5601
J87833-1MSD	D140154.D	1	04/12/08	YL	n/a	n/a	VD5601
J87833-1	D140147.D	1	04/12/08	YL	n/a	n/a	VD5601

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 2

5.3 CT

J87954-6, J87954-7, J87954-8, J87954-9

		J87833-1 Spike		Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
							•			
107-02-8	Acrolein	ND		33800	12800	38	12300	36	4	9-164/40
107-13-1	Acrylonitrile	ND		16900	12100	72	11500	68	5	43-147/27
71-43-2	Benzene	ND		3380	3120	92	3110	92	0	50-133/26
75-27-4	Bromodichloromethane	ND		3380	3230	96	3260	97	1	49-148/27
75-25-2	Bromoform	ND		3380	3870	115	3870	115	0	40-149/26
74-83-9	Bromomethane	ND		3380	235	7* a	225	7* a	4	12-138/32
56-23-5	Carbon tetrachloride	ND		3380	3740	111	3690	109	i	25-169/26
108-90-7	Chlorobenzene	ND		3380	3350	99	3360	99	0	39-141/28
75-00-3	Chloroethane	ND		3380	384	11	355	11	8	6-141/31
110-75-8	2-Chloroethyl vinyl ether	ND		16900	22400	133	22200	131	1	44-142/28
67-66-3	Chloroform	ND		3380	3010	89	2980	88	1	53-133/26
74-87-3	Chloromethane	ND		3380	3620	107	3460	102	5	29-134/29
124-48-1	Dibromochloromethane	ND		3380	3520	104	3550	105	1	38-163/27
95-50-1	1,2-Dichlorobenzene	ND		3380	3100	92	3100	92	0	22-152/26
541-73-1	1,3-Dichlorobenzene	ND		3380	3240	96	3260	97	1	21-150/28
106-46-7	1,4-Dichlorobenzene	ND		3380	3230	96	3250	96	1	21-148/28
75-71-8	Dichlorodifluoromethane	ND		3380	3420	101	3120	92	9	10-164/28
75-34-3	1,1-Dichloroethane	ND		3380	2890	86	2850	84	1	54-130/26
107-06-2	1,2-Dichloroethane	ND		3380	3140	93	3130	93	0	50-143/25
75-35-4	1,1-Dichloroethene	ND		3380	3360	99	3300	98	2	40-140/26
156-59-2	cis-1,2-Dichloroethene	ND		3380	3270	97	3260	97	0	51-134/26
156-60-5	trans-1,2-Dichloroethene	ND		3380	3200	95	3150	93	2	45-136/26
78-87-5	1,2-Dichloropropane	ND		3380	2940	87	2920	86	1	57-130/25
10061-01-5	cis-1,3-Dichloropropene	ND		3380	2750	81	2760	82	0	46-137/27
10061-02-6	trans-1,3-Dichloropropene	ND		3380	2810	83	2780	82	1	41-143/27
100-41-4	Ethylbenzene	ND		3380	3240	96	3240	96	Ō	36-146/27
75-09-2	Methylene chloride	ND		3380	3180	94	3140	93	1	49-133/25
79-34-5	1,1,2,2-Tetrachloroethane	ND		3380	2560	76	2550	75	Ō	45-135/28
127-18-4	Tetrachloroethene	ND		3380	3860	114	3830	113	1	32-168/29
108-88-3	Toluene	ND		3380	3230	96	3220	95	ō	43-142/26
71-55-6	1,1,1-Trichloroethane	ND		3380	3170	94	3130	93	i	40-146/26
79-00-5	1,1,2-Trichloroethane	ND		3380	3000	89	2980	88	ī	53-137/27
79-01-6	Trichloroethene	ND		3380	3030	90	3020	89	0	42-148/26
75-69-4	Trichlorofluoromethane	ND		3380	3030	90	2990	89	i	22-159/28
75-01-4	Vinyl chloride	ND		3380	3780	112	3570	106	6	33-135/27
1330-20-7	Xylene (total)	ND		10100	10700	106	10600	105	i	31-149/28
	• •								•	110.00

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J87954 Account: DEPALMA CMX

Account:

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample]87833-1MS]87833-1MSD]87833-1	File ID D140153.D D140154.D D140147.D	DF 1 1	Analyzed 04/12/08 04/12/08 04/12/08	By YL YL YL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VD5601 VD5601 VD5601
---	--	--------------	--	----------------------	--------------------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Surrogate Recoveries	MS	MSD	J87833-1	Limits
1868-53-7	Dibromofluoromethane	87%	85%	90%	67-125%
17060-07-0	1,2-Dichloroethane-D4	84%	82%	88%	64-131%
2037-26-5	Toluene-D8	97%	97%	97%	73-124%
460-00-4	4-Bromofluorobenzene	86%	85%	89%	61-136%

(a) Outside control limits due to matrix interference.

5.4

5

Project:

Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J87904-1MS	3A49650.D	1	04/12/08	LY	n/a	n/a	V3A2092
J87904-1	3A49652.D	1	04/12/08	LY	n/a	n/a	V3A2092

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

			7904-1 Spike		MS	MS		
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	Limits	
107-02-8	Acrolein	ND		500	600	120	50-170	
107-13-1	Acrylonitrile	ND		250	259	104	56-144	
71-43-2	Benzene	ND		50	50.1	100	48-137	
75-27-4	Bromodichloromethane	ND		50	52.5	105	74-133	
75-25-2	Bromoform	ND		50	49.4	99	56-137	
74-83-9	Bromomethane	ND		50	53.3	107	51-147	
56-23-5	Carbon tetrachloride	ND		50	54.7	109	54-156	
108-90-7	Chiorobenzene	ND		50	50.1	100	70-124	
75-00-3	Chloroethane	ND		50	55.0	110	51-149	
110-75-8	2-Chloroethyl vinyl ether	ND		250	ND	0* a	1-150	
67-66-3	Chloroform	ND		50	50.4	101	71-133	
74-87-3	Chloromethane	ND		50	51.1	102	44-146	
124-48-1	Dibromochloromethane	ND		50	53.6	107	69-132	
95-50-1	1,2-Dichlorobenzene	ND		50	50.7	101	72-123	
541-73-1	1,3-Dichlorobenzene	ND		50	50.1	100	69-123	
106-46-7	1,4-Dichlorobenzene	ND		50	48.6	97	70-121	
75-71-8	Dichlorodifluoromethane	ND		50	58.4	117	32-171	
75-34-3	1,1-Dichloroethane	ND		50	51.7	103	65-133	
107-06-2	1,2-Dichloroethane	ND		50	52.6	105	66-145	
75-35-4	1,1-Dichloroethene	ND		50	53.3	107	47-141	
156-59-2	cls-1,2-Dichloroethene	ND		50	51.4	103	62-131	
156-60-5	trans-1,2-Dichloroethene	ND		50	50.9	102	57-131	
78-87-5	1,2-Dichloropropane	ND		50	51.2	102	72-127	
10061-01-5	cis-1,3-Dichloropropene	ND		50	54.4	109	69-127	
10061-02-6	trans-1,3-Dichloropropene	ND		50	53.2	106	69-132	
100-41-4	Ethylbenzene	ND		50	53.0	106	48-140	
75-09-2	Methylene chloride	ND		50	49.9	100	64-126	
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	47.5	95	67-125	
127-18-4	Tetrachloroethene	ND		50	52.5	105	54-141	
108-88-3	Toluene	ND		50	52.3	105	48-141	
71-55-6	1,1,1-Trichloroethane	ND		50	52.2	104	58-149	
79-00-5	1,1,2-Trichioroethane	ND		50	49.2	98	74-131	
79-01-6	Trichloroethene	ND		50	52.3	105	60-138	
75-69-4	Trichlorofluoromethane	ND		50	56.0	112	42-169	
75-01-4	Vinyl chloride	ND		50	52.6	105	44-151	
1330-20-7	Xylene (total)	ND		150	161	107	46-141	

Matrix Spike Summary
Job Number: J87954
Account: DEPALMA CMX
Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J87904-1MS	3A49650.D	1	04/12/08	LY	n/a	n/a	V3A2092
J87904-1	3A49652.D	1	04/12/08	LY	n/a	n/a	V3A2092

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

CAS No.	Surrogate Recoveries	MS	J87904-1	Limits
1868-53-7	Dibromofluoromethane	93%	98%	76-123%
17060-07-0	1,2-Dichloroethane-D4	93%	98%	63-140%
2037-26-5	Toluene-D8	99%	95%	78-117%
460-00-4	4-Bromofluorobenzene	99%	102%	73-125%

(a) Outside control limits due to acid preservation.

Page 1 of 2

5.5

Çī

Duplicate Summary

Job Number: J87954

Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
J87904-3DUP	3A49654.D	1	04/12/08	LY	n/a	n/a	V3A2092
J87904-3	3A49653.D	1	04/12/08	LY	n/a	n/a	V3A2092

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

		J87904		DUP			
CAS No.	Compound	ug/l	Q	ug/l	Q	RPD	Limits
107-02-8	Acrolein	ND		ND		B C	10
107-13-1	Acrylonitrile	ND		ND		ac .	10
71-43-2	Benzene	ND		ND		ac	10
5-27-4	Bromodichloromethane	ND		ND		BC	10
75-25-2	Bromoform	ND		ND		EC	10
4-83-9	Bromomethane	ND		ND		nc	10
6-23-5	Carbon tetrachloride	ND		ND		пC	10
08-90-7	Chlorobenzene	ND		ND		nc	10
5-00-3	Chloroethane	ND		ND		nc	10
10-75-8	2-Chloroethyl vinyl ether	ND		ND		nc	10
7-66-3	Chloroform	ND		ND		nc	10
4-87-3	Chloromethane	ND		ND		nc	10
24-48-1	Dibromochioromethane	ND		ND		nc	10
5-50-1	1,2-Dichlorobenzene	ND		ND		пc	10
41-73-1	1,3-Dichlorobenzene	ND		ND		пc	10
06-46-7	1,4-Dichlorobenzene	ND		ND		пc	10
5-71-8	Dichlorodifluoromethane	ND		ND		nc	10
5-34-3	1.1-Dichloroethane	ND		ND		nc	11
07-06-2	1,2-Dichloroethane	ND		ND		пс	10
5-35-4	1,1-Dichloroethene	ND		ND		пс	10
56-59-2	cis-1,2-Dichloroethene	ND		ND		nc	17
56-60-5	trans-1,2-Dichloroethene	ND		ND		nc	10
8-87-5	1,2-Dichloropropane	ND		ND		nc	10
0061-01-5	cis-1,3-Dichloropropene	ND		ND		nc	10
	trans-1,3-Dichloropropene	ND		ND		nc	10
00-41-4	Ethylbenzene	ND		ND		nc	10
5-09-2	Methylene chloride	ND		ND		nc	10
9-34-5	1,1,2,2-Tetrachloroethane	ND		ND		nc	10
27-18-4	Tetrachloroethene	ND		ND		nc	10
08-88-3	Toluene	ND		ND		nc	12
1-55-6	1,1,1-Trichloroethane	ND		ND		nc	10
9-00-5	1,1,2-Trichloroethane	ND		ND		110	10
9-01-6	Trichloroethene	ND		ND		110	13
5-69-4	Trichlorofluoromethane	ND		ND		nc	10
5-01-4	Vinyl chloride	ND		ND		nc	15
330-20-7	Xylene (total)	ND		ND		IIC	14

83 of 307

Duplicate Summary
Job Number: J87954
Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
J87904-3DUP	3A49654.D	1	04/12/08	LY	n/a	n/a	V3A2092	
J87904-3	3A49653.D	1	04/12/08	LY	n/a	n/a	V3A2092	

The QC reported here applies to the following samples:

Method: SW846 8260B

J87954-10

CAS No.	Surrogate Recoveries	DUP	J87904-3	Limits
1868-53-7	Dibromofluoromethane	99%	100%	76-123%
17060-07-0	1,2-Dichloroethane-D4	101%	101%	63-140%
2037-26-5	Toluene-D8	96%	95%	78-117%
460-00-4	4-Bromoffuorobenzene	103%	110%	73-125%

Ċ.

Ŋ

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample: V3A2065-BFB Lab File ID: 3A49012.D Instrument ID: GCMS3A

Injection Date: 03/27/08

Injection Time: 10:49

m/e	Ion Abundance Criteria	Raw Abundance	% Relat: Abunda:		Pass/Fail
50	15.0 - 40.0% of mass 95	2664	18.2		Pass
75	30.0 - 60.0% of mass 95	7376	50.5		Pass
95	Base peak, 100% relative abundance	14610	100.0		Pass
96	5.0 - 9.0% of mass 95	951	6.5		Pass
173	Less than 2.0% of mass 174	0	0.0	(0.0) a	Pass
174	50.0 - 120.0% of mass 95	12250	83.8	•	Pass
175	5.0 - 9.0% of mass 174	971	6.6	(7.9) a	Pass
176	95.0 - 101.0% of mass 174	12073	82.6	(98.6) a	Pass
l <i>77</i>	5.0 - 9.0% of mass 176	929	6.4	(7.7) b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V3A2065-IC2065	3A49013.D	03/27/08	11:28	00:39	Initial cal 1
V3A2065-IC2065	3A49014.D	03/27/08	11:58	01:09	Initial cal 2
V3A2065-IC2065	3A49015.D	03/27/08	12:27	01:38	Initial cal 5
V3A2065-IC2065	3A49016.D	03/27/08	12:56	02:07	Initial cal 20
V3A2065-ICC2065	3A49017.D	03/27/08	13:25	02:36	Initial cal 50
V3A2065-IC2065	3A49018.D	03/27/08	13:53	03:04	Initial cal 100
V3A2065-IC2065	3A49019.D	03/27/08	14:22	03:33	Initial cal 200
V3A2065-ICV2065	3A49021.D	03/27/08	15:20	04:31	Initial cal verification 50

Instrument Performance Check (BFB)
Job Number: J87954

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample: Lab File ID: V3A2092-BFB Injection Date: 04/12/08 3A49645.D Injection Time: 13:13 Instrument ID: GCMS3A

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundan		Pass/Fail
50	15.0 - 40.0% of mass 95	16305	19.0		Pass
75	30.0 - 60.0% of mass 95	40738	47.5		Pass
95	Base peak, 100% relative abundance	85789	100.0		Pass
96	5.0 - 9.0% of mass 95	5658	6.6		Pass
173	Less than 2.0% of mass 174	518	0.6	(0.72) a	Pass
174	50.0 - 120.0% of mass 95	71744	83.6		Pass
175	5.0 - 9.0% of mass 174	5233	6.1	(7.3) a	Pass
176	95.0 - 101.0% of mass 174	68658	80.0	(95.7) a	Pass
177	5.0 - 9.0% of mass 176	4623	5.4	(6.7) b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
V3A2092-CC2065	3A49646.D	04/12/08	13:45	00:32	Continuing cal 20
V3A2092-MB	3A49648.D	04/12/08	14:57	01:44	Method Blank
V3A2092-BS	3A49649.D	04/12/08	15:26	02:13	Blank Spike
J87904-1MS	3A49650.D	04/12/08	15:56	02:43	Matrix Spike
J87904-1	3A49652.D	04/12/08	16:55	03:42	(used for QC only; not part of job J87954)
J87904-3	3A49653.D	04/12/08	17:24	04:11	(used for QC only; not part of job j87954)
J87904-3DUP	3A49654.D	04/12/08	17:54	04:41	Duplicate
ZZZZZZ	3A49655.D	04/12/08	18:23	05:10	(unrelated sample)
ZZZZZZ	3A49656.D	04/12/08	18:52	05:39	(unrelated sample)
ZZZZZZ	3A49657.D	04/12/08	19:22	06:09	(unrelated sample)
J87954-10	3A49658.D	04/12/08	19:51	06:38	TRIP BLANK
ZZZZZZ	3A49659.D	04/12/08	20:21	07:08	(unrelated sample)
ZZZZZZ	3A49660.D	04/12/08	20:50	07:37	(unrelated sample)
ZZZZZZ	3A49661.D	04/12/08	21:20	08:07	(unrelated sample)
ZZZZZZ	3A49662.D	04/12/08	21:49	08:36	(unrelated sample)
ZZZZZZ	3A49663.D	04/12/08	22:18	09:05	(unrelated sample)
ZZZZZZ	3A49664.D	04/12/08	22:48	09:35	(unrelated sample)
ZZZZZZ	3A49665.D	04/12/08	23:17	10:04	(unrelated sample)
ZZZZZZ	3A49666.D	04/12/08	23:46	10:33	(unrelated sample)

5

Page 1 of 1

Instrument Performance Check (BFB)

Job Number: J87954
Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample: Lab File ID: VD5477-BFB Injection Date: 01/25/08 D137101.D Injection Time: 14:28 Instrument ID: GCMSD

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundan		Pass/Fail
50	15.0 - 40.0% of mass 95	21749	15.0	-	Pass
75	30.0 - 60.0% of mass 95	62832	43.4		Pass
95	Base peak, 100% relative abundance	144832	100.0		Pass
96	5.0 - 9.0% of mass 95	9605	6.6		Pass
173	Less than 2.0% of mass 174	742	0.51	$(0.52)^{a}$	Pass
174	50.0 - 120.0% of mass 95	143381	99.0	, ,	Pass
175	5.0 - 9.0% of mass 174	9952	6.9	(6.9) a	Pass
176	95.0 - 101.0% of mass 174	140381	96.9	(97.9) a	Pass
177	5.0 - 9.0% of mass 176	9096	6.3	(6.5) b	Pass

(a) Value is % of mass 174

(b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VD5477-IC5477	D137102.D	01/25/08	14:48	00:20	Initial cal 1
VD5477-IC5477	D137104.D	01/25/08	15:53	01:25	Initial cal 5
VD5477-IC5477	D137105.D	01/25/08	16:23	01:55	Initial cal 20
VD5477-ICC5477	D137106.D	01/25/08	16:53	02:25	Initial cal 50
VD5477-IC5477	D137107.D	01/25/08	17:41	03:13	Initial cal 100
VD5477-IC5477	D137108.D	01/25/08	18:16	03:48	Initial cal 200
VD5477-ICV5477	D137110.D	01/25/08	19:08	04:40	Initial cal verification 50
VD5477-IC5477	D137111.D	01/25/08	19:40	05:12	Initial cal 2
VD5478-MB1	D137114.D	01/25/08	21:00	06:32	Method Blank
VD5478-BS	D137115.D	01/25/08	21:29	07:01	Blank Spike
ZZZZZZ	D137116.D	01/25/08	21:59	07:31	(unrelated sample)
ZZZZZZ	D137117.D	01/25/08	22:28	08:00	(unrelated sample)
J81655-18	D137118.D	01/25/08	22:58	08:30	(used for QC only; not part of job J87954)
J81655-18MS	D137119.D	01/25/08	23:27	08:59	Matrix Spike
J81655-18MSD	D137120.D	01/25/08	23:57	09:29	Matrix Spike Duplicate
ZZZZZZ	D137121.D	01/26/08	00:27	09:59	(unrelated sample)

Page 1 of 1

()I

Instrument Performance Check (BFB)
Job Number: J87954
Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

m/e Ion Abundance Criteria		Raw % Relative Ion Abundance Criteria Abundance Abundance				
50	15.0 - 40.0% of mass 95	15656	15.5		Pass	
75	30.0 - 60.0% of mass 95	44853	44.5		Pass	
95	Base peak, 100% relative abundance	100728	100.0		Pass	
96	5.0 - 9.0% of mass 95	6623	6.6		Pass	
173	Less than 2.0% of mass 174	653	0.65	(0.6) a	Pass	
174	50.0 - 120.0% of mass 95	109155	108.4		Pass	
175	5.0 - 9.0% of mass 174	7929	7.9	(7.3) a	Pass	
176	95.0 - 101.0% of mass 174	108171	107.4	(99.1) a	Pass	
177	5.0 - 9.0% of mass 176	7136	7.1	(6.6) b	Pass	

(a) Value is % of mass 174 (b) Value is % of mass 176

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
	D D				
VD5601-CC5477	D140131.D	04/12/08	00:53	00:28	Continuing cal 50
VD5601-MB1	D140133.D	04/12/08	01:53	01:28	Method Blank
VD5601-BS	D140134.D	04/12/08	02:23	01:58	Blank Spike
ZZZZZZ	D140140.D	04/12/08	05:22	04:57	(unrelated sample)
ZZZZZZ	D140141.D	04/12/08	05:52	05:27	(unrelated sample)
ZZZZZZ	D140142.D	04/12/08	06:22	05:57	(unrelated sample)
J87954-6	D140143.D	04/12/08	06:52	06:27	SB-6
J87954-7	D140144.D	04/12/08	07:22	06:57	SB-7
J87954-8	D140145.D	04/12/08	07:52	07:27	SB-8
J87954-9	D140146.D	04/12/08	08:22	07:57	SB-9
J87833-1	D140147.D	04/12/08	08:52	08:27	(used for QC only; not part of job J87954)
ZZZZZZ	D140148.D	04/12/08	09:22	08:57	(unrelated sample)
ZZZZZZ	D140149.D	04/12/08	09:52	09:27	(unrelated sample)
ZZZZZZ	D140151.D	04/12/08	10:52	10:27	(unrelated sample)
ZZZZZZ	D140152.D	04/12/08	11:22	10:57	(unrelated sample)
J87833-1MS	D140153.D	04/12/08	11:52	11:27	Matrix Spike
J87833-1MSD	D140154.D	04/12/08	12:22	11:57	Matrix Spike Duplicate

Job Number: J87954

DEPALMA CMX Account:

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Check Std: VD5601-CC5477 Injection Date: 04/12/08 Lab File ID: D140131.D Injection Time: 00:53 Instrument ID: GCMSD Method: SW846 8260B

	IS 1	ът	IS 2	DT	IS 3	DT	IS 4	D.M.	IS 5	200
	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
Check Std	81846	7.66	277968	9.91	368294	10.81	339428	14.14	212885	16.73
Upper Limit a	163692	8.16	555 9 36	10.41	736588	11.31	678856	14.64	425770	17.23
Lower Limit b	40923	7.16	138984	9.41	184147	10.31	169714	13.64	106443	16.23
Lab	IS 1		IS 2		IS 3		IS 4		18.5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VD5601-MB1	80375	7.66	279992	9.90	367906	10.81	342906	14.15	199822	16.73
VD5601-BS	78757	7.66	270778	9.90	360247	10.81	338289	14.15	200398	16.73
ZZZZZZ	74501	7.67	258545	9.90	337440	10.81	310432	14.14	179233	16.73
ZZZZZZ	73504	7.67	249000	9.90	326967	10.81	303735	14.14	177281	16.73
ZZZZZZ	69139	7.67	246586	9.90	325396	10.81	299274	14.14	174409	16.73
J87954-6	69922	7.67	238333	9.90	313420	10.81	289050	14.14	167159	16.73
J87954-7	68302	7.67	231148	9.90	305038	10.81	281580	14.14	164287	16.73
J87954-8	66927	7.67	235873	9.90	311193	10.81	285527	14.14	167251	16.73
J87954-9	62293	7.67	221340	9.90	293654	10.81	271878	14.14	158307	16.73
J87833-1	64449	7.67	225034	9.90	298789	10.81	277371	14.15	162481	16.73
ZZZZZZ	63634	7.67	218407	9.90	289661	10.81	269416	14.15	156271	16.73
ZZZZZZ	66010	7.67	222400	9.90	292445	10.81	276988	14.15	163980	16.73
ZZZZZZ	83070	7.67	263517	9.90	337818	10.81	337424	14.14	205129	16.73
ZZZZZZ	87026	7.68	299607	9.90	385984	10.81	374906	14.15	231023	16.73
J87833-1MS	91549	7.67	299392	9.90	386480	10.81	362424	14.15	227524	16.73
J87833-1MSD	90391	7.67	300798	9.90	385390	10.81	359887	14.14	224386	16.73

= Tert Butyl Alcohol-D9 IS 1

IS 2 = Pentafluorobenzene 1S 3 - 1.4-Difluorobenzene

= Chlorobenzene-D5 IS 4 IS 5 = 1,4-Dichlorobenzene-d4

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Job Number: J87954

Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Check Std: Lab File ID: Instrument ID:	V3A2092-CC2065 3A49646.D GCMS3A	Injection Date: Injection Time: Method:			
--	---------------------------------------	---	--	--	--

•	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	
Check Std	72513	8.34	185084	10.77	260295	11.70	188969	14.68	102951	16.83	
Upper Limit a	145026	8.84	370168	11.27	520590	12.20	377938	15.18	205902	17.33	
Lower Limit b	36257	7.84	92542	10.27	130148	11.20	94485	14.18	51476	16.33	
Lab	IS I		IS 2		IS 3		IS 4		IS 5		
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	
V3A2092-MB	60283	8.34	165832	10.77	241517	11.70	171668	14.68	86256	16.84	
V3A2092-BS	70472	8.34	180347	10.77	253924	11.70	191086		102134	16.83	
J87904-1MS	75839	8.34	189550	10.78	267094	11.70	198680	14.68	106011	16.84	
J87904-1	64024	8.33	174138	10.77		11.70	178063	14.68	89571	16.84	
J87904-3	64312	8.33	171397	10.78	249180	11.70	177567		88957	16.84	
J87904-3DUP	61106	8.34	168823	10.78	242941	11.70	171519	14.68	86034	16.84	
ZZZZZZ	62962	8.34	161395	10.77	237152	11.70	166354	14.68	84544	16.84	
ZZZZZZ	57976	8.34	156436	10.77	229320	11.70	182795	14.68	82076	16.84	
ZZZZZZ	55683	8.34	154892	10.78	226903	11.70	160651	14.68	80672	16.84	
J87954-10	57637	8.34	153046	10.77	224106	11.70	158448	14.68	80628	16.84	
ZZZZZZ	58148	8.34	150592	10.77	219779	11.70	154749	14.68	79089	16.84	
ZZZZZZ	63427	8.33	161494	10.77	229298	11.70	187168	14.68	83419	16.84	
ZZZZZZ	68878	8.34	156838	10.78	228069	11.70	162467	14.68	83931	16.84	
ZZZZZZ	54606	8.33	149689	10.77	219221	11.70	155078	14.68	79017	16.84	
ZZZZZZ	62658	8.34	149259	10.77	221836	11.70	155231	14.68	79148	16.84	
ZZZZZZ	53235	8.34	147566	10.78	218287	11.70	155628	14.68	78801	16.84	
ZZZZZZ	52910	8.34	142676	10.77	210404	11.70	150188	14.68	76797	16.84	
ZZZZZZ	52671	8.34	139462	10.77	210249	11.70	147253	14.68	74465	16.84	

IS 1 = Tert Butyl Alcohol-D9

= Pentafluorobenzene IS 2

IS 3 = 1,4-Difluorobenzene IS 4 = Chlorobenzene-D5

IS 5 = 1,4-Dichlorobenzene-d4

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Page 1 of 1

5

Volatile Surrogate Recovery Summary
Job Number: J87954
Account: DEPALMA CMX

Page 1 of 1

Ŋ

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Method: SW846 8260B	Matrix:	AQ	

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	SI	S2	S3	S4
J87954-10	3A49658.D	105.0	107.0	95.0	102.0
J87904-1MS	3A49650.D	93.0	93.0	99.0	99.0
J87904-3DUP	3A49654.D	99.0	101.0	96.0	103.0
V3A2092-BS	3A49649.D	95.0	96.0	100.0	99.0
V3A2092-MB	3A49648.D	101.0	102.0	96.0	101.0
Surrogate		Recover	ry		

S1 = Dibromofluoromethane	76-123%
S2 = 1,2-Dichloroethane-D4	63-140%
S3 = Toluene-D8	78-117%
S4 = 4-Bromofluorobenzene	73-125%

Volatile Surrogate Recovery Summary
Job Number: J87954

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Method: SW846 8260B Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	SI	S2	S3	S4
J87954-6	D140143.D	88.0	89.0	97.0	90.0
J87954-7	D140144.D	89.0	90.0	96.0	89.0
J87954-8	D140145.D	89.0	88.0	96.0	89.0
J87954-9	D140146.D	90.0	89.0	97.0	88.0
J87833-1MS	D140153.D	87.0	84.0	97.0	86.0
J87833-1MSD	D140154.D	85.0	82.0	97.0	85.0
VD5601-BS	D140134.D	89.0	87.0	99.0	90.0
VD5601-MB1	D140133.D	88.0	87.0	97.0	90.0

Surrogate Compounds	Recovery Limits
S1 = Dibromofluoromethane	68-123%
S2 = 1,2-Dichloroethane-D4	59-136%
S3 = Toluene-D8	75-123%
S4 = 4-Bromofluorobenzene	65-140%

ហ

Page 1 of 3 V3A2065-ICC2065 3A49047 P Initial Calibration Summary
Job Number: J87954
Account: DEPALMA CMX Sample:

Lab FileID: 3A49017.D

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Response Factor Report MS3A

: C:\MSDCHEM\1\METHODS\M3A2065.M (RTE Integrator) : SW-846 Method 8260 Method Title

Title : SW-846 Method Last Update : Fri Mar 28 09:		2000						
Response via : Initial Calibr								
Calibratian Bilan								
Calibration Files 1 =3A49013.D 2 =3A49014	4.D	100 =3	A49018	l - D	50 =3 <i>z</i>	49017	n	
20 =3A49016.D 200 =3A49019	9.D	5 =3	A49015	.D	. J.			
Compound 1	2	100	50	20	200	5	Avg	%RSD
1) I Tert Butyl Alcohol-d9 2)M tertiary butyl al 3)M 1,4-dioxane		1 320	1 310	STD	1 3/12	1 2//	1 222	1 65
3)M 1.4-dioxane		0.117	0.116	0.109	0.123	0.109	0.115	5.02
4) ethanol					******		0.000#	-1.00
5) I pentafluorobenzene			1	STD			-	
6)M chlorodifluoromet 0.652 (0.522	0.680	0.660	0.639	0.672	0.668	0.642	8.49
7)M dichlorodifluorom (0.639	0.836	0.800	0.795	0.812	0.781	0.777	9.03
8)M chloromethane 0.740 (0.740	0.811	0.795	0.806	0.789	0.820	0.786	4.19
8) M chloromethane 0.740 (9) M vinyl chloride 0.628 (0.657	0.739	0.722	0.728	0.729	0.746	0.707	6.43
10)M acetaldehyde 11)M bromomethane 0.584 (12)M chloroethane 0.379 (13)M trichlorofluorome 0.951 (0 574				0.000#	-1.00
11)M Dromometnane U.584 (0.546	0.552	0.5/4	0.617	0.440	0.629	0.563	11.07
13)M trichlorofluorome 0.951 (0.390	1 114	1 079	1 111	1 000	1 126	1 060	7.09
14)M montano							0.000#	1 00
15)M ethvl ether		0.367	0.357	0.338	0.375	0.287	0.345	10.16
15)M ethyl ether 16)M acrolein 0.048 (0.054	0.076	0.075	0.073	0.078	0.065	0.067	17.84
Linear regre	ession		Coef	ficie	nt = 0	.9999		
Response Ratio	= -0.0	1663 +	0.077	78 *A				
17)M 1,1-dichloroethen 0.519 (0.536	0.595	0.588	0.577	0.599	0.554	0.567	5.45
18)M acetone							0.197	15.84
Linear regre Response Ratio =						.9995		
-								
19)M allyl chloride (20)M acetonitrile 21)M iodomethane 1.100 (0.303	0.399	0.390	0.374	0.402	0.327	0.366	11.28
20)M acetonitrile		0.057	0.058	0.060	0.057	0.052	0.057	5.05
21)M lodomethane 1.100 (0.960	1.142	1.129	1.086	1.150	1.053	1.089	6.07
22)M iso-butyl alcohol (23)M carbon disulfide 1.998	1 70/	1 075	1 047	1 002	1 000	1.020	0.020	5.90
24) M methylene chlorid 0.694 (0.651	0.678	0.673	0.675	0 684	0 675	0 676	3.84 1.95
							0.472	
26) M methyl tert butyl 1.669	1.522	1.951	1.943	1.858	1.937	1.683	1.795	9.47
27)M trans-1,2-dichlor 0.643 (
28)M di-isopropyl ethe 1.738 1	1.624	2.074	2.027	1.992	1.972	1.967	1.913	8.68
29)M 2-butanone								11.55
30)M 1,1-dichloroethan 1.150 1	1.115	1.135	1.156	1.166	1.103	1.132	1.137	2.00
31)M chioroprene (0.636	0.895	0.849	0.820	0.884	0.779	0.810	11.78
31)M chloroprene (32)M acrylonitrile (33)M vinyl acetate	0.103	0.231	0.234	0.226	0.233	0.204	0.219	9.45
Linear regre	ession		Coef	ficie	nt = (.9996	0.030	23.00
Response Ratio								
34)M ethyl tert-butyl 1.566 1	1.464	2.051	1.963	1.898	2.032	1.857	1.833	12.53
35)M ethyl acetate		0.084	0.089	0.074	0.082	0.060	0.078	14.52
36)M 2,2-dichloropropa 0.995 (0.891	1.024	1.036	1.009	0.996	0.975	0.989	4.82

5.9

Initial Calibration Summary

Job Number: J87954

Account: DEPALMA CMX
Project: Camden Laboratories, 1667 Davis Street, Camden, NJ Page 2 of 3 V3A2065-ICC2065 Sample: Lab FileID: 3A49017.D

37)M cis-1,2-dichloroe	0.655	0.650	0.723	0.729	0.715	0.718	0.671	0.695	4.96
38) methylacrylate 39)M propionitrile			0.700	0.683	0.637	0.718	0.510	0.650	12.85
39)M propionitrile		0.070	0.093	0.092	0.089	0.094	0.082	0.087	10.51
40)M bromochloromethan	0.319	0.341							5.94
41)M tetrahydrofuran					0.177				8.77
					1.158				3.04
43)S dibromofluorometh									5.17
44)S 1,2-dichloroethan									6.29
45)M freon 113		0.411			0.516				9.62
45)M freon 113 46)M methacrylonitrile					0.364				9.95
47)M 1,1,1-trichloroet	1.006	0.935	1.054	1.043	1.034	1.044	0.997	1.016	4.07
48)M Cyclohexane	0.817	0.801	0.929	0.915	0.911	0.921	0.858	0.879	6.05
49) I 1,4-difluoroben	zene				ISTD				
501M Di-isobutylene								0.000#	-1 00
51)M epichlorohydrin			0.036	0.036	0.034	0.036	0.033	0.035	4.40
51)M epichlorohydrin 52)M n-butyl alcohol			0.010	0.010	0.009	0.010	0.009	0.009#	6.83
53)M carbon tetrachlor	0.665	0.603	0.673	0.685	0.684	0.664	0.655	0.661	4.24
54)M 1,1-dichloroprope	0.541	0.515	0.585	0.595	0.582	0.580	0.551	0.564	5.15
55)M hexane									12.40
56) tert amyl alcohol						-		0.000#	
57)M benzene	1.706	1.683	1.589	1.635	1.654	1.531	1.596	1.628	3.70
58)M tert-amyl methyl 59)M heptane 60)M isopropyl acetate		1.128	1.296	1.314	1.298	1.202	1.334	1.262	6.34
59)M heptane		0.211	0.297	0.286	0.288	0.292	0.282	0.276	11.72
60)M isopropyl acetate		0.639	0.751	0.743	0.701	0.741	0.693	0.711	5.99
61)M 1,2-dichloroethan	0.604	0.591	0.586	0.615	0.620	0.551	0.595	0.594	3.79
62)M ethyl acrylate								0.000#	-1.00
63)M trichloroethene	0.380	0.405	0.429	0.432	0.421	0.430	0.408	0.415	4.55
64) tert-amyl ethyl e								0.000#	-1.00
64) tert-amyl ethyl e 65)M methyl methacryla			0.924	0.933	0.618	0.893	0.558	0.785	23.16
Linea	r regi	ression	n	- Coe	fficie	nt = 1	0.9981		
Response	Ratio	= -0.0	3507 -	0.91	076 *A				
66)M 2-nitropropane			0.264	0.275	0.265	0.272	0.267	0.269	1.78
67)M 2-chloroethyl vin		0.174	0.242	0.252	0.247	0.225	0.243	0.231	12.60
68)M 1,2-dichloropropa									4.15
69) M dibromomethane									5.47
70) M methylcyclohexane	0.560	0.495	0.707	0.676	0.670	0.690	0.640	0.634	12.28
71)M bromodichlorometh									7.78
72)M cis-1, 3-dichlorop									11.80
73)S toluene-d8 (s)									6.51
74)M 4-methyl-2-pentan		0.333	0.506	0.507	0.475	0.518	0.455	0.466	14.83
75)M toluene	0.799	0.739	0.893	0.897	0.872	0.892	0.826	0.846	7.09
76)M 3-methy1-1-butano									5.56
77)M trans-1,3-dichlor									12.98
78)M ethyl methacrylat									15.12
Linea									
Response									
79)M 1,1,2-trichloroet									
	0 275	0 264	N 285	0 284	0 276	U 286	0 277	0 279	2 80
	0.275	0.264							2.89
80)M 2-hexanone			0.211	0.207	0.184	0.219	0.156	0.195	2.89 13.05
80)M 2-hexanone 81) I chlorobenzene-d	5		0.211	0.207	0.184 [STD	0.219	0.156	0.195	
80)M 2-hexanone 81) I chlorobenzene-d 82)M tetrachloroethene	5 0.458	0.427	0.211	0.207	0.184 ISTD 0.441	0.219	0.156	0.195 0.431	13.05 4.42
80)M 2-hexanone 81) I chlorobenzene-d	5 0.458	0.427	0.211	0.207	0.184 ISTD 0.441	0.219	0.156	0.195 0.431	13.05
80)M 2-hexanone 81) I chlorobenzene-d 82)M tetrachloroethene 83)M 1,3-dichloropropa 84)M butyl acetate	5 0.458 0.692	0.427 0.650	0.211 0.423 0.686 0.268	0.207 0.441 0.719 0.274	0.184 ISTD 0.441 0.717 0.258	0.219 0.397 0.651 0.262	0.156 0.429 0.704 0.249	0.195 0.431 0.688 0.262	13.05 4.42
80)M 2-hexanone 81) I chlorobenzene-d 82)M tetrachloroethene 83)M 1,3-dichloropropa 84)M butyl acetate 85)M dibromochlorometh	5 0.458 0.692 0.463	0.427 0.650 0.463	0.211 0.423 0.686 0.268 0.582	0.207 0.441 0.719 0.274 0.581	0.184 ISTD 0.441 0.717 0.258 0.546	0.219 0.397 0.651 0.262 0.581	0.156 0.429 0.704 0.249 0.504	0.195 0.431 0.688 0.262 0.531	13.05 4.42 4.16
80)M 2-hexanone 81) I chlorobenzene-d 82)M tetrachloroethene 83)M 1,3-dichloropropa 84)M butyl acetate	5 0.458 0.692 0.463	0.427 0.650 0.463	0.211 0.423 0.686 0.268 0.582	0.207 0.441 0.719 0.274 0.581	0.184 ISTD 0.441 0.717 0.258 0.546	0.219 0.397 0.651 0.262 0.581	0.156 0.429 0.704 0.249 0.504	0.195 0.431 0.688 0.262 0.531	4.42 4.16 3.65
80)M 2-hexanone 81) I chlorobenzene-d. 82)M tetrachloroethene (83)M 1,3-dichloropropa (84)M butyl acetate 85)M dibromochlorometh (86)M 1,2-dibromoethane (87)M chlorobenzene	5 0.458 0.692 0.463 0.390 1.339	0.427 0.650 0.463 0.384 1.202	0.211 0.423 0.686 0.268 0.582 0.473 1.262	0.207 0.441 0.719 0.274 0.581 0.472 1.278	0.184 ISTD 0.441 0.717 0.258 0.546 0.455 1.259	0.219 0.397 0.651 0.262 0.581 0.469 1.225	0.156 0.429 0.704 0.249 0.504 0.424 1.267	0.195 0.431 0.688 0.262 0.531 0.438 1.262	4.42 4.16 3.65 10.21
80)M 2-hexanone 81) I chlorobenzene-di 82)M tetrachloroethene (83)M 1,3-dichloropropa (84)M butyl acetate 85)M dibromochlorometh (86)M 1,2-dibromoethane (86)M 1,2-dibromoeth	5 0.458 0.692 0.463 0.390 1.339	0.427 0.650 0.463 0.384 1.202	0.211 0.423 0.686 0.268 0.582 0.473 1.262	0.207 0.441 0.719 0.274 0.581 0.472 1.278	0.184 ISTD 0.441 0.717 0.258 0.546 0.455 1.259	0.219 0.397 0.651 0.262 0.581 0.469 1.225	0.156 0.429 0.704 0.249 0.504 0.424 1.267	0.195 0.431 0.688 0.262 0.531 0.438 1.262	4.42 4.16 3.65 10.21 8.89

5.9

5

Page 1 of 3

Job Number: 187954 DEPALMA CMX Account:

Lab FileID: 3A49021.D

Project: Camden Laboratories, 1667 Davis Street, Camden, NI

Evaluate	Continuing	Calibration	Report

Data File : C:\MSDCHEM\1\DATA\V3A2062-2066\3A49021.D Vial: 11 Acq On : 27 Mar 2008 3:20 pm Operator: NIPAP : ICV2065-50 Sample Inst : MS3A Misc : MS62339, V3A2065, W, , , , 1 Multiplr: 1.00 MS Integration Params: RTEINT.P

: C:\MSDCHEM\1\METHODS\M3A2065.M (RTE Integrator)

: SW-846 Method 8260 Last Update : Fri Mar 28 09:27:29 2008 Response via : Multiple Level Calibration

: 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.30min

Max. Rel. Area : 200% Max. RRF Dev : 20%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(m	in)R.T
1 I	Tert Butyl Alcohol-d9	1.000					8.3
2 M	tertiary butyl alcohol			4.6		0.00	8.4
3 M	1,4-dioxane	0.115			118	0.00	12.3
4	ethanol	0.000	0.092	0.0	0#	0.00	7.0
5 I	pentafluorobenzene	1.000		0.0	109	0.00	10.7
6 M	chlorodifluoromethane	0.642		-9.2	116	0.00	4.4
7 M	dichlorodifluoromethane	0.777	0.744	4.2	102	0.00	4.3
8 M	chloromethane	0.786	0.792	-0.8		0.00	4.8
9 M			0.788			0.00	5.1
10 M	acetaldehyde	0.000	0.000#	0.0	158	0.01	5.3
l M	bromomethane		0.612			0.00	5.8
2 M	chloroethane	0.432				0.00	6.0
13 M	trichlorofluoromethane	1.060	1.091	-2.9	111	0.00	6.6
14 M	pentane			NA			
.5 M	ethyl ether	0.345	0.368	-6.7	113	0.00	7.0
.6 M	acrolein	500.000	704.812	-41.0#	157	0.00	7.3
		AvgRF					
.7 M	1,1-dichloroethene	0.567	0.601	-6.0	112	0.00	7.5
		True	Calc.	% Drift			
.8 M	acetone	50.000	45.881	8.2	96	0.00	7.6
				% Dev			
.9 M	allyl chloride	0.366		-6.3	109	0.00	8.1
M 0	acetonitrile	0.057			111	0.01	8.1
1 M	iodomethane	1.089	1.221	-12.1	118	0.00	7.9
2 M	iso-butyl alcohol				105	0.00	11.3
3 M	carbon disulfide	1.928		-12.2	122	0.00	8.0
4 M	methylene chloride methyl acetate	0.676		-4.1	114	0.00	8.3
5 M		0.472			113	0.00	8.1
6 M	methyl tert butyl ether	1.795		-7.2	108	0.00	8.7
7 M	methyl tert butyl ether trans-1,2-dichloroethene	0.620		-8.2	117	0.00	8.8
8 M	di-isobiobal enier	1.713			115	0.00	9.4
9 M	2-butanone	0.833		-6.5	108	0.00	10.2
0 M	1,1-dichloroethane				109	0.00	9.4
1 M	chloroprene	0.810		-12.0	117	0.00	9.5
2 M	acrylonitrile	0.219	0.199	9.1	93	0.00	8.7

Project: Camden Laboratories, 1667 Davis Street, Camden, NI 89)M ethylbenzene 1.844 1.780 2.018 2.074 2.063 1.923 1.917 1.946 5.73 90)M m, p-xylene 0.690 0.662 0.772 0.789 0.802 0.731 0.750 0.742 6.95 91)M o-xylene 0.594 0.588 0.766 0.785 0.763 0.740 0.677 0.702 11.85 92)M styrene 1.206 1.216 1.145 1.162 0.972 1.140 8.64 93)M bromoform 0.291 0.386 0.375 0.405 0.394 0.311 0.360 13.15 94) I 1,4-dichlorobenzene-d -----ISTD-----ISTD-----95) M isopropylbenzene 2.363 3.358 3.327 3.452 3.361 2.755 3.103 14.21 0.990 1.111 1.070 1.127 1.096 1.082 1.080 96)S 4-bromofluorobenz 4.46 97) cyclohexanone 0.032 0.043 0.044 0.045 0.045 0.037 0.041 13.05 98) M bromobenzene 1.071 0.954 1.005 1.033 1.060 0.959 1.033 1.016 4.52 99)M 1.1.2,2-tetrachlo 1.120 0.893 0.948 0.942 0.946 0.970 0.953 0.967 7.38 100)M trans-1.4-dichlor 0.261 0.249 0.241 0.268 0.190 0.242 12.72 101)M 1,2,3-trichloropr 0.276 0.285 0.285 0.289 0.282 0.304 0.287 3.22 102)M n-propylbenzene 3.313 3.239 4.126 4.188 4.213 3.947 3.790 3.831 10.63 103)M 2-chlorotoluene 2.604 2.581 2.965 3.007 3.043 2.843 2.897 2.849 104)M 4-chlorotoluene 2.405 2.204 2.693 2.679 2.701 2.682 2.461 2.547 7.61 2.257 3.140 3.137 3.132 3.065 2.708 2.906 12.35 105)M 1,3,5-trimethylbe 106)M tert-butylbenzene 1.290 1.887 1.884 1.842 1.877 1.617 1.733 13.86 107)M pentachloroethane 0.632 0.611 0.718 0.724 0.694 0.722 0.679 0.683 108)M 1,2,4-trimethylbe 2.304 2.301 3.226 3.186 3.176 3.191 2.832 2.888 14.60 109)M sec-butylbenzene 2.831 2.834 3.959 3.966 3.865 3.927 3.367 3.536 14.80 110)M 1,3-dichlorobenze 1.955 1.844 1.919 1.965 1.935 1.934 1.909 1.923 111)M p-isopropyltoluen 2.421 3.485 3.473 3.377 3.436 2.953 3.191 13.37 112)M vinyltoluene 0.000# -1.00 113)M 1,4-dichlorobenze 2.353 1.993 1.988 1.982 1.982 1.971 2.010 2.040 6.80 114)M 1,2-dichlorobenze 1.934 1.770 1.912 1.918 1.917 1.868 1.855 1.882 115)M benzyl chloride 2.138 2.141 1.962 2.097 1.996 2.067 4.02 116)M n-butylbenzene 2.218 3.202 3.171 3.072 3.136 2.677 2.913 13.42 117)M 1,2-dibromo-3-chl 0.170 0.170 0.162 0.180 0.146 0.166 7.64 118)M 1,2,4-trichlorobe 1.078 0.895 1.291 1.298 1.243 1.270 1.071 1.164 13.12 119)M hexachlorobutadie 0.706 0.668 0.679 0.685 0.709 0.660 0.704 0.687 2.85 120) M naphthalene 2.327 2.351 2.228 2.427 1.771 2.221 11.77 121)M 1,2,3-trichlorobe 0.862 0.844 0.987 1.029 1.042 0.978 0.952 0.956 8.07 122)M hexachloroethane 0.506 0.654 0.640 0.606 0.649 0.546 0.600 10.19

Sample:

Lab FileID: 3A49017.D

(#) = Out of Range

M3A2065.M

Initial Calibration Summary

DEPALMA CMX

Job Number: J87954

Account:

Fri Mar 28 09:29:14 2008 NJVOA08

Page 3 of 3

5

V3A2065-ICC2065

Initial Job Num Account: Project:	Calibration Verification ber: J87954 DEPALMA CMX Camden Laboratories, 1667 Davis Street, Camden, NJ			Sample: Lab FileID:	Page 3 of 3 V3A2065-ICV2065 3A49021.D			
81 I	chlorobenzene-d5	1.000	1.000	0.0	112	0.00	14.68	
82 M	tetrachloroethene	0.431	0.448	-3.9	114	0.00	13.89	
83 M	1,3-dichloropropane	0.688	0.714	-3.8	111	0.00	13.89	
84 M	butyl acetate	0.262	0.270	-3.1	110	0.00	13.93	
85 M	dibromochloromethane	0.531	0.566	-6.6	109	0.00	14.14	
86 M	1, 2-dibromoethane	0.438	0.473	-8.0	112	0.00	14.28	
87 M	chlorobenzene	1.262	1.299	-2.9	114	0.00	14.71	
88 M	1, 1, 1, 2-tetrachloroethane	0.506	0.523	-3.4	110	0.00	14.76	
89 M	ethylbenzene	1.946	2.115	-8.7	114	0.00	14.75	
90 M	m, p-xylene	0.742	0.809	-9.0	115	0.00	14.85	
91 M	o-xylene	0.702	0.786	-12.0	112	0.00	15.24	
92 M	styrene	1.140	1.284	-12.6	118	0.00	15.25	
93 M	bromoform	0.360	0.365	-1.4	109	0.00	15.50	
94 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	109	0.00	16.84	
95 M	isopropylbenzene	3.103	3.359	-8.3	110	0.00	15.55	
96 S	4-bromofluorobenzene (s)	1.080	1.110	-2.8	113	0.00	15.75	
97	cyclohexanone	0.041	0.030	26.8#	75	0.00	15.71	
98 M	bromobenzene	1.016	1.048	-3.1	111	0.00	15.93	
99 M	1,1,2,2-tetrachloroethane	0.967	0.978	-1.1	113	0.00	15.83	
100 M	trans-1,4-dichloro-2-bute	0.242	0.237	2.1	104	0.00	15.87	
101 M	1,2,3-trichloropropane	0.287	0.261	9.1	100	0.00	15.91	
102 M	n-propylbenzene	3.831	4.384	-14.4	114	0.00	15.93	
103 M	2-ch1orotoluene	2.849	3.043	-6.8	111	0.00	16.08	
104 M	4-chlorotoluene	2.547	2.741	-7.6	112	0.00	16.16	
105 M	1,3,5-trimethylbenzene	2.906	3.253	-11.9	113	0.00	16.07	
106 M	tert-butylbenzene	1.733	1.879	-8.4	109	0.00	16.40	
107 M	pentachloroethane	0.683	0.688	-0.7	104	0.00	16.48	
108 M	1,2,4-trimethylbenzene	2.888	3.292	-14.0	113	0.00	16.44	
109 M	sec-butylbenzene	3.536	4.087	-15.6	113	0.00	16.59	
110 M	1,3-dichlorobenzene	1.923	1.953	-1.6	109	0.00	16.78	
111 M	p-isopropyltoluene	3.191	3.494	-9.5	110	0.00	16.70	
112 M	vinyltoluene	0.000	0.0004	0.0	103	0.00	16.83	
113 M	1,4-dichlorobenzene	2.040	2.028	0.6	112	0.00	16.86	
114 M	1,2-dichlorobenzene	1.882	1.949	-3.6	111	0.00	17.23	
115 M	benzyl chloride	2.067	2.034	1.6	104	0.00	16.96	
116 M	n-butylbenzene	2.913	3.176	-9.0	109	0.00	17.09	
117 M	1,2-dibromo-3-chloropropa	0.166	0.163	1.8	105	0.00	17.99	
118 M	1, 2, 4-trichlorobenzene	1.164	1.328	-14.1	112	0.00	18.83	
119 M	hexachlorobutadiene	0.687	0.743	-8.2	118	0.00	18.94	
120 M	nexteniorodactatene	0.007	2 460	11 1		0.00	10.33	

2.221

0.956

0.600 0.596

2.468

1.051

(#) = Out of Range SPCC's out = 0 CCC's out = 0 3A49017.D M3A2065.M Fri Mar 28 09:28:48 2008 NJVOA08

120 M naphthalene

121 M 1,2,3-trichlorobenzene

122 M hexachloroethane

ob Num Account: Project:	Calibration Verification ber: J87954 DEPALMA CMX Camden Laboratories, 1667 Dav	is Street, Ca	amden, NJ	Sample: Lab FileID:		A2065-ICV 9021.D	Page 2 of 2 2065
			Calc.	% Drift			
33 M	vinyl acetate	50.000	54.702	-9.4	122	0.00	9.42
		- AvaRF	CCRF	% Dev			
34 M	ethyl tert-butyl ether	1.633	2.080	-13.5	116	0.00	9.91
35 M	ethyl acetate	0.078	0.094 0.984	-20.5#		0.00	10.21
36 M	2,2-dichloropropane	0.989	0.984	0.5		0.00	10.23
37 M	cis-1,2-dichioroethene	0.695	0.716			0.00	10.23
38	methylacrylate	0.650	0.648	0.3		0.00	10.30
39 M	propionitrile	0.087	0.075 0.378	13.8		0.00	10.29
40 M	bromochloromethane	0.356	0.378	-6.2	111	0.00	10.56
11 M	tetrahydrofuran		0.183			0.00	10.60
12 M	chloroform	1.171	1.166	0.4	109	0.00	10.62
13 S	dibromofluoromethane (s) 1,2-dichloroethane-d4 (s)	0.629	0.628	0.2 5.6	113	0.00	10.83
44 5		0.734	0.693	5.6	108	0.00	11.26
15 M	freon 113	0.508		-10.6		-0.01	7,54
16 M	freon 113 methacrylonitrile	0.379				0.00	10.49
17 M	I, I, I - CLICITOLOE CHAILE	1.016	1.041	-2.5		0.00	10.88
18 M	Cyclohexane	0.879	0.735	16.4	88	0.00	10.96
49 I	1,4-difluorobenzene	1.000	1.000	0.0	112	0.00	11.70
50 M	Di-isobutylene	0.000	0.000#	0.0	111	0.00	11.82
51 M	epichlorohydrin	0.035 0.009	0.035		110	0.00	12.90
52 M	epichlorohydrin n-butyl alcohol	0.009	0.010#	-11.1	112	0.00	11.82
53 M	carbon tetrachloride	0.661	0.676	-2.3	111		11.10
54 M	1,1-dichloropropene	0.564					11.07
55 M	hexane	0.516	0.585	-13.4	119		9.14
56	tert amyl alcohol			NA		_	
57 M	benzene	1.628	1.689	-3.7 -4.8 -9.1 -4.2	116	0.00	11.34
58 M	tert-amyl methyl ether	1.262	1.322	-4.8	113	0.00	11.36
59 M	heptane	0.276	0.301	-9.1	118	0.00	11.50
60 M	isopropyl acetate	0.711	0.741	-4.2 1.3	112	0.00	11.25
61 M	1,2-dichloroethane	0.594	0.586	1.3	107	0.00	11.35
62 M	ethyl acrylate trichloroethene	0.000	0.000#	0.0	TII	0.00	11.82
63 M		0.415	0.433			0.00	12.03
64	tert-amyl ethyl ether			NA		-	
		- True	Calc.	% Drift			
65 M	methyl methacrylate	50.000	34.640	30.7#	72	0.00	12.28
		- AvaRF	CCRF	% Dev			
66 M	2-nitropropane	0.269		3.3		0.00	13.09
67 M	2-chloroethyl vinyl ether					0.00	
68 M	1,2-dichloropropane	0.388	0.402	-3.6	112	0.00	12.28
69 M	dibromomethane	0.268	0.271	-1.1	107	0.00	12.44
70 M	methylcyclohexane	0.634	0.730	-15.1	121	0.00	12.25
71 M							12.56
72 M	cis-1,3-dichloromethane cis-1,3-dichloropropene toluene-d8 (s) 4-methyl-2-pentanone	0.595	0.650	-9.2	111	0.00	12.99
73 S	toluene-d8 (s)	1.258	1.310	-4.1	116	0.00	13.27
74 M	4-methyl-2-pentanone	0.466	0.490	-5.2	108		13.08
75 M	toluene	0.846	0.915	-8.2	115		13.33
76 M	3-methyl-1-butanol		0.014	-7.7	111	0.00	13.09
77 M	trans-1,3-dichloropropene	0.540	0.589	-9.1		0.00	13.52
		- True	Calc.	% Drift			
78 M			48.579			0.00	13.50
	-						_0.00
	1 1 0 4 2 2 1 2 2 2 2 2		CCRF	% Dev			
79 M 30 M	1,1,2-trichloroethane		0.282	-1.4			
OU M	2-hexanone	0.195	0.197	-1.0	107	0.00	13.87

5.9

19.12

19.37

-11.1 115 0.00

-9.9 111 0.00

0.7 102 0.00 17.49

Continuing Calibration Summary Job Number: J87954 Page 1 of 3 V3A2092-CC2065 Sample:

Account: Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

DEPALMA CMX Lab FileID: 3A49646.D

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\V3A2090-2093\3A49646.D
Acq On : 12 Apr 2008 1:45 pm O Vial: 2 Operator: 1iy Sample : CC2065-20
Misc : MS63192,V3A2092,W,,,,1
MS Integration Params: RTEINT.P Inst : MS3A Multiplr: 1.00

Method : C:\MSDCHEM\1\METHODS\M3A2065.M (RTE Integrator)
: SW-846 Method 8260

Title Last Update : Fri Mar 28 09:27:29 2008 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.30min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	MAL DEV . 200 PMA. NO	i. Alca	. 2000				
	Compound	AvgRF	CCRF	%Dev /	Areat	Dev(m	in)R.T.
1 I	Tert Butyl Alcohol-d9	1.000	1.000	0.0	95	0.00	8.34
2 M	tertiary butyl alcohol	1.322		17.1	80	0.00	8.47
3 M	1,4-dioxane	0.115		18.3	82	0.00	12.39
4	ethanol	0.000		0.0	0#	0.01	7.09
7	echanor	0.000	0.031	0.0	0#	0.01	7.09
5 I	pentafluorobenzene	1.000	1.000	0.0	94	0.00	10.77
6 M	chlorodifluoromethane	0.642		-1.6	96	0.00	4.43
7 M	dichlorodifluoromethane	0.777	0.818	-5.3	97	0.00	4.39
8 M	chloromethane	0.786		2.4	90	-0.01	4.80
9 M	vinyl chloride	0.707		8.1	84	-0.02	5.11
10 M	acetaldehyde	0.000		0.0	77	0.03	5.38
11 M	bromomethane	0.563		-5.7	91	0.00	5.87
12 M	chloroethane	0.432		-4.6	89	0.00	6.08
13 M	trichlorofluoromethane						6.61
14 M	pentane	1.000		NA			6.61
15 M	ethyl ether	0.345					7 00
15 14	echyr echer	0.343	0.314	9.0	88	0.00	7.09
		True	Calc.	% Drift			
16 M	acrolein	200.000		1.0	95	0.01	
	402020211	200.000	1311310	1.0	,,	0.01	7.30
		AvaRF	CCRF	% Dev			
17 M	1,1-dichloroethene	0.567	0.539	4.9	88	0.00	7.58
					•••	0.00	7.50
		True	Calc.	% Drift			
18 M	acetone	20.000		19.2	73	0.02	7.66
				% Dev			
19 M	allyl chloride	0.366		3.6	89	-0.01	8.17
20 M	acetonitrile	0.057		-1.8	91	0.02	8.14
21 M	iodomethane	1.089		5.0	90	0.00	7.89
22 M	iso-butyl alcohol	0.020		5.0	90	0.00	11.34
23 M	carbon disulfide	1.928		6.6	89	0.00	8.04
24 M	methylene chloride	0.676	0.687	-1.6	96	0.00	8.39
25 M	methyl acetate	0.472	0.511	-8.3	103	0.00	8.16
26 M	methyl tert butyl ether	1.795	1.767	1.6	90	0.00	8.75
27 M	trans-1, 2-dichloroethene			1.8	91	0.00	8.81
28 M	di-isopropyl ether	1.913		2.9	88	0.00	9.41
29 M	2-butanone	0.833		3.4	89	0.00	10.21
30 M	1,1-dichloroethane	1.137		-2.3	94	0.00	9.43
31 M	chloroprene	0.810		3.6		0.00	9.55
32 M	acrylonitrile	0.219		-2.7	93	0.00	8.75
		0.215	0.220	٠.,	,,	0.00	0.75

Continuing	g Calibration Summary		
Job Number:	J87954	Sample:	V3A2092-CC
Account:	DEPALMA CMX	Lab FileID:	3A49646.D
Project:	Camden Laboratories, 1667 Davis Street, Camden, NJ		

Project:	Camden Laboratories, 1667 Davi	is Street, Ca	ımden, NJ				
		- True	Calc.	% Drift			-
33 M			17.708	11.5	86	0.01	9.43
		- AvaRF	CCRF	% Dev			
34 M	ethyl tert-butyl ether		1.735	5.3	86	0.00	9.91
35 M	ethyl acetate	0.078		9.0	90		10.21
36 M	2,2-dichloropropane	0.989		7.5		0.00	
37 M	cis-1, 2-dichloroethene	0.505	0.692	0.4		0.00	
38	methylacrylate	0.650	0.622	4.3	92	0.00	10.30
39 M	propionitrile		0.086	1.1	91	0.00	10.29
40 M	hromoshlaremethana	0.356		2.8	89		10.56
41 M	bromochloromethane tetrahydrofuran	0.330	0.164	7.3		0.00	10.60
41 M	tetranydroruran		1.180	-0.8	96	0.00	10.62
	chloroform		0.608		92	0.00	
43 S	dibromofluoromethane (s)	0.629	0.608	3.3 2.2			10.83
44 S	1,2-dichloroethane-d4 (s)	0.734	0.718		94	0.00	11.25
45 M	freon 113	0.508	0.451	11.2	82	0.00	7.55
46 M	methacrylonitrile		0.350	7.7	91	0.00	10.49
47 M	1,1,1-trichloroethane		0.975	4.0	89	0.00	
48 M	Cyclohexane	0.879	0.778	11.5	80	0.00	10.96
49 I	1,4-difluorobenzene	1.000	1.000	0.0	94	0.00	11.70
50 M	Di-isobutylene	0.000	0.000#	0.0	86	0.00	11.82
51 M	epichlorohydrin	0.035	0.031	11.4	85	0.00	12.90
52 M	n-butyl alcohol	0.009		11.1	84	0.00	11.82
53 M		0.661		2.0	89	0.00	11.09
54 M	1,1-dichloropropene		0.547	3.0	88	0.00	11.07
55 M	hexane		0.439	14.9	76	0.00	9.14
56			0.012	0.0			11.25
57 M	tert amyl alcohol				90	0.00	11.33
58 M	benzene tert-amyl methyl ether	1 262	1 226	2.9	88	0.00	11.36
59 M		0.276	0.229	17.0		0.00	11.50
60 M	heptane	0.276	0.660	7.2		0.00	11.25
	isopropyl acetate 1,2-dichloroethane	0.711	0.000	-5.2		0.00	
61 M	1,2-dichioroechane	0.334	0.625 0.000#	-3.2			
62 M	ethyl acrylate	0.000	0.405	0.0 2.4		0.00	
63 M 64	trichloroethene tert-amyl ethyl ether		0.405	0.0		0.00	12.03 12.28
04	cerc-amyr echyr echer	0.000	0.032	0.0	0 17	0.00	12.20
		- True	Calc.	% Drift			
65 M	methyl methacrylate	20.000	16.175	19.1	98	0.00	12.28
		- AvgRF	CCRF	% Dev			
66 M	2-nitropropane	0.269	0.255	5.2	90	0.00	13.09
67 M	2-chloroethyl vinyl ether			0.0	87	0.00	12.78
68 M	1,2-dichloropropane	0.388	0.394	-1.5	92	0.00	12.28
69 M	1,2-dichloropropane dibromomethane	0.268	0.276	-3.0	93	0.00	12.44
70 M	mothylayalohovano	0 634	0.556	125	77	0.00	12.25
71 M	methylcyclohexane bromodichloromethane	0.552	0.567	-2.7			12.56
72 M	cis-1.3-dichloropropene	0.595	0.588	1.2		0.00	
73 S	bromodichloromethane cis-1,3-dichloropropene toluene-d8 (s)	1.258	1.246	1.0		0.00	13.27
74 M	4-methyl-2-pentanone	0.466	1.246 0.447	4.1		0.00	13.08
75 M	toluene	0.846	0.826	2.4			13.33
76 M	3-methy1-1-butanol	0.010	0.012	7.7	88	0.00	13.09
77 M	trans-1,3-dichloropropene	0.540	0.555				13.52
	·						
78 M	ethyl methacrylate		Calc. 18.371	% Drift 8.1	88	0.00	13.50
10 M	-			0.1	00	0.00	13.30
		AvgRF	CCRF	% Dev			
79 M 80 M	1,1,2-trichloroethane 2-hexanone	0.278	0.264 0.170	5.0 12.8	90 86		13.72 13.87

Page 2 of 3

V3A2092-CC2065

Page 1 of 3

Job Nun Account Project:	: DEPALMA CMX	s Street, Ca	mden, NJ	Sample: Lab FileID:		2092-CC2 646.D	Page 3 of 3
81 I	chlorobenzene-d5	1.000	1.000	0.0	91	0.00	14.68
82 M	tetrachloroethene	0.431	0.427	0.9	88	0.00	13.88
83 M	1,3-dichloropropane	0.688	0.704	-2.3	89	0.00	13.89
84 M	butyl acetate	0.262	0.239		84	0.00	13.94
85 M	dibromochloromethane	0.531	0.547	-3.0	91	0.00	14.14
86 M	1,2-dibromoethane	0.438	0.438	0.0	87	0.00	14.28
87 M	chlorobenzene	1.262	1.227	2.8	88	0.00	14.71
88 M	1,1,1,2-tetrachloroethane		0.526	-4.0	90	0.00	14.76
89 M	ethylbenzene	1.946	1.967	-1.1	86	0.00	14.75
90 M	m, p-xylene	0.742	0.767	-3.4	87	0.00	14.85
91 M	o-xylene	0.702	0.733	-4.4	87	0.00	15.24
92 M	styrene	1.140	1.100	3.5	87	0.00	15.25
93 M	bromoform	0.360	0.337	6.4	75	0.00	15.50
94 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	92	0.00	16.83
95 M	isopropylbenzene	3.103	2.990	3.6	80	0.00	15.55
96 S	4-bromofluorobenzene (s)		1.065		87	0.00	15.75
97	cyclohexanone	0.041	0.023	43.9#	48#	0.00	15.71
98 M	bromobenzene	1.016	0.985	3.1	86	0.00	15.93
99 M	1,1,2,2-tetrachloroethane	0.967	0.866	10.4	85	0.00	15.83
100 M	trans-1,4-dichloro-2-bute	0.242	0.199	17.8	76	0.00	15.87
101 M	1,2,3-trichloropropane	0.287	0.281	2.1	90	0.00	15.91
102 M	n-propy1benzene	3.831	3.901	-1.8	86	0.00	15.93
103 M	2-chlorotoluene	2.849	2.946		89	0.00	16.08
104 M	4-chlorotoluene	2.547	2.529		87	0.00	16.16
105 M	1,3,5-trimethy1benzene		2.968		88	0.00	16.06
106 M	tert-butylbenzene	1.733	1.759	-1.5	88	0.00	16.39
107 M	pentachloroethane	0.683	0.683	0.0	91	0.00	16.48
108 M	1,2,4-trimethylbenzene		3.033	-5.0	88	0.00	16.43
109 M	sec-butylbenzene	3.536	3.572	-1.0	85	0.00	16.59
110 M	1,3-dichlorobenzene	1.923	1.851	3.7	88	0.00	16.78
111 M	p-isopropyltoluene	3.191	3.174	0.5	87	0.00	16.70
112 M	vinyltoluene	0.000	0.000#		88	0.00	16.84
113 M	1,4-dichlorobenzene	2.040	1.883	7.7	88	0.00	16.86
114 M	-/	1.882	1.776	5.6	86	0.00	17.23
115 M	benzyl chloride	2.067	1.625	21.4#	77	0.00	16.96
116 M	n-butylbenzene	2.913	2.890	0.8	87	0.00	17.09
117 M	1,2-dibromo-3-chloropropa	0.166	0.158	4.8	90	0.00	17.99
118 M	1,2,4-trichlorobenzene		1.178	-1.2	88	0.00	18.83
119 M	hexachlorobutadiene	0.687	0.689		90	0.00	18.94
120 M	naphthalene	2.221	2.135	3.9	89	0.00	19.12
121 M	1,2,3-trichlorobenzene		1.018	-6.5	90	0.00	19.36
122 M	hexachloroethane	0.600	0.594	1.0	91	0.00	17.50

(#) = Out of Range SPCC's out = 0 CCC's out = 0 3A49016.D M3A2065.M Mon Apr 14 12:02:33 2008 NJVOA08 Initial Calibration Summary
Job Number: J87954
Account: DEPALMA CMX

Project:

Method

Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample: VD5477-ICC5477 Lab FileID: D137106.D

Response Factor Report MSD

: C:\HPCHEM\1\METHODS\MD5477.M (RTE Integrator) : SW-846 Method 8260B Title Last Update : Wed Jan 30 13:18:39 2008 Response via : Initial Calibration

Calibration Files
5 = 0137104 p. 2 = 0137111 p. 50 = 0137106 p. 100 = 0137107 p.

5 1	=D137104.D =D137102.D	2 = 1 200 = 1	=D13712 D137100	11.D 3.D 20	50 =1 0 =D1	013710 37105.1	6.D .	100 =D137107 =	7.D	
Cor	mpound	5	2	50	100	1	200	20	Avg &RS	D
11	T Wast But	.1 21-	ahal d	.			TOWN			
2)	1.4-dioxane	0.144	0.124	0.143	0.149		0.144	0.139	0.140	6.26
3)	1,4-dioxane tertiary but	1.186	1.029	1.277	1.318		1.258	1.219	1.214	8.39
5)	1,2-dichloro								0.000#	-1.00
6)	chlorodifluo	0.561	0.397	0.517	0.530	0.532	0.461	0.537	0.505	11.25
7)	dichlorodifl	0.546	0.439	0.566	0.568	0.477	0.494	0.586	0.525	10.52
8)	chloromethan	0.502	0.527	0.500	0.493	0.592	0.499	0.506	0.517	6.73
9)	vinyl chlori	0.495	0.555	0.496	0.501	0.590	0.457	0.503	0.514	8.61
10)	bromomethane	0.354	0.378	0.340	0.314	0.383	0.243	0.347	0.337	14.17
11)	chloroethane	0.279	0.302	0.270	0.256	0.278	0.200	0.281	0.267	12.10
12)	trichioroffu	0.661	0.667	0.700	0.701	0.654	0.633	0.69/	0.6/3	3.94
13)	I pentaflut 1,2-dichloro chlorodifluo dichlorodifl chloromethan vinyl chlori bromomethane chloroethane trichloroflu ethyl ether acrolein chlorotriflu	0.372	0.303	0.326	0.354	0.353	0.314	0.294	0.331	8.88
14;	acrolein	0.121	0.094	0.098	0.102	0.116	0.081	0.090	0.100	14.23
16)	1 1-dichlere	0 566	0 401	0 161	0 504	0 561	0 454	0.422	0.493	10.98
171	1,1-dichloro acetone allyl chlori	0.366	0.401	0.404	0.304	0.301	0.434	0.422	0.493	9.54
18)	allul chlori	1 210	0 945	0.040	0.031	1 099	0.043	0.040	0.047	12.23
193	acetonitrile	0 034	0.051	0.030	0.30	1.055	0.007	0.003	0.036	26 39
10,		- Line	ar regi	cession	1	- Coe	fficie	nt = 0.9948	3	20.33
			Ratio							
20)	acetaldehyde									
21)	iodomethane iso-butyl al carbon disul methylene ch	1.085	0.919	0.904	0.984	1.020	0.886	0.808	0.944	
221	iso~butyl al	1 772	1 206	1 270	1.463	1 716	1.059	0.052	0.061	9.98
23)	carbon disul	0.672	1.390	0.540	1.403	1.710	1.200	0.403	1.466 0.575	13.82 11.51
251	methyl aceta methyl tert trans-1,2-di di-isopropyl ethyl tert-b	0.673	0.333	0.342	0.300	0.652	0.324	0.493	0.373	6.65
251	methyl deeta	1 825	1 490	1 508	1 623	1 919	1 /26	1 360	1.580	
271	trang-1 2-di	0 656	0 553	0 531	0 578	0 660	0 514	0.480	0.567	
281	di-isopropul	1 712	1 372	1 617	1 618	1 579	1 455	1 637	1.570	7.44
291	ethyl tert-b	1.641	1.384	1.592	1.625	1.605	1.480	1.602	1.561	6.01
301	2-butanone	0.065	_,,,,,	0.064	0.069		0.062	0.054	0.063	
211	1 1 11 - 12 - 12 - 12 - 12 - 12		0 004						0.933	14.01
32)	chloroprene acrylonitril	0.693	0.549	0.675	0.691	0.628	0.628	0.678	0.649	7.96
33)	acrylonitril	0.220	0.169	0.187	0.197	0.199	0.173	0.169	0.188	10.20
34)	vinyl acetat	0.091		0.115	0.119		0.116	0.108	0.110	10.36
35)	ethyl acetat	0.049		0.060	0.058		0.052	0.060	0.056	9.32
36)	vinyl acetat ethyl acetat 2,2-dichloro	0.865	0.677	0.693	0.739	0.838	0.683	0.633	0.733	11.92
37)	cis-1,2-dich	0.727	0.586	0.585	0.632	0.708	0.559	0.531	0.618	12.05
38}	propionitril	0.087	0.065	0.072	0.075	0.075	0.065	0.066	0.072	10.95
39)	bromochlorom	0.365	0.310	0.306	0.332	0.349	0.300	0.274	0.320	9.77
40)	tetrahydrofu	0.199	0.176	0.153	0.159		0.137	0.142	0.161	
41)	cis-1,2-dich propionitril bromochlorom tetrahydrofu chloroform	1.073	0.896	0.863	0.929	1.094	0.823	0.793	0.925	12.69
42)	dibromofluor	0.453	0.540	0.475	0.513	U.462	0.503	0.556	0.500	7.80

Initial Calibration Summary

Page 2 of 3 Job Number: J87954 VD5477-ICC5477 Sample:

Accou	nt: x:	DEPAL			67 Davis	Street, C	amden, l	Lab)137106.D	"
43)	1. 2-di	chloro	0 454	0 493	0 490	0 512	0 410	0 404	0.574	0.491	9.78
44)	freon	113	0.393	0.325	0.386	0.410	0.360	0.366	0.399	0.377	7.72
45)	methac	rvloni	0.359	0.253	0.301	0.313	0.282	0.269	0.269	0.292	12.18
46)	1,1,1-	trichl	0.897	0.702	0.753	0.817	0.834	0.732	0.675	0.773	10,26
47)	tert-a	my1 me	1.683	1.453	1.602	1.640	1.634	1.473	1.626	0.377 0.292 0.773 1.587	5.57
48)											
	Di-iso		201000	izene				ISID		0.000#	-1 00
	2,2,4-									0.000#	
51)	epichl	orohyd	0.037	0.031	0.038	0.039	0.032	0.038	0.037	0.036	0 27
52)	n-buty	l alco	0.010	0.008	0.011	0.012		0.011	0.011	0.011 0.474 0.518 0.479 1.611 0.238 0.621	12.97
53)	carbon	tetra	0.520	0.434	0.471	0.530	0.477	0.487	0.402	0.474	9.53
54)	1,1-di	chloro	0.616	0.503	0.499	0.537	0.545	0.486	0.442	0.518	10.60
55)	hexane		0.502	0.435	0.494	0.505	0.466	0.453	0.495	0.479	5.70
56)	benzen	e	1.867	1.569	1.532	1.644	1.836	1.472	1.358	1.611	11.55
57)	heptan	e	0.251	0.224	0.237	0.245	0.247	0.220	0.241	0.238	4.95
58)	isopro	pyl ac	0.666	0.525	0.658	0.658	0.590	0.608	0.638	0.621	8.14
										0.486	11.51
60)	trichl	oroeth	0.525	0.437	0.410	0.435	0.502	0.397	0.370	0.440	12.76
61)	2-nitr	opropa	0.062	0.052	0.066	0.087	0.058	0.082	0.050	0.065	22.08
									nt = 0.9	954	
		Res	sponse	Ratio	= -0.	00515	+ 0.08	403 *A			
62)	2-chlo	roethy	0.180	0.157	0.190	0.196	0.151	0.175	0.182	0.176	9.31
63)	methy1	metha	0.445	0.344	0.409	0.429	0.386	0.385	0.368	0.395	8.88
54)	1,2-di	chloro	0.468	0.400	0.393	0.418	0.454	0.371	0.352	0.408	10.26
55)	methy1	cycloh	0.658	0.567	0.640	0.661	0.626	0.586	0.643	0.626	5.76
56)	dibrom	ometha	0.286	0.234	0.239	0.257	0.276	0.235	0.210		10.63
57)	bromod	ichlor	0.556	0.465	0.505	0.549	0.564	0.503	0.434 0.572 1.504 0.462 0.883	0.511	9.59
58)	cis-1,	3-dich	0.748	0.614	0.655	0.703	0.713	0.645	0.572	0.664	9.21
69)	toluen	e-d8 (1.228	1.410	1.338	1.417	1.114	1.379	1.504	1.342	9.75
70)	4-meth	y1-2-p	0.525	0.375	0.516	0.532	0.609	0.474	0.462	0.499	14.51
71)	toluen	e	1.213	1.025	1.002	1.081	1.151	0.977	0.883	1.048	10.60
72)	3-meth	yl-1-b	0.008		0.010	0.011		0.011	0.009	0.010#	12.12
73)	trans-	1,3-di	0.667	0.559	0.590	0.639	0.595	0.584	0.510	0.592	8.64
74)	ethyl 1	methac	0.576	0.448	0.526	0.567	0.488	0.511	0.453	0.510	9.94
75)	1,1,2-	trichl	0.356	0.293	0.304	0.325	0.338	0.295	0.264	0.311	10.01
76)	2-hexa	none	0.236	0.175	0.234	0.244	0.190	0.214	0.197	0.010# 0.592 0.510 0.311 0.213	12.41
78)	tetrac									0.653	15.30
									nt = 0.9	975	
		Res	sponse	Ratio	= 0.03	2217 +	0.557	64 *A			
79)	1,3-di	ch1oro	0.795	0.654	0.654	0.683	0.767	0.609	0.578	0.677	11.67
30)	butyl	acetat	0.255	0.206	0.279	0.281		0.263	0.267	0.259	10.67
31)	dibrom	ochlor	0.479	0.401	0.456	0.504	0.439	0.471	0.379	0.447	9.89
32)	1,2-di	bromoe	0.479	0.403	0.411	0.439	0.437	0.405	0.356	0.447	9.15
34)	1,1,1,:	2-tetr	0.499	0.429	0.448	0.486	0.477	0.448	0.384	0.453	8.64
35)	ethylb	enzene	2.415	2.031	2.009	2.135	2.263	1.900	1.749	2.072	10.75
36)	m, p-xy	lene	0.991	0.862	0.822	0.867	0.935	0.747	0.719	0.849	11.38
37)	o-xyle	ne	0.994	0.849	0.817	0.854	0.917	0.733	0.724	0.841	11.42
38)	styren	е	1.529	1.259	1.329	1.404	1.393	1.206	1.163	1.326	9.59
39)	bromof	orm	0.309	0.268	0.331	0.378	0.285	0.355	0.264	0.453 2.072 0.849 0.841 1.326 0.313	13.98
90)	I 1,	4-dich1	orober	zene-c	1		- -	ISTD	-		
11)	isopro	pylben	3.525	3.119	2.950	3.206	3.352	2.886	2.581	3.088 0.914	10.18
92)	4-brome	ofluor	0.819	0.981	0.885	0.954	0.815	0.956	0.991	0.914	8.15
93)	bromobe	enzene	1.162	1.058	0.992	1.091	1.142	1.006	0.865	1.045	9.74

9.74

1.045

Initial Calibration Summary

MD5477.M

Job Number: J87954 Sample: VD5477-ICC5477 DEPALMA CMX Account: Lab FileID: D137106.D

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

94) cvclohexanon 0.028 0.026 0.022 0.022 0.018 0.023 16.88 ---- Linear regression ---- Coefficient = 0.9977 Response Ratio = -0.00208 + 0.02230 *A95) 1,1,2,2-tetr 0.976 0.816 0.824 0.887 0.966 0.799 0.725 0.856 10.71 96) trans-1,4-di 0.133 0.111 0.174 0.205 0.201 0.132 0.159 24.78 ---- Linear regression ---- Coefficient = 0.9982 Response Ratio = -0.01440 + 0.20476 *A 97) 1,2,3-trichl 0.309 0.256 0.261 0.279 0.278 0.255 0.228 0.267 9.45 98) n-propylbenz 4.565 3.942 3.745 4.032 4.284 3.551 3.290 3.916 11.06 99) 2-chlorotolu 3.165 2.820 2.609 2.796 3.141 2.463 2.309 2.758 11.74 100) 4-chlorotolu 2.879 2.546 2.420 2.576 2.895 2.301 2.139 2.536 11.09 101) 1,3,5-trimet 3.326 2.910 2.818 3.035 3.156 2.629 2.451 2.904 10.40 102) tert-butylbe 1.832 1.835 1.492 1.613 1.714 1.656 1.320 103) pentachloroe 0.528 0.485 0.566 0.671 0.469 0.602 0.453 1.637 11.31 0.539 14.62 104) 1,2,4-trimet 3.441 3.214 2.897 3.147 3.190 2.713 2.536 3.020 10.51 105) sec-butylben 4.102 3.745 3.451 3.739 3.810 3.231 3.027 3.587 10.32 106) 1,3-dichloro 2.142 1.968 1.802 1.953 2.121 1.752 1.577 1.902 10.75 107) p-isopropylt 3.552 3.199 2.991 3.280 3.160 2.859 2.657 3.100 9.46 108) 1,4-dichloro 2.238 2.065 1.845 2.023 2.289 1.805 1.633 1,986 11,99 109) 1,2-dichloro 2.010 1.818 1.680 1.843 2.067 1.632 1.502 1.793 11.36 110) n-butylbenze 2.922 2.583 2.479 2.695 2.599 2.335 2.209 2.546 9.22 111) 1,2-dibromo- 0.130 0.120 0.123 0.138 0.117 0.125 0.108 0.123 7.89 112) 1,2,4-trichl 1.168 1.061 1.231 1.038 0.901 1.080 11.77 113) hexachlorobu 0.607 0.524 0.594 0.514 0.458 0.539 11.40 114) naphthalene 1.940 1.872 2.226 1.882 13.14 1.838 1.534 115) 1,2,3-trich1 0.863 1.891 0.780 1.011 0.828 0.779 0.664 0.974 42.91 ---- Quadratic regression ---- Coefficient = 0.9896 Response Ratio = $-0.05078 + 1.09648 *A + -0.07417 *A^2$ 116) hexachloroet 0.306 0.404 0.533 0.493 0.285 ---- Linear regression ---- Coefficient = 0.9943 Response Ratio = -0.05310 + 0.51371 *A 117) Cyclohexane 1.214 1.030 0.983 1.074 1.108 0.944 0.895 1.035 10.41 _____ (#) = Out of Range ### Number of calibration levels exceeded format ###

Thu Jan 31 10:14:55 2008 GCSC

Ċī

Page 3 of 3

Page 1 of 3

σ

Initial Calibration Verification
Job Number: J87954
Account: DEPALMA CMX

Sample:

VD5477-ICV5477

Lab FileID: D137110.D

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\D137110.D
Acq On : 25 Jan 2008 7:08 pm Vial: 56 Operator: YING Sample : ICV5477-50
Misc : MS59794,VD5477,5,,,,1
MS Integration Params: RTEINT.P Inst : MSD Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\MD5477.M (RTE Integrator) : SW-846 Method 8260B

Title Last Update : Fri Jan 25 20:12:44 2008 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	urea%	Dev(m	in)R.T.
1 I	mort Potal 71-5-1 40		1 000	0.0			
2 M	Tert Butyl Alcoho1-d9 1,4-dioxane	1.000 0.140			103	0.00	7.68
2 M	tertiary butyl alcohol				107	0.00	11.53
3 M	certiary putyr arconor	1.214	1.297	-6.8	105	0.00	7.79
4 I	pentafluorobenzene	1.000	1.000	0.0	107	0.00	9.91
5 M	1,2-dichloro-1,2,2-triflu			NA		0.00	9.91
6 M	chlorodifluoromethane	0.505	0.506	-0.2	105	0.00	4.36
7 M	dichlorodifluoromethane	0.525	0.492	6.3	93	0.00	4.35
8 M	chloromethane	0.517	0.426		91	0.00	4.70
9 M	vinyl chloride	0.514	0.435			0.00	4.98
10 M	bromomethane	0.337			94	0.00	5.61
11 M	chloroethane	0.267				0.00	5.78
12 M	trich1orofluoromethane	0.673				-0.01	6.30
13 M	ethyl ether	0.331			110	0.00	6.67
14 M	acrolein	0.100			104	0.00	6.83
15 M	chlorotrifluoroethene			NA			0.03
16 M	1,1-dichloroethene	0.493			110	0.00	7.10
17 M	acetone	0.047			106	0.00	7.05
18 M	allyl chloride	0.991	0.750		86	0.00	7.57
	-						
			Calc.	% Drift			
19 M	acetonitrile	500.000	471.275	5.7	102	0.00	7.43
		AvgRF	CCRF	% Dev			
20 M 21 M	acetaldehyde iodomethane						
		0.944			111	0.00	7.34
22 M	iso-butyl alcohol	0.061	0.061		101	0.00	10.12
23 M 24 M	carbon disulfide	1.466			108	0.00	7.50
24 M 25 M	methylene chloride				109	0.00	7.74
25 M 26 M	methyl acetate	0.372	0.362		103	0.00	7.54
20 M	methyl tert butyl ether trans-1,2-dichloroethene	1.580			107	0.00	8.13
28 M	di-isopropyl ether				109	0.00	8.14
20 M	ethyl tert-butyl ether	1.570			104	0.00	8.72
30 M	2-butanone	1.561	1.560		105	0.00	9.18
30 M		0.063	0.064		108	0.00	9.32
31 M	1,1-dichloroethane	0.933	0.865		104	0.00	8.67
32 M	chloroprene acrylonitrile	0.649	0.662		105	0.00	8.80
34 M	vinyl acetate	0.188	0.183		105	0.00	7.99
34 M	ethyl acetate	0.110	0.118		110	0.00	8.66
35 M	2,2-dichloropropane	0.056	0.057		102	0.00	9.38
36 M	cis-1,2-dichloroethene	0.733 0.618	0.696		108	0.00	9.42
		0.018	0.601	2.8	110	0.00	9.38

Job Numi Account: Project:		vis Street, C	amden, NJ	Sample: Lab FileID:		5477-ICV5 87110.D	477
38 M	propionitrile	0.072	0.071	1.4	106	0.00	9.36
39 M	bromochloromethane	0.320	0.313	2.2 7.5 7.0 -9.0 -9.6 -5.3	110	0.00	9.67
40 M	tetrahydrofuran	0.161	0.149	7.5	105	0.00	9.75
41 M	chloroform	0.925	0.860	7.0	107	0.00	9.73
42 S	dibromofluoromethane (s)	0.500	0.545	-9.0	123	0.00	9.92
43 S	1,2-dichloroethane-d4 (s)	0.491	0.538	-9.6	118	0.00	10.34
44 M	freon 113	0.377	0.397	-5.3	110	0.00	7.10
45 M	methacrylonitrile	0.292	0.286	2.1	102	0.00	9.58
46 M	1,1,1-trichloroethane	0.773	0.745	3.6	106	0.00	10.04
47 M	tert-amyl methyl ether	1.587	0.286 0.745 1.593	-0.4	107	0.00	10.54
48 I	1,4-difluorobenzene	1.000		0.0			10.82
49 M	Di-isobutylene			NA			
50 M	2,2,4-trimethylpentane			NA		-	
51 M	epichlorohydrin	0.036	0.038	-5.6	106	0.00	12.04
52 M	n-butyl alcohol	0.011	0.011	0.0	104	0.00	10.89
53 M	carbon tetrachloride	0.474	0.484	-2.1	110	0.00	10.27
54 M	1,1-dichloropropene	0.518	0.506	2.3	108	0.00	10.22
55 M	hexane	0.479	0.496	-3.5	107	0.00	8.51
56 M	benzene	1.611	1.560	3.2	109	0.00	10.46
57 M	heptane	0.238	0.241	-1.3	108	0.00	10.72
58 M	isopropyl acetate 1,2-dichloroethane	0.621	0.636	-2.4	103	0.00	10.38
59 M	1,2-dichloroethane	0.486	0.463	4.7	104	0.00	10.43
60 M				NA -5.6 0.0 -2.1 2.3 -3.5 3.2 -1.3 -2.4 4.7 5.5	108	0.00	11.18
		True	Calc.	% Drift			
61 M	2-nitropropane	50.000	40.057	19.9	100	0.00	11.88
ca 14	0 -11	- AvgRF	CCRF	% Dev			
62 M	2-chloroethyl vinyl ether	0.176	0.194			0.00	11.94
63 M	methyl methacrylate 1,2-dichloropropane methylcyclohexane	0.395	0.411	-4.1		0.00	
64 M	1,2-dichioropropane	0.408	0.396			0.00	11.42
65 M 66 M	metnylcyclonexane	0.626	0.646	-3.2	108	0.00	11.47
	dibromomethane bromodichloromethane cis-1,3-dichloropropene toluen-d8 (s)	0.248	0.241	2.8 1.4 -0.2 -15.3 0.8 1.5	108	0.00	11.55
67 M 68 M	bromodichioromethane	0.511	0.504	1.4	107	0.00	11.69
69 S	cis-1,3-dichioropropene	0.664	0.665	-0.2	108	0.00	12.18
70 M	4-methyl-2-pentanone	1.342	1.547	-15.3	123	0.00	12.53
70 M	4-methyr-z-pentatione	0.499	0.495	0.8	102	0.00	12.28
71 M	toluene 3-methyl-1-butanol	1.048	1.032	1.5	110	0.00	12.60
72 M	3-metny1-1-butano1	0.010	0.010	0.0	106	0.00	12.28
74 M	athul matha and at	0.592	0.596	-0.7	108	0.00	12.76
74 M	trans-1,3-dichloropropene ethyl methacrylate 1,1,2-trichloroethane	0.510	0.533	0.0 -0.7 -4.5	108	0.00	12.79
76 M	1,1,2-trichloroethane 2-hexanone	0.311	0.305 0.224	1.9 -5.2	107	0.00	12.98 13.19
77 I	chlorobenzene-d5	1.000			105	0.00	14.15
		True	Calc.	e puis			
78 M		50.000	52.855	<pre>% Drift -5.7</pre>	108	0.00	13.25
70.11		- AvgRF	CCRF	% Dev			
79 M	1,3-dichloropropane	0.677	0.660	2.5	106	0.00	13.18
80 M	butyl acetate	0.259	0.277	-6.9	105	0.00	13.29
81 M	dibromochloromethane	0.447	0.470	-5.1	109	0.00	13.47
82 M	1,2-dibromoethane	0.418	0.419	-0.2	108	0.00	13.64
83 M	chlorobenzene	1.298	1.277	1.6	110	0.00	14.18
84 M	1,1,1,2-tetrachloroethane	0.453	0.458	-1.1	108	0.00	14.24
85 M	ethylbenzene	2.072	2.067	0.2	108	0.00	14.27
86 M	m, p-xylene	0.849	0.853	-0.5	109	0.00	14.38
87 M	1,3-dichloropropane butyl acetate dibromochloromethane 1,2-dibromoethane chlorobenzene 1,1,2-tetrachloroethane ethylbenzene m,p-xylene o-xylene	0.841	0.838	0.4	108	0.00	14.84

Initial Calibration Verification

Page 2 of 3

_		

Page 1 of 3

b Nur	Calibration Verification DEPALMA CMX Camden Laboratories, 1667 Day	Sample: Lab FileID:	VDS D13	Page 3 477			
98 M	styrene	1.326		-3.5	109	0.00	14.84
39 M	bromoform	0.313	0.345	-10.2	110	0.00	15.09
90 I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	104	0.00	16.73
1 M	isopropylbenzene	3.088	3.046	1.4	108	0.00	15.23
2 S	4-bromofluorobenzene (s)	0.914	1.027	-12.4	121	0.00	15.42
3 M	bromobenzene	1.045		0.9	109	0.00	15.65
			Calc.				
4 M	cyclohexanone	500.000	562.646	-12.5	117	0.00	15.34
		AvgRF	CCRF				
95 M	1,1,2,2-tetrachloroethane	0.856	0.834	2.6	106	0.00	15.49
				% Drift			
6 M	trans-1,4-dichloro-2-bute	50.000	48.223	3.6	110	0.00	15.54
_							
7 M	1,2,3-trichloropropane				106	0.00	15.58
8 M	n-propylbenzene	3.916			108	0.00	15.69
9 M	2-chlorotoluene	2.758			106	0.00	15.84
0 M	4-chlorotoluene	2.536			106	0.00	15.94
1 M	1,3,5-trimethy1benzene				107	0.00	15.86
2 M	tert-butylbenzene	1.637			106	0.00	16.25
M E	pentachloroethane	0.539			111	0.00	16.31
4 M	1,2,4-trimethylbenzene	3.020			107	0.00	16.30
5 M	sec-butylbenzene	3.587			107	0.00	16.50
6 M	1,3-dichlorobenzene	1.902			107	0.00	16.67
7 M	p-isopropyltoluene	3.100			109	0.00	16.63
8 M	1,4-dichlorobenzene	1.986			109	0.00	16.76
9 M	1,2-dichlorobenzene	1.793			109	0.00	17.19
.0 M	n-butylbenzene	2.546			108	0.00	17.08
1 M	1,2-dibromo-3-chloropropa				107	0.00	
.2 M	1,2,4-trichlorobenzene	1.080	1.099		108	0.00	18.97
13 M	hexachlorobutadiene	0.539			109	0.00	
4 M	naphthalene	1.882	1.957	-4.0	109	0.00	19.29
5 M	1,2,3-trichlorobenzene				111		
6 M	hexachloroethane	50.000	48.442	3.1	115	0.00	17.51
7	gual abanana	AvgRF	CCRF	% Dev			
7 M	Cyclohexane	1.035	1.018	1.6	108	0.00	10.17

SPCC's out = 0 CCC's out = 0

Fri Jan 25 20:16:28 2008 GCSC

(#) = Out of Range

D137106.D MD5477.M

107 of 307 ACCUTEST.
J87954

5.9

Continuing Calibration Summary

Job Number: J87954

Account: DEPALMA CMX
Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

VD5601-CC5477 Sample: Lab FileID: D140131.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\D140131.D Vial: 100 Acq On : 12 Apr 2008 12:53 am Sample : CC5477-50 Misc : MS63053, VD5601, 5, , 100, 5, 1 Operator: YING Inst : MSD Multiplr: 1.00 MS Integration Params: LSCINT.P

: C:\HPCHEM\1\METHODS\MD5477.M (RTE Integrator)

Title : SW-846 Method 8260B Last Update : Tue Mar 18 08:45:13 2008 Response via : Multiple Level Calibration

Min. RRF : 0.010 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area	Dev(m	in)R.T.
1 I	Tert Butyl Alcohol-d9	1.000	1.000	0.0 87	-0.02	7.66
2 M	1,4-dioxane	0.140	0.138	1.4 86	0.00	11.52
3 M	tertiary butyl alcohol	1.214	1.257	-3.5 90	-0.02	7.78
4 I 5 M	pentafluorobenzene 1,2-dichloro-1,2,2-triflu	1.000	1.000	0.0 123	0.00	9.91
6 M	chlorodifluoromethane	0.505	0.562	-11.3 129	-0.02	4.35
7 M	dichlorodifluoromethane	0.525	0.474		-0.01	4.33
8 M	chloromethane	0.517	0.572		-0.03	4.67
9 M	vinyl chloride	0.514			-0.04	4.95
10 M	bromomethane	0.337	0.596 0.500	-48.4# 178	-0.02	5.60
11 M	chloroethane	0.267	0.341	-27.7# 150	0.00	5.77
12 M	trichlorofluoromethane	0.673	0.722	-7.3 128	-0.07	6.25
13 M	ethyl ether		0.322		0.00	6.65
14 M	acrolein	0.100	0.277			
15 M	chlorotrifluoroethene			NA		
16 M	1,1-dichloroethene	0.493	0.514	-4.3 150	-0.02	7.08
17 M	acetone	0.047	0.045	4.3 137	0.00	7.05
18 M	allyl chloride	0.991	0.622	37.2# 84	0.00	7.56
		True	Calc.	% Drift		
19 M	acetonitrile	200.000	87.760	56.1# 57	0.00	7.42
		AvgRF	CCRF	% Dev		
20 M	acetaldehyde			NA		
21 M	iodomethane	0.944	1.059	-12.2 161	-0.02	7.32
22 M	iso-butyl alcohol	0.061	0.055		0.00	10.12
23 M	carbon disulfide	1.466	1.597		-0.02	7.48
24 M	methylene chloride	0.575	0.590	-2.6 147	0.00	7.73
25 M	methyl acetate	0.372	0.260	30.1# 83	0.00	7.54
26 M	methyl tert butyl ether	1.580	1.426	9.7 128	-0.02	8.12
27 M	trans-1,2-dichloroethene	0.567	0.567	0.0 146	0.00	8.13
28 M	di-isopropyl ether	1.570	1.286	18.1 97	0.00	8.72
29 M	ethyl tert-butyl ether	1.561	1.332	14.7 102	0.00	9.17
30 M	2-butanone	0.063	0.053	15.9 121	0.00	9.33
31 M	1,1-dichloroethane	0.933	0.856	8.3 131	0.00	8.66
32 M	chloroprene	0.649	0.585	9.9 106	0.00	8.80
33 M	acrylonitrile	0.188	0.142	24.5# 104	0.00	7.98
34 M 35 M	vinyl acetate ethyl acetate	0.110 0.056	0.097 0.047	11.8 110 16.1 96	0.00	8.65
35 M	2,2-dichloropropane	0.036	0.512	30.2# 100	0.00	9.38 9.42
oo M	cis-1,2-dichloroethene	0.733	0.512	-2.9 147	0.00	9.42

Contin	uing Calibration Summary	Sample:	VD!	5601-CC5477	Page 2 of 3		
Account:	DEPALMA CMX			Lab FileID:		0131.D	
Project:	. Camden Laboratories, 1667 Day	is Street, Ca	amden, NJ				
38 M	propionitrile	0.072	0.057	20.8#	105	0.00	9,36
39 M	bromochloromethane	0.320	0.336	-5.0		0.00	9.67
40 M	tetrahydrofuran	0.161	0.101	37.3#		0.00	9.75
41 M	chloroform	0.925	0.889			0.00	9.72
42 S	dibromofluoromethane (s)				99		9.91
43 S	1,2-dichloroethane-d4 (s)	0.491	0.446 0.421 0.421 0.213 0.776	14.3	90		10.34
44 M	freon 113	0.377	0.421	-11.7	130		7.09
45 M	methacrylonitrile	0.292	0.213	27.1#		0.00	9.58
46 M	1,1,1-trichloroethane	0.773	0.776 1.544	-0.4	142		10.04
47 M	tert-amyl methyl ether	1.587	1.544	2.7	117	0.00	10.53
48 I	1,4-difluorobenzene	1.000	1.000				10.81
49 M	Di-isobutylene			NA			
50 M	2,2,4-trimethylpentane	0.036 0.011		NA			
51 M	epichlorohydrin	0.036	0.027				12.03
52 M							10.88
53 M 54 M	carbon tetrachloride	0.474	0.530		154	0.00	10.26
54 M	1,1-dichloropropene	0.518	0.504 0.325	2.7 32.2#	133	0.00	10.21
55 M	hexane	0.479	0.325	32.2#			8.50
50 M	benzene	1.611	1.560	3.2			10.47
58 M	heptane	0.238	0.159	33.2#			10.71
59 M	isopropyl acetate	0.238 0.621 0.486	0.464	25.3#			10.37
60 M	1,2-dichloroethane trichloroethene	0.486	0.467	3.9			10.42
00 11	CIICHIOIOECHENE	0.440	0.402	8.6	127	0.00	11.18
		- True	Calc.	% Drift			
61 M	2-nitropropane	20.000	22.623	-13.1	193	0.00	11.87
		B D.E.	CCRF	% Dev			
62 M	2-chloroethyl vinyl ether						
63 M	methyl methacrulate	0.176	0.334	-25.6#			11.94
64 M	methyl methacrylate 1,2-dichloropropane methylcyclohexane	0.393	0.369	15.4			11.43
65 M	methylcyclohevane	0.626		9.6 14.1	98		11.41 11.46
66 M	dibromomethane	0.248		0.4			11.55
67 M	bromodichloromethane	0.511	0.247	-0.9			11.68
68 M	bromodichloromethane cis-1,3-dichloropropene toluene-d8 (s)	0.664	0.580	12.7			12.18
69 S	toluene-d8 (s)	1 342	1.303	2.9			12.52
70 M	4-methyl-2-pentanone	0.499	0.367	26.5#			12.28
71 M	4-methy1-2-pentanone toluene	1.048	1.015	3.1			12.60
72 M	3-methyl-1-butanol	0.010	0.008#	20.0			12.28
73 M	trans-1,3-dichloropropene	0.592	0.518	12.5			12.75
74 M	ethvl methacrylate	0.510	0.426	16.5			12.79
75 M	trans-1,3-dichloropropene ethyl methacrylate 1,1,2-trichloroethane	0.311	0.286	8.0	126		12.98
76 M	2-hexanone	0.213	0.161	24.4#			13.19
77 I	chlorobenzene-d5	1.000	1.000	0.0	114	0.00	14.14
		- True	Calc.	% Drift			
78 M		20.000					13.25
		- Arrabe	CCRF	9 Dar-			
79 M	1.3-dichloropropage	- Avgal	0.622	% Dev 8.1			
80 M	1,3-dichloropropane butyl acetate	0.017	0.622				13.18
81 M	dibromochloromethane	0.239	0.475	20.1# -6.3			13.30
82 M	dibromochloromethane 1,2-dibromoethane chlorobenzene	0.419	0.391	-6.3 6.5	126		13.47
83 M	chlorobenzene	1.298	1.332	-2.6			13.64
84 M				-8.8			14.18 14.24
85 M	1, 1, 1, 2-tetrachloroethane ethylbenzene	2.072	2.034	1.8	133		14.24
86 M	m, p-xylene	0.849	0.884	-4.1	141		14.38
87 M	o-xylene	0.841	0.885	-5.2	140		14.84

ccc	o Number: J87954 count: DEPALMA CMX oject: Camden Laboratories, 1667 D		is Street, C	amden, NJ	Sample: Lab FileID:		5601-CC54 0131.D	
88	м	styrene	1.326	1,326	0.0	130	0.00	14.84
	M	bromoform	0.313	0.352	-12.5	152	0.00	15.08
90	I	1,4-dichlorobenzene-d4	1.000	1.000	0.0	118	0.00	16.73
91	М	isopropylbenzene	3.088	2.855	7.5	131	0.00	15.23
92	S	4-bromofluorobenzene (s)	0.914	0.796	12.9	95	0.00	15.42
93	M	bromobenzene	1.045	1.046	-0.1	143	0.00	15.64
			- True	Calc.	% Drift			
94	M	cyclohexanone	200.000	120.951	39.5#	85	0.00	15.35
			AvgRF	CCRF	% Dev			
95	M	1,1,2,2-tetrachloroethane	0.856	0.722	15.7	118	0.00	15.49
			True	Calc.	% Drift			
96	M	trans-1,4-dichloro-2-bute	20.000				0.00	15.54
			AvgRE	CCRF	% Dev			
97	M	1,2,3-trichloropropane	0.267	0.235	12.0	122	0.00	15.58
98	М	n-propy1benzene	3.916	3.629	7.3	131	0.00	15.69
99	M	2-ch1orotoluene	2.758	2.533	8.2	130	0.00	15.83
L00	M	4-chlorotoluene	2.536	2.275	10.3	126	0.00	15.94
L01	М	1,3,5-trimethylbenzene	2.904	2.762	4.9	133	0.00	15.85
102	М	tert-butylbenzene	1.637	1.399	14.5	125	0.00	16.25
L03		pentachloroethane	0.539				0.00	16.30
104		1,2,4-trimethy1benzene	3.020			132	0.00	16.29
L 0 5		sec-butylbenzene	3.587				0.00	16.49
L06		1,3-dichlorobenzene	1.902			140	0.00	16.67
L07		p-isopropyltoluene	3.100			127	0.00	16.62
L08	М	<pre>1,4-dich1orobenzene</pre>	1.986				0.00	16.76
109		1,2-dichlorobenzene	1.793				0.00	17.19
L10	M	n-butylbenzene	2.546		11.9	120	0.00	17.08
111		1,2-dibromo-3-chloropropa					0.00	
112		1,2,4-trichlorobenzene	1.080				0.00	
113		hexachlorobutadiene	0.539		12.6		0.00	19.14
114	M	naphthalene	1.882	1.360	27.7#	105	0.00	19.28
L15		1,2,3-trichlorobenzene	20.000	12.711	36.4#	99	0.00	19.56
16	M	hexach1oroethane	20.000	25.587	-27.9#	218	0.00	17.52
.17	М	Cyclohexane	1.035	0.984	4.9	130	0.00	10.16

D137105.D MD5477.M

Mon Apr 14 08:59:42 2008 MSD

Section 6

GC/MS Semi-volatiles

6

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike SummariesMatrix Spike and Duplicate Summaries
- Instrument Performance Checks (DFTPP)
- · Internal Standard Area Summaries
- · Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Method Blank Summary Job Number: J87954

DEPALMA CMX Account:

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample OP32143-MB1	File ID 3M4359.D	DF 1	Analyzed 04/11/08	By LP	Prep Date 04/11/08	Prep Batch OP32143	Analytical Batch E3M168	

The QC reported here applies to the following samples:

Method: SW846 8270C

Page 1 of 3

တ

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Compound	Result	RL	MDL	Units Q
95-57-8	2-Chlorophenol	ND	170	21	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	170	45	ug/kg
120-83-2	2,4-Dichlorophenol	ND	170	35	ug/kg
105-67-9	2.4-Dimethylphenol	ND	170	41	ug/kg
51-28-5	2,4-Dinitrophenol	ND	670	37	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	670	61	ug/kg
88-75-5	2-Nitrophenol	ND	170	39	ug/kg
100-02-7	4-Nitrophenol	ND	670	59	ug/kg
87-86-5	Pentachlorophenol	ND	330	35	ug/kg
108-95-2	Phenoi	ND	67	31	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	170	67	ug/kg
83-32-9	Acenaphthene	ND	67	11	ug/kg
208-96-8	Acenaphthylene	ND	67	6.8	ug/kg
120-12-7	Anthracene	ND	67	31	ug/kg
92-87-5	Benzidine	ND	670	5.3	ug/kg
56-55-3	Benzo(a)anthracene	ŅD	67	6.9	ug/kg
50-32-8	Вепло(а) рутепе	ND	67	16	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	67	11	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	67	13	ug/kg
207-08-9	Benzo(k) fluoranthene	ND	67	14	ug/kg
101-55-3	4-Bromophenyl pbenyl ether	ND	67	15	ug/kg
85-68-7	Butyl benzyi phthalate	ND	67	12	ug/kg
91-58-7	2-Chloronaphthalene	ND	67	10	ug/kg
106-47-8	4-Chloroaniline	ND	170	12	ug/kg
218-01-9	Сьгузепе	ND	67	13	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	67	13	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	67	15	ug/kg
1 08 -60-1	bis(2-Chloroisopropyl)ether	ND	67	19	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	67	9.5	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	67	11	ug/kg
122-66-7	1,2-Diphenylhydrazine	ND	67	11	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	67	10	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	67	8.9	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	67	11	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	67	13	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	170	24	ug/kg

Method Blank Summary

Page 2 of 3

6

Job Number: J87954
Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP32143-MB1	3M4359.D	1	04/11/08	LP	04/11/08	OP32143	E3M168

The QC reported here applies to the following samples:

Method: SW846 8270C

J87954-6, J87954-7, J87954-8, J87954-9

CAS No.	Compound	Result	RL	MDL	Units Q
53-70-3	Dibenzo(a,h)anthracene	ND	67	8.6	ug/kg
84-74-2	Di-n-butyl phthalate	ND	67	9.3	ug/kg
117-84-0	Di-n-octyl phthalate	ND	67	14	ug/kg
84-66-2	Diethyl phthalate	ND	67	12	ug/kg
131-11-3	Dimethyl phthalate	ND	67	9.0	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	67	20	ug/kg
206-44-0	Fluoranthene	ND	67	6.2	ug/kg
86-73-7	Fluorene	ND	67	6.7	ug/kg
118-74-1	Hexachlorobenzene	ND	67	16	ug/kg
87-68-3	Hexachlorobutadiene	ND	67	15	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	670	15	ug/kg
67-72-1	Hexachloroethane	ND	170	14	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	67	31	ug/kg
78-59-1	Isophorone	ND	67	11	ug/kg
91-20-3	Naphthalene	ND	67	7.5	ug/kg
98-95-3	Nitrobenzene	ND	67	11	ug/kg
62-75-9	n-Nitrosodimethylamine	ND	67	15	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	67	11	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	170	7.3	ug/kg
85-01-8	Phenanthrene	ND	67	8.3	ug/kg
129-00-0	Pyrene	ND	67	12	ug/kg
120-82-1	1,2,4-Trichlorohenzene	ND	67	10	ug/kg
CAS No.	Surrogate Recoveries		Limit	9	
367-12-4	2-Fluorophenol	72%	26-10	5%	
4165-62-2	Phenol-d5	77%	34-10	6%	
118-79-6	2,4,6-Tribromophenol	95%	30-12	6%	
4165-60-0	Nitrobenzene-d5	67%	36-11	5%	
321-60-8	2-Fluorobiphenyl	66%	44-11	2%	
1718-51-0	Terphenyl-d14	70%	42-13	3%	

Method Blank Summary
Job Number: J87954
Account: DEPALMA CMX

Camden Lahoratories, 1667 Davis Street, Camden, NJ Project:

Sample File ID DI OP32143-MB1 3M4359.D 1 Analytical Batch E3M168 By LP Prep Date Prep Batch OP32143 Analyzed 04/11/08 04/11/08

R.T.

The QC reported here applies to the following samples:

Method:

J87954-6, J87954-7, J87954-8, J87954-9

CAS No. Tentatively Identified Compounds

Est. Conc. Units Q

system artifact/aldol-condensation 3.06 10000 ug/kg J Total TIC, Semi-Volatile 0 ug/kg

O

Page 3 of 3

Page 1 of 2

6.2

O

Blank Spike Summary
Job Number: J87954
Account: DEPALMA CMX

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP32143-BS1	3M4360.D	1	04/11/08	LP	04/11/08	OP32143	E3M168

The QC reported here applies to the following samples:

Method: SW846 8270C

J87954-6, J87954-7, J87954-R. 187054-0

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
95-57-8	2-Chlorophenol	1670	1390	83	62-100
59-50-7	4-Chloro-3-methyl phenol	1670	1580	95	62-113
120-83-2	2,4-Dichlorophenol	1670	1570	94	62-104
105-67-9	2,4-Dimethylphenol	1670	1670	100	58-109
51-28-5	2,4-Dinitrophenol	3330	3480	104	30-140
534-52-1	4.6-Dinitro-o-cresol	1670	1650	99	46-122
88-75-5	2-Nitrophenol	1670	1660	100	59-107
100-02-7	4-Nitrophenol	1670	1270	76	35-134
87-86-5	Pentachlorophenol	1670	1470	88	40-119
108-95-2	Phenol	1670	1340	80	58-104
88-06-2	2,4,6-Trichlorophenol	1670	1660	100	62-108
83-32-9	Acenaphthene	1670	1540	92	60-104
208-96-8	Acenaphthylene	1670	1390	83	54-97
120-12-7	Anthracene	1670	1580	95	63-116
92-87-5	Benzidine	1670	328	20	1-51
56-55-3	Benzo(a)anthracene	1670	1470	88	62-110
50-32-8	Benzo(a) pyrene	1670	1600	96	60-110
205-99-2	Benzo(b) fluoranthene	1670	1590	95	55-116
191-24-2	Benzo(g,h,i)perylene	1670	1570	94	51-120
207-08-9	Benzo(k)fluoranthene	1670	1540	92	57-120
101-55-3	4-Bromophenyl phenyl ether	1670	1690	101	63-119
85-68-7	Butyl benzyl phthalate	1670	1610	97	60-127
91-58-7	2-Chloronaphthalene	1670	1550	93	63-106
106-47-8	4-Chloroaniline	1670	1040	62	30-80
218-01-9	Chrysene	1670	1510	91	63-110
111-91-1	bis(2-Chloroethoxy)methane	1670	1580	95	60-115
111-44-4	bis(2-Chloroethyl)ether	1670	1480	89	54-110
108-60-1	bis(2-Chlorolsopropyi)ether	1670	1380	83	58-108
7005-72-3	4-Chlorophenyl phenyl ether	1670	1640	98	62-113
95-50-1	1,2-Dichlorobenzene	1670	1380	83	59-100
122-66-7	1,2-Diphenylhydrazine	1670	1640	98	59-139
541-73-1	1.3-Dichlorobenzene	1670	1340	80	58-98
106-46-7	1,4-Dichlorobenzene	1670	1360	82	58-98
121-14-2	2.4-Dinitrotoluene	1670	1650	99	63-121
606-20-2	2,6-Dinitrotoluene	1670	1750	105	66-119
91-94-1	3,3'-Dichlorobenzidine	1670	1450	87	38-103
	-,-			•	

Blank Spike Summary
Job Number: J87954
Account: DEPALMA CMX

Project:

Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP32143-BS1	3M4360.D	1	04/11/08	LP	04/11/08	OP32143	E3M168

The QC reported here applies to the following samples:

Method: SW846 8270C

J87954-6, J87954-7, J87954-8, J87954-9

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
53-70-3	Dibenzo(a,h)anthracene	1670	1630	98	55-117
84-74-2	Di-n-hutyl phthalate	1670	1510	91	62-127
117-84-0	Di-n-octyl phthalate	1670	1870	112	55-145
84-66-2	Diethyl phthalate	1670	1480	89	57-129
131-11-3	Dimethyl phthalate	1670	1570	94	63-114
117-81-7	bis(2-Ethylhexyl)phthalate	1670	1540	92	57-1 3 3
206-44-0	Fluoranthene	1670	1500	90	60-113
86-73-7	Fluorene	1670	1610	97	62-109
118-74-1	Hexachlorobenzene	1670	1730	104	63-119
87-68-3	Hexachlorobutadiene	1670	1520	91	54-108
77-47-4	Hexachlorocyclopentadiene	3330	3570	107	31-111
67-72-1	Hexachloroethane	1670	1450	87	56-101
193-39-5	Indeno(1,2,3-cd)pyrene	1670	1590	95	56-125
78-59-1	Isophorone	1670	1570	94	57-108
91-20-3	Naphthalene	1670	1450	87	55- 9 9
98-95-3	Nitrobenzene	1670	1460	88	57-106
62-75-9	n-Nitrosodimethylamine	1670	1280	77	32-140
621-64-7	N-Nitroso-di-n-propylamine	1670	1580	95	54-119
86-30-6	N-Nitrosodiphenylamine	1670	1750	105	62-117
85-01-B	Phenanthrene	1670	1540	92	63-111
129-00-0	Pyrene	1670	1540	92	58-114
120-82-1	1,2,4-Trichlorobenzene	1670	1520	91	57-99
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
367-12-4	2-Fluorophenol	77%	26.	105%	
4165-62-2		85%		105%	
118-79-6	2,4,6-Tribromophenol	106%		126%	
4165-60-0		72%		115%	
321-60-8	2-Fluorobiphenyl	75%		112%	
1718-51-0	Terphenyl-d14	72%		133%	
1110-01-0	201 paony 1 da 1	1270	76.	100/0	

6.2

Page 2 of 2

ග

Matrix Spike/Matrix Spike Duplicate Summary Job Number: J87954 Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP32143-MS	3M4377.D	1	04/12/08	LP	04/11/08	OP32143	E3M168
OP32143-MSD	3M4400.D	1	04/14/08	LP	04/11/08	OP32143	E3M169
J87968-8	3M4376.D	1	04/12/08	LP	04/11/08	OP32143	E3M168

The QC reported here applies to the following samples:

Method: SW846 8270C

Page 1 of 2

6.3

6

J87954-6, J87954-7, J87954-8, J87954-9

		J87968	-8	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
95-57-8	2-Chlorophenol	ND		1960	1270	65	1370	70	8	41-104/22
59-50-7	4-Chloro-3-methyl phenol	ND		1960	1330	68	1480	76	11	46-118/22
120-83-2	2.4-Dichlorophenol	ND		1960	1350	69	1470	75	9	42-112/22
105-67-9	2,4-Dimethylphenol	ND		1960	1460	74	1580	81	8	43-122/21
51-28-5	2,4-Dinitrophenol	ND		3920	574	15	1020	26	56* a	1-132/38
534-52-1	4,6-Dinitro-o-cresol	ND		1960	298	15	583	30	65* a	1-130/40
88-75-5	2-Nitrophenol	ND		1960	1230	63	1450	74	16	30-111/27
100-02-7	4-Nitrophenol	ND		1960	781	40	938	48	18	16-145/37
87-86-5	Pentachlorophenol	ND		1960	1060	54	1200	61	12	20-124/25
108-95-2	Phenol	ND		1960	1260	64	1330	68	5	39-106/23
88-06-2	2,4,6-Trichlorophenol	ND		1960	1420	72	1510	77	6	43-117/23
83-32-9	Acenaphthene	ND		1960	1340	68	1420	73	6	41-113/27
208-96-8	Acenaphthylene	ND		1960	1210	62	1260	64	4	42-102/23
120-12-7	Anthracene	ND		1960	1310	67	1430	73	9	41-125/29
92-87-5	Benzidine	ND		1960	ND	0* a	ND	0* a	nc	1-44/56
56-55-3	Benzo(a)anthracene	ND		1960	1280	65	1390	71	8	35-125/30
50-32-8	Benzo(a)pyrene	ND		1960	1540	79	2030	104	27	35-125/31
205-99-2	Benzo(b)fluoranthene	ND		1960	1540	79	2110	108	31	34-131/35
191-24-2	Benzo(g,h,i)perylene	ND		1960	1580	81	2030	104	25	23-132/30
207-08-9	Benzo(k)fluoranthene	ND		1960	1540	79	2230	114	37* ⁸	28-131/33
101-55-3	4-Bromophenyl phenyl ether	ND		1960	1410	72	1520	78	8	52-115/22
85-68-7	Butyl benzyl phthalate	ND		1960	698	36* a	631	32* a	10	39-136/27
91-58-7	2-Chloronaphthalene	ND		1960	1390	71	1450	74	4	47-107/21
106-47-8	4-Cbloroaniline	ND		1960	986	50	1080	55	9	21-84/30
218-01-9	Chrysene	ND		1960	1310	67	1420	73	8	33-125/31
111-91-1	bis(2-Chioroethoxy)methane	ND		1960	1410	72	1490	76	6	44-112/21
111-44-4	bis(2-Chloroethyl)ether	ND		1960	1450	74	1530	78	5	30-119/24
10 8-60 -1	bis(2-Chloroisopropy!)ether	ND		1960	1290	66	1360	69	5	41-103/23
7005-72-3	4-Chlorophenyl phenyl ether	ND		1960	1390	71	1490	76	7	50-109/21
95-50-1	1,2-Dichlorobenzene	ND		1960	1330	68	1360	69	2	40-97/23
122-66-7	1,2-Diphenylhydrazine	ND		1960	1420	72	1560	80	9	49-129/22
541-73-1	1,3-Dichlorobenzene	ND		1960	1280	65	1290	66	1	37-95/24
106-46-7	1,4-Dichlorobenzene	ND		1960	1310	67	1320	67	1	38-97/24
121-14-2	2,4-Dinitrotoluene	ND		1960	1160	59	1340	68	14	38-117/27
606-20-2	2,6-Dinitrotoluene	ND		1960	1380	70	1530	78	10	46-118/24
91-94-1	3,3'-Dichlorobenzidine	ND		1960	529	27	412	21	25	10-112/35

Matrix Sp	ike/Matrix	Spike	Duplicate	Summary
Job Number:		_	_	-

DEPALMA CMX Account:

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

ample File ID DF P32143-MS 3M4377.D 1 P32143-MSD 3M4400.D 1 87968-8 3M4376.D 1	Analyzed By 04/12/08 LP 04/14/08 LP 04/12/08 LP	Prep Date	Analytical Batch E3M168 E3M169 E3M168
--	--	-----------	--

The QC reported here applies to the following samples:

Method: SW846 8270C

J87954-6, J87954-7, J87954-8, J87954-9

		J87968	-8	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
53-70-3	Dibenzo(a,h)anthracene	ND		1960	1580	81	2020	103	24	29-130/27
84-74-2	Di-n-butyl phthalate	ND		1960	1200	61	1220	62	2	49-121/23
117-84-0	Di-n-octyl phthalate	ND		1960	1340	68	1440	74	7	36-142/28
84-66-2	Diethyl phthalate	ND		1960	1230	63	1300	66	6	50-113/21
131-11-3	Dimethyl phthalate	ND		1960	1310	67	1370	70	4	53-109/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		1960	1100	56	916	47	18	37-142/29
206-44-0	Fluoranthene	16.9	J	1960	1240	62	1360	69	9	30-127/35
86-73-7	Fluorene	ND		1960	1370	70	1460	75	6	43-118/28
118-74-I	Hexachlorobenzene	ND		1960	1440	73	1560	80	8	51-112/21
87-68-3	Hexachlorobutadiene	ND		1960	1400	71	1430	73	2	40-110/23
77-47-4	Hexachlorocyclopentadiene	ND		3920	1530	39	2210	56	36	1-104/40
67-72-1	Hexachloroethane	ND		1960	1290	66	1340	68	4	25-100/30
193-39-5	Indeno(1,2,3-cd)pyrene	ND		1960	1570	80	2040	104	26	28-130/29
78-59-1	Isophorone	ND		1960	1410	72	1490	76	6	44-114/22
91-20-3	Naphthalene	ND		1960	1340	68	1420	73	6	34-112/27
98-95-3	Nitrobenzene	ND		1960	1330	68	1420	73	7	42-106/23
62-75-9	n-Nitrosodimethylamine	ND		1960	1320	67	1360	69	3	18-124/32
621-64-7	N-Nitroso-di-n-propylamine	ND		1960	1510	77	1670	85	10	40-116/24
86-30-6	N-Nitrosodiphenylamine	ND		1960	1370	70	1360	69	1	45-137/24
85-01-8	Phenanthrene	ND		1960	1290	66	1410	72	9	34-127/34
129-00-0	Рутепе	18.0	J	1960	1370	69	1510	76	10	29-138/35
120-82-1	1,2,4-Trichlorobenzene	ND		1960	1400	71	1470	75	5	41-101/22
CAS No.	Surrogate Recoveries	MS		MSD	J87	7968-8	Limits			
367-12-4	2-Fluorophenol	59%		65%			29-1149	%		
4165-62-2	Phenol-d5	63%		69%			31-1119	%		
118-79-6	2,4,6-Tribromophenol	73%		81%			27-1339	%		
4165-60-0	Nitrobenzene-d5	57%		62%	639	6	36-1169	%		
321-60-8	2-Fluorobiphenyl	57%		61%	649	6	44-1119			
1718-51-0	Terphenyl-d14	53%		59%	669	6	37-1319			
(a) Outside	control limits due to matrix int	erference.								

Page 1 of 2

တ

Instrument Performance Check (DFTPP) Job Number: J87954

DEPALMA CMX Account:

Camden Laboratories, 1667 Davis Street, Camden, NJ Project:

Injection Date: 04/03/08 Sample: E3M157-DFTPP Lab File ID: 3M4093.D Injection Time: 13:41 Instrument ID: GCMS3M

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance		Pass/Fail Pass	
51	30.0 - 60.0% of mass 198	39236	37.8			
68	Less than 2.0% of mass 69	533	0.51	(1.1) a	Pass	
69	Mass 69 relative abundance	46478	44.8		Pass	
70	Less than 2.0% of mass 69	467	0.45	(1.0) a	Pass	
127	40.0 - 60.0% of mass 198	61869	59.6		Pass	
197	Less than 1.0% of mass 198	364	0.35		Pass	
198	Base peak, 100% relative abundance	103813	100.0		Pass	
199	5.0 - 9.0% of mass 198	7355	7.1		Pass	
275	10.0 - 30.0% of mass 198	21933	21.1		Pass	
365	1.0 - 100.0% of mass 198	2574	2.5		Pass	
441	Present, but less than mass 443	8880	8.6	(76.8) b	Pass	
442	40.0 - 100.0% of mass 198	60280	58.1		Pass	
443	17.0 - 23.0% of mass 442	11557	11.1	(19.2) c	Pass	

(a) Value Is % of mass 69

(b) Value is % of mass 443

(c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
E3M157-ICC157	3M4094.D	04/03/08	14:53	01:12	Initial cal 50
E3M157-IC157	3M4095.D	04/03/08	15:30	01:49	Initial cal 100
E3M157-IC157	3M4096.D	04/03/08	16:03	02:22	Initial cal 80
E3M157-IC157	3M4097.D	04/03/08	16:39	02:58	Initial cal 25
E3M157-IC157	3M4098.D	04/03/08	17:12	03:31	Initial cal 10
E3M157-IC157	3M4099.D	04/03/08	17:45	04:04	Initial cal 5
E3M157-IC157	3M4100.D	04/03/08	18:18	04:37	Initial cal 2
E3M157-IC157	3M4101.D	04/03/08	18:50	05:09	Initial cal 1
E3M157-IC157	3M4102.D	04/03/08	19:25	05:44	Initial cal 100
E3M157-IC157	3M4103.D	04/03/08	19:57	06:16	Initial cal 80
E3M157-IC157	3M4104.D	04/03/08	20:30	06:49	Initial cal 50
E3M157-IC157	3M4105.D	04/03/08	21:03	07:22	Initial cal 25
E3M157-IC157	3M4106.D	04/03/08	21:35	07:54	Initial cal 10
E3M157-IC157	3M4107.D	04/03/08	22:08	08:27	Initial cal 5
E3M157-IC157	3M4108.D	04/03/08	22:41	09:00	Initial cal 2
E3M157-IC157	3M4109.D	04/03/08	23:13	09:32	Initial cal 1
E3M157-ICV157	3M4110.D	04/03/08	23:46	10:05	Initial cal verification 50

Instrument Performance Check (DFTPP)

Joh Number: J87954
Account: DEPALMA CMX

Project: Camden Laboratories, 1667 Davis Street, Camden, NJ

Sample: E3M168-DFTPP Injection Date: 04/11/08 Lab File ID: 3M4355.D Injection Time: 18:43 Instrument ID: GCMS3M

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundar		Pass/Fail	
51	30.0 - 60.0% of mass 198	85582	30.8		Pass	
68	Less than 2.0% of mass 69	1926	0.69	(1.6) a	Pass	
69	Mass 69 relative abundance	116944	42.0	\,	Pass	
70	Less than 2.0% of mass 69	0	0.0	(0.0) a	Pass	
127	40.0 - 60.0% of mass 198	152838	54.9	()	Pass	
197	Less than 1.0% of mass 198	929	0.33		Pass	
198	Base peak, 100% relative abundance	278250	100.0		Pass	
199	5.0 - 9.0% of mass 198	18537	6.7		Pass	
275	10.0 - 30.0% of mass 198	64189	23.1		Pass	
365	1.0 - 100.0% of mass 198	7937	2.9		Pass	
441	Present, but less than mass 443	38834	14.0	(77.8) b	Pass	
442	40.0 - 100.0% of mass 198	260864	93.8		Pass	
443	17.0 - 23.0% of mass 442	49917	17.9	(19.1) c	Pass	

91

(a) Value is % of mass 69

(b) Value is % of mass 443

(c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
Sample ID E3M168-CC157 E3M168-CC157 ZZZZZZ ZZZZZZ ZZZ143-MB1 OP32143-BS1 ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZ	3M4356.D 3M4357.D 3M4358.D 3M4359.D 3M4360.D 3M4361.D 3M4362.D 3M4364.D 3M4365.D 3M4366.D 3M4366.D 3M4366.D 3M4367.D 3M4369.D 3M4371.D	04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/11/08 04/12/08 04/12/08 04/12/08 04/12/08 04/12/08 04/12/08	18:58 19:31 20:04 20:37 21:10 21:43 22:16 22:16 22:49 23:22 23:55 01:01 01:34 02:07 02:40 03:13	00:15 00:48 01:21 01:54 02:27 03:33 04:06 04:39 05:45 06:18 06:51 07:24 07:57 08:30	Continuing cal 25 Continuing cal 25 Continuing cal 50 (unrelated sample) Method Blank Blank Spike (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample)
ZZZZZZ OP31970-MS	3M4372.D 3M4373.D 3M4374.D	04/12/08 04/12/08 04/12/08	03:46 04:19 04:52	09:03 09:36 10:09	(unrelated sample) (unrelated sample) Matrix Spike

Page 1 of 1

o)

VIA HAND DELIVERY

Raymond S. Souweha
Case Manager
New Jersey Department of Environmental Protection
Brownfields Remediation & Reuse Element)
Bureau of Southern Field Operation
Route 130 South
300 Horizon Center
Robbinsville, NJ 08691

RE: Remedial Action Report

Camden Laboratories Property

1667 Davis Street City of Camden

Camden County, New Jersey
Case Number 08-07-01-1547-19
Our Project Number 070235805

Dear Mr. Souweha:

Enclosed please find one (1) original copy of our Remedial Action Report (RAR) for the above referenced site. This RAR documents and summarizes activities associated with remediation of copper and lead impacted soil associated with the conductive area identified during Site Investigation (SI) activities completed at the site. Based on the findings of the RA, CMX respectfully requests a determination of no further action for the conductive area (AOC-15).

We look forward to continuing to work with you on this project. Should you have any questions or require additional information please contact me at (856) 783-1900.

Very truly yours,

CMX

Mark Pietrucha, P.E.

Associate

MEP Enclosure

c: Martin Manco, Camden Laboratories, L.P. (w/enclosure)

N:\project\2007\0702358\05\03_Agency_Correspondence\NJDEP\Camden Laboratories RAR Transmittal Souweha 111908.doc

New Jersey Department of Environmental Protection Site Remediation Checklist - Remedial Action Requirements Camden Laboratories Property 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number. 070235805

SRP CHECKLIST:		REMEDIAL ACTION REPORT		ļ
	N.J.A.C. 7:26E-	Use this checklist to assure that the remedial action conducted is complete and meets all technical requirements.	included: Yes/No/NA (see note below)	Page #
Remedial Action Ob	jectives			
·	6.1(a)	Were the Department & local agencies properly notified pursuant to N.J.A.C. 7:26E- 1.4, when required?	Yes	NA
	6.1(b)1	Was the remedial action pre-approved by the Department prior to implementation when required?	No	NA
	6.1(b)2	Does each remedial action achieve all applicable remediation standards?	Yes	Section 4.3
	6.1(b)3	Does each remedial action comply with all applicable Federal, State and local laws & requirements?	Yes	Section 4.0
	6.1(b)4	Are all remedial actions sound in that they do not cause an uncontrolled or unpermitted discharge or transfer of contaminants among media?	Yes	Section 4.0
· · · · · · · · · · · · · · · · · · ·	6.1(d)	Has all free and/or residual product determined to be present been addressed through treatment, removal or containment as appropriate?	NA	NA
<u> </u>	6.1(e)	For restricted use remedy or limited restricted use remedy, have institutional controls been established?	NA	NA
	6.1(f)	Have historic fill areas and other fill material been remediated as required?	NA	NA
Remedial action re	nord			
Nemediar action re	6.7(b)1***	Is a summary of the RI included, including the results of the Baseline Ecological Evaluation?	Yes	Section 3.2
	6.7(b)2	Is a summary of all remedial actions completed for each area of concern included and adequate?	Yes	Section 4.0
	6.7(b)3	is a list of remediation standards achieved by each remedial action included and adequate?	Yes	Section 4.0
	6.7(b)4	Are as-built diagrams included and adequate?	NA	NA
	6.7(b)5	Is a detailed description of site restoration activities included and adequate?	Yes	Section 4.5
	6.7(b)6	Is information regarding the cost of the remedial action and an estimate of costs related to maintenance and monitoring of each engineering and institutional control included and adequate?	Yes	Section 4.6
	6.7(c)1	Are tables and figures documenting completion of the remediation and volume of soil or sediment remediated included and adequate?	Yes	Table 8, Figure 5, Section 4.0
	6.7(c)2	Are executed manifests included and adequate?	Yes	Appendix C
	6.7(c)3	Is the final draft deed notice included and adequate?	NA	NA
	6.7(d)	Are graphs depicting changes in GW contaminant concentration over time for all monitoring wells included and adequate?	NA	NA
	6.7(e)1	For natural remediation GW remedial actions, is a summary table of monitoring results included and adequate?	NA 	NA
	6.7(e)2	For natural remediation GW remedial actions, is a discussion of Mann-Whitney U-Test included and adequate?	NA	NA
	6.7(e)3	Is an appropriate conclusion included regarding the status of GW remediation and the continuing need for the CEA?	NA	NA

New Jersey Department of Environmental Protection Site Remediation Checklist - Remedial Action Requirements Camden Laboratories Property 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235805

SRP CHECKLIST:		REMEDIAL ACTION REPORT		
	N.J.A.C. 7:26E-	Use this checklist to assure that the remedial action conducted is complete and meets all technical requirements.	Included: Yes/No/NA (see note below)	Page #
	6.7(e)4	For natural remediation GW remedial actions, is a plan for monitoring maintenance and certification of the protectiveness of each CEA included and adequate?	NA	NA
	7.1(b)	Were all applicable Federal, State and local permits obtained prior to implementation of the remedial action?	NA	NA
Post Remedial Acti	on Requiremer	nts		
	6.4(a)* & ****	Was post-remediation sampling adequate, is a summary of sampling results and remediation standards included and adequate, and has both a hard copy and an electronic copy (EDSA disc) been submitted??	Yes	Appendix D
	6.4(b)	Have all remediated areas been restored?	Yes	Section 4.5
	6.4(c)	Have all wells been properly decommissioned?	· NA	NA
## H H H H H H H H H H H H H H H H H H	6.4(d)	Was an adequate soil reuse proposal approved by the Department prior to implementation?	NA	NA
	6.4(e)	Has property not owned by the party conducting remediation been remediated to the applicable unrestricted use standard if the property owner did not provide written consent to institutional/engineering controls and a deed notice?	NA	NA NA
Certification				
	Varies (see certification checklist)	Has the required certification been submitted?	Yes	Page i
	1010011101		1	11. 1.6-

*The NJDEP Field Sampling Procedures Manual (FSPM) at www.nj.gov/dep/srp/guidance/fspm should be consulted for applicable requirements. Additionally, the SRP NJPDES Technical Manual should be consulted regarding permit-by-rule provisions [N.J.A.C. 7:14A-7.5(a)4] for disposal of waters generated during well installation and development, purge and decontamination water, and drill cuttings. The FSPM addresses the on-site disposal of these discharges in sections 2.4.5.6 and 2.4.5.7

***BEE not req'd for AOC that is heating oil UST for on-site consumption in 1-4 family residence.

^{****}EDSA not req'd for soils-only remediation of AOC that is heating oil UST for on-site consumption in 1-4 family residence.

070235804

REMEDIAL ACTION REPORT

FOR

Camden Laboratories
1667 Davis Street
City of Camden
Camden County, New Jersey
NJDEP Case No. 08-07-01-1547-19

Prepared for:

PO Box 2614
West Chester, PA 19380

Prepared by:

CMX 1101 Laurel Oak Road Suite 160 Voorhees, New Jersey 08043-7346

October 2008

Working Together for a Better Tomorrow

1101 Laurel Oak Road, Suite 160 | Voorhees, NJ 08043
TEL 856.783.1900 | FAX 856.783.2100 | WWW.CMXENGINEERING.COM

ARIZONA FLORIDA MARYLAND NEVADA NEW JERSEY NEW YORK PENNSYLVANIA MEXICO

CERTIFICATION

N.J.A.C. 7:26-1.2 et. seq.

Any person making a submission to the Department required by this chapter and pursuant to N.J.A.C. 7:26E, will include the following signature and notarized certification, for each technical submittal. Additionally, the certification will indicate the case name and address, case number, type of documents submitted, e.g. Remedial Action Report, for each technical submittal.

TYPE OF DOCUMENT:

REMEDIAL ACTION REPORT

CASE NAME:

CAMDEN LABORATORIES

CASE ADDRESS:

1667 Davis Street, Block 1392, Lot 33, City of Camden, Camden County, New

<u>Jersey</u>

CASE NUMBER:

08-07-01-1547-19

The following certification will be signed by:

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For a partnership or sole proprietorship, by a general partner of the proprietor, respectively, or:

3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.

4. For persons other than 1 through 3 above, by the person with legal responsibility for the Site.

"I certify, under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

PRINTED NAME: MARTIN P. MANCO TITLE GBNERAL PANTNER

SIGNATURE

NOTARY SIGNATURE

Allian Pomykanz DATE 11/19/08

JULIANN POMYKACZ
NOTARY PUBLIC, STATE OF NEW JERSEY
My Commission Expires 03/24/2011

Table of Contents

1.0	Introduction	1
2.0	Background Information	2
2.1	Site Description	2
2.2	Physical Characteristics	2
2.3	Site History	2
3.0	Previous Investigations	3
3.1	August 2008 Preliminary Assessment Summary	3
3.2	Site Investigation Summary	7
3.2.1	Septic Systems, Leachfields or Seepage Pits (AOC-5)	7
3.2.2	Building B Drywell (AOC-6)	7
3.2.3	Hydraulic Lift System (AOC-11)	8
3.2.4	NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)	9
3.2.5	Regional Ground Water Contamination (AOC-14)	9
3.2.6	Conductive Area (AOC-15)	10
4.0	Remedial Action	13
4.1	Pre-Mobilization Activities	13
4.2	Mobilization	13
4.3	Excavation and Off-Site Disposal	13
4.3	Post-Excavation Sampling	14
4.4	Reliability of Data	14
4.5	Site Restoration	15
4.6	Remediation Costs	15
5.0	Conclusions/Recommendations	16

LIST OF FIGURES

- Figure 1 Site Location Map USGS 7.5 Minute Topographic Map Camden Quadrangle
- Figure 2 Site Location Map City of Camden Tax Map
- Figure 3 Area of Concern Location Map
- Figure 4 Site Investigation Sample Location Map
- Figure 5 Post-Excavation Soil Sample Location Map

LIST OF TABLES

- Table 1 Summary of Analytical Methods and Quality Assurance Indicators
- Table 2 Soil Boring Investigation Analytical Results (AOC-5) April 9, 2008
- Table 3 Soil Boring Investigation Analytical Results (AOC-11) April 9, 2008
- Table 4 Soil Boring Investigation Analytical Results (AOC-12) April 9, 2008
- Table 5 Soil Boring Investigation Analytical Results (AOC-15) April 9, 2008
- Table 6 Ground Water Investigation Analytical Results (AOC-11) April 11, 2008
- Table 7 Soil Boring Investigation Analytical Results (AOC-15) April 11, 2008
- Table 8 Post-Excavation Sampling Analytical Results (AOC-15) September 8 and 9, 2008

APPENDICES

- Appendix A Photographs
- Appendix B Health and Safety Plan
- Appendix C Waste Transportation and Disposal Manifest
- Appendix D Laboratory Analytical Results and Electronic Data Deliverables
- Appendix E Clean Fill Certificate

\\s09svr01\n\project\2007\0702358\05\05_Reports\camden labs rar.doc

1.0 Introduction

CMX has performed Remedial Action (RA) activities at the Camden Laboratories property, designated as Block 1392, Lot 33 in the City of Camden, Camden County, New Jersey (herein referred to as the "site") on behalf of Camden Laboratories, L.P. This Remedial Action Report (RAR) documents and summarizes activities associated with remediation of copper and lead impacted soil identified during previous Site Investigation (SI) activities.

This report is divided into five (5) sections including this Introduction (Section 1), Background Information (Section 2), Previous Investigation Summary (Section 3), Remedial Action (Section 4) and Conclusions and Recommendations (Section 5). The background information section details information relating to site use, history of ownership and physical characteristics for the site. The previous investigation section summarizes SI activities completed at the site to date. The remedial action section documents remedial actions completed at the site. This report has been prepared in accordance with the guidelines and recommendations presented in the New Jersey Department of Environmental Protection (NJDEP) Technical Requirements for Site Remediation (N.J.A.C. 7:26E) or "Tech Rules".

2.0 Background Information

2.1 Site Description

The site is located at 1667 Davis Street in the City of Camden, Camden County, New Jersey. The property is designated Lot 33 of Block 1392 by the City of Camden for tax purposes. The subject site is bound to the north by residential and commercial uses, to the south by Whitman Park, to the east by commercial uses, and the west by residential development. Commercial uses to the east and north of the site include RF Products and the Dr. Charles E. Brimm Medical Arts building. Figure 1 displays the approximate location of the property on a portion of the USGS 7.5 Minute Camden Quadrangle. Figure 2 displays the boundaries of the property on the City of Camden Tax Map.

2.2 Physical Characteristics

Figure 1 shows the topography of the subject area, along with local drainage patterns. Based on a review of this map, the site slopes from east to west. Elevation of the site ranges from approximately twenty-two (22) to twenty-six (26) feet above mean sea level (ft msl).

According to the Bedrock Geological Survey Map of Central & Southern New Jersey prepared by the U.S. Geologic Survey, the site lies within the Magothy Formation (Kmg) of the Coastal Plain Physiographic Province. The Magothy Formation consists of fine to coarse-grained white sand and quartz that weathers yellow-brown to orange-brown. This Formation is interbedded with grey clay or dark grey clay-silt near the top. Muscovite and feldspar are minor constituents. Large wood fragments occur in many clay layers.

According to the NJDEP i-MapNJ application (http://www.state.nj.us/dep/gis/depsplash.htm#), the subject site is underlain by urban land soils. Urban land soils are classified as anthrotransported, or consisting of parent material from miscellaneous sources. Urban land soils are not typically represented in a soil survey as a specific soil series.

2.3 Site History

The site consists of one (1) contiguous parcel that is 3.9 acres in size. Based on a review of available historical sources, the site was developed for use as a hospital for municipal diseases, which was located in the northern portion of the site. Construction for the hospital occurred as early as 1923. The site was redeveloped for use for biological, genetic and cancer research. Construction of the current site building compound (Buildings A through F) took place in phases from the 1950's to the 1980's.

3.0 Previous Investigations

CMX completed a Preliminary Assessment (PA) and SI of the site on behalf of Camden Laboratories. L.P. PA and SI findings were summarized in CMX's PA and SI reports dated August 2008 which were previously submitted to NJDEP for review. The following paragraphs present a summary of CMX's PA findings and SI activities performed to date.

3.1 August 2008 Preliminary Assessment Summary

CMX completed a PA of the site on behalf of Camden Laboratories. L.P. CMX's findings were summarized in a PA Report dated August 2008. CMX identified the following areas of concern (AOCs) in connection with the subject site following completion of the PA.

- <u>Above Ground Storage Tanks (AOC-1)</u> One (1) 275-gallon AST which formerly contained diesel fuel and one (1) emergency generator were located at the southwest exterior of Building B. The AST appeared to be in fair condition with no visible staining noted. The AST and generator are located on a concrete slab surrounded by asphalt. CMX recommended no investigation of this AOC.
- Underground Storage Tanks (AOC-2A/AOC-2B/AOC-2C) EDR identified Camden Laboratories, Copewood Street, Camden, New Jersey in the UST database (Facility ID 016718). Two (2) 6,000-gallon heating oil USTs (AOC-2A and AOC-2B) and one (1) 2,000-gallon No. 2 heating oil UST were reportedly removed from the Camden Laboratories site in August 1989. Mr. Martin Manco, a representative of the current property owner, confirmed the closure and removal of three (3) UST's in 1989. These UST's were formerly utilized as fuel for the generators and boilers within the Camden Laboratories building. Mr. Manco stated that the buildings were converted from mixed usage between oil and gas to entirely gas in 1989 when the UST's were removed.

According to an undated report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., two (2) 6,000 gallon UST's (AOC-2A/AOC-2B) and one (1) 2,000 gallon UST (AOC-2B) containing No. 2 heating oil were closed and removed at the site in August 1989. The tanks were found to be in good condition when removed. Five (5) post-excavation soil samples were collected from each excavation as follows: four (4) soil samples were collected from the east, north, south and west ends of the UST excavation area; and, one (1) post-excavation soil sample was collected from the bottom of the excavation area. Post-excavation soil samples were laboratory analyzed for TPH. TPH was reported as non-detectable or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis.

Based on our review of the post-excavation soil sample analytical results, no exceedances of current NJDEP soil cleanup were identified. CMX recommended no investigation of this AOC.

Storage Containers (AOC-3) – Four (4) 55-gallon drums of muriatic acid and five (5) 55-gallon drums of caustic soda were observed within the former freezer room of Building B. Several empty 55-gallon drums, five (5) gallon containers and one (1) gallon paint container were also located within the room. No staining was noted on the concrete beneath the drums. The floors were in good condition, no apparent cracks or migration pathways were noted. Mr. Manco informed CMX that all of the containers were going to

be removed from the property in the near future. CMX recommended no investigation of this AOC; however the containers should be removed and disposed of in accordance with applicable waste regulations.

- <u>Building C Floor Drains (AOC-4)</u> Building C is the southern most structure of the existing six (6) buildings and is comprised of one (1) ground floor. This building contained equipment for the former cleaning and sterilization of animal cages. All equipment appeared in good condition. The equipment drains to a floor drain system which discharges to the Camden County Municipal Utilities Authority sewer. No staining of the concrete floor was noted. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- Septic Systems, Leachfields or Seepage Pits (AOC-5) According to an Environmental Resolutions Inc. PA report for the site dated September 2007, "available information indicates that a cesspool was once in use at the Site. There is a concern that contaminants may have been discharged to the cesspool. It is recommended that this AOC be investigated in accordance with N.J.A.C. 7:26E-3.9(e)3iii." Mr. Manco acknowledged that a cesspool associated with the former site structures was located north of the site entrance along Davis Street; however, he could provide no additional details regarding the possible cesspool. CMX recommended investigation of this AOC.
- Building B Drywell (AOC-6) Building B is located in the central section of the existing structures and was the largest of the six (6) buildings. This building was comprised of two (2) floors. This building contained former offices and animal quarters on the first floor and former laboratories on the second floor. Building B contained two (2) boiler rooms on the first floor. The pipes and equipment located within the boiler rooms appeared in fair condition. Minor staining of the concrete surface was noted throughout the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. According to BCM Eastern, Inc. environmental assessment correspondence dated September 8, 1988, Building B boiler blowdown was formerly directed to a floor drain system which discharged to a dry well. ERI indicated that the drywell utilized for collection of Building B boiler blowdown was removed in their PA report. CMX recommended investigation of this AOC.
- Incinerator (AOC-7) According to the BCM environmental assessment correspondence, an incinerator was used for the disposal of dead laboratory animals that were used for the study of disease or virus reaction. Incinerator ash was collected in an on-site dumpster and transported off-site for disposal at a sanitary landfill. During the interview, Mr. Manco indicated that the incinerator was removed from the site. CMX did not observe an incinerator during the site reconnaissance. CMX recommended no investigation of this AOC.
- <u>Transformers (AOC-8)</u> Two (2) electric transformers were observed at the west exterior
 of the power house (Building D). According to the BCM environmental assessment
 report, these transformers are of the dry construction type and do not contain oil. In
 addition, one (1) pole mounted electrical transformer was located along Davis Street.
 The transformers were in fair condition and no staining or stressed vegetation was

observed at the ground surface beneath any of these transformers. CMX recommended no investigation of this AOC.

- <u>Building A Staining (AOC-9A)</u> Building A is located within the northern most section of the existing building compound and is comprised of a first floor and basement. This building contained former laboratories and offices on both floors. Building A also contained a boiler room and water filtration tanks in the basement. The pipes and equipment located within the boiler room appeared in fair to good condition. Minor staining of the concrete surface was noted on the floor. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. Based on a review of information provided by Mr. Manco, with the exception of the Building B boiler room floor drain, all site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. CMX recommended no investigation of this AOC.
- <u>Building D Staining (AOC-9B)</u> Building D is the western most structure and is comprised
 of one (1) ground floor. Two (2) emergency gas powered generators were observed
 within Building D. Heavy staining of the concrete surface was noted beneath the
 generators. The floors appeared to be in good condition and no apparent cracks or
 migration pathways were noted. No floor drains were noted in this building. CMX
 recommended no investigation of this AOC.
- <u>Building F Staining (AOC-9C)</u> Building F is the eastern most structure and consists of ground floor and basement. This building contained laboratories, a library, mechanical room, and Quality Assurance room in the basement. The first floor contained administrative offices and an auditorium. Minor staining observed on the concrete floor in the mechanical room. The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. CMX recommended no investigation of this AOC.
- <u>Compressor Blowdown (AOC-10)</u> According to the BCM environmental assessment correspondence, refrigeration compressors at the northeast exterior of Building B "are on open ground and show some slight staining of surrounding soils." In addition, ERI indicated that stained soils identified at the exterior of Building B were removed in their PA report. CMX did not observe stained soils in this area during the site reconnaissance. CMX recommended no investigation of this AOC.
- Hydraulic Lift System (AOC-11) A concrete pad that formerly contained an above ground hydraulic lift was observed in the loading dock area at the southern side of Building B. No evidence of a discharge from the hydraulic lift system was noted. Mr. Manco indicated that the hydraulic lift system tank was removed on November 9, 2007. He also stated that the entire lift was encased within concrete. Mr. Manco provided a Casie Protank Environmental Services non-hazardous manifest and a daily labor/equipment time report which documented the hydraulic lift system pump out and tank removal activities. According to the BCM environmental assessment correspondence, at the time of the BCM site reconnaissance the hydraulic lift system tank at the loading dock was "leaking, covered with oil dry." In addition, based on their PA, ERI concluded that "a hydraulic lift was observed at the loading docks at the Site. The 1988 assessment indicated that the tank was leaking. There is a concern that contaminants may have discharged to soils at the Site." CMX recommended investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 2230; NJDEP Case No. 97-2-21-1440-39). EDR reports that five (5) gallons of diesel fuel were spilled and contained within the building on February 21, 1997. The status of the spill is reported as "spill from generator from leaking fitting. Cleanup being done." No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

A file completion memo dated October 25, 2007 regarding Case No. 97-0221-1440-39 was provided by the Camden County Department of Health (CCDOH). According to the memo, an oil spill was identified in the generator area at Quality Bio-Tech, 1667 Davis Street, Camden, on February 21, 1997. The initial report provided as an attachment to the file completion memo indicated that "asphalt was impacted and some soils must be excavated and post-excavation samples taken. All waste generated must be disposed of at an approved facility. All remedial activities must be conducted in accordance with N.J.A.C. 7:26D&E." According to the file completion memo, a reinpsection was conducted. At the time of the reinspection, "no spillage was evident" and "the area around the generator is surrounded by asphalt and concrete. No impact to soil could be noted. Therefore, the Camden County Health Department considers the matter closed." CMX recommended investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13) – EDR identified Quality Bio-Tech Inc., 1667 Davis Street, Camden, New Jersey in the New Jersey Spills Database (Facility ID 35063; NJDEP Case No. 98-11-20-1919-54). EDR reports that liquid nitrogen was spilled in the building and that the building was evacuated on November 28, 1998. At least two (2) people were treated for inhalation. No other pertinent information regarding this spill was recorded in the NJ SPILLS database.

The CCD0H provided a file completion memo dated September 15, 1999 regarding Case No. 98-11-20-1919-54. According to the memo, a nitrogen gas release was reported within the freezer room of Viro Med Biosafety, 1667 Davis Street, Camden, on November 20, 1998. Four (4) employees and a security guard were overcome by the nitrogen gas release and rescued by firefighters. The document also reported that the conditions cited were mitigated to acceptable limits when compared to the NJDEP technical regulations. CMX recommended no investigation of this AOC.

Regional Ground Water Contamination (AOC-14) – EDR reported that the north adjacent RF Products property disposed degreasing solvents through drains. In order to determine the potential for impact to the site from the PF Products property, CMX reviewed available NJDEP records for RF Products on July 2, 2008. Based on a review of available records, RF Products has been identified as a source of a ground water contamination within the region. Ground water contamination has been identified on the Camden Laboratories property and has been attributed to migration of contaminants originating from RF Products. CMX recommended no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

The locations of AOC's identified following completion of the PA are presented on Figure 3.

3.2 Site Investigation Summary

CMX completed SI activities at the site between April and June 2008. SI activities included a geophysical survey, soil boring investigation and ground water investigation. SI soil boring/sampling and temporary well point locations are presented on Figure 4. A tabulated summary of analytical methods and quality assurance indicators is provided in Table 1. The following paragraphs document and summarize CMX's SI activities performed to date.

3.2.1 Septic Systems, Leachfields or Seepage Pits (AOC-5)

CMX completed a geophysical survey of the subject site on April 8, 2008 in an effort to identify the location of the potential septic system (AOC-5). An anomaly indicative of an approximate 10,000-gallon subsurface septic tank was located in the eastern portion of the site adjacent to Building F. An associated discharge pipe was identified at a location directly north of the anomaly. Upon verification of the septic system location during the geophysical survey, CMX advanced one (1) soil boring (SB-6) at the suspected downgradient side of the septic tank and one (1) soil boring (SB-7) at the terminus of the associated pipe. Soil boring locations are presented on Figure 4. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval at the suspected invert of the septic tank or at the base of the soil boring. Therefore, sample SB-6 was collected from a depth of 5.5 to 6.0' below grade and sample SB-7 was collected from a depth of 13.5 to 14.0' below grade. Soil samples were forwarded to Accutest Laboratories of Dayton, Jersey (Accutest) for priority pollutant (PP+40) analysis and total petroleum hydrocarbons analysis by NJDEP Method OQA-QAM-025, Rev.6 (TPH-QAM). All PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Soil Cleanup Criteria (SCC) for soil samples collected from the soil borings. A summary of analytical results for soil samples collected to investigate this AOC is included in Table 2. Based on the analytical results, CMX recommended no additional investigation of this AOC; however, if the septic system will not be used as part of future site redevelopment, CMX recommended closure of the septic system in accordance with applicable state and local requirements.

3.2.2 Building B Drywell (AOC-6)

CMX completed a geophysical survey of the subject site on April 8, 2008 in an effort to identify the location of any potential subsurface floor drain systems associated with the Building B dry well (AOC-6). The geophysical investigation was conducted within the interior of Building B boiler rooms. The geophysical survey revealed piping associated with a large sump, floor drain and

sanitary sewer line within the south boiler room. The floor drain appeared to be clogged, as water and debris was observed within the drain. Due to the thickness of the building's concrete floor, GPR penetration was limited to approximately one (1) foot below grade. Therefore, piping associated with the floor drain could not be traced and the discharge location of the sump and floor drain system was not identified. As discussed in our PA report, ERI prepared a PA for the site on behalf of Education Advance Corporation. ERI's PA findings were summarized in their PA report dated September 2007. According to the ERI PA report, the drywell utilized for collection of Building B boiler blowdown was removed. Based on all of the above, CMX recommended no additional investigation of this AOC.

3.2.3 Hydraulic Lift System (AOC-11)

CMX completed a geophysical survey of the subject site on April 8, 2008 in an effort to identify the location of any and subsurface anomalies associated with the former hydraulic lift system (AOC-11). A round anomaly of unidentified origin was identified approximately twenty (20) feet southeast of the hydraulic lift system. The anomaly was located within a small depression in the asphalt and appeared to be connected to the lift system by subsurface piping. CMX advanced two (2) soil borings (SB-3 and SB-4) along the southern perimeter of the concrete pad associated with the hydraulic lift system and one (1) soil boring (SB-5) adjacent to the associated anomaly identified during the geophysical survey. Soil boring locations are presented on Figure 4. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval at the base of the soil boring. Samples SB-3 and SB-5 were collected from a depth of 13.5 to 14.0' below grade. Sample SB-4 was collected from a depth of 14.5-15.0' below grade. Soil samples were forwarded to Accutest for TPH-QAM analysis. Contingent polynuclear aromatic hydrocarbon (PAH) analysis was to be performed in the event that TPH was reported at a concentration exceeding 100 mg/kg. Analytical results reported TPH-QAM as non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings; therefore, contingent PAH analysis was not performed. A summary of analytical results for soil samples collected to investigate this AOC is included in Table 3.

CMX installed one (1) temporary well point to investigate the potential for impact to ground water from the hydraulic lift system (AOC-11). The temporary well point was installed in the SB-5 borehole. CMX collected one (1) groundwater sample (TWP-1) from this temporary well point. The ground water sample was forwarded to Accutest for volatile organic compound with a forward library search (VO+10) and base neutral compound with a forward library search

(BN+15) analyses. All VO+10 and BN+15 compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Ground Water Quality Standard (GWQS) for sample TWP-1. A summary of analytical results for the ground water sample collected to investigate this AOC is included in Table 6. Based on the analytical results, CMX recommended no additional investigation of this AOC.

3.2.4 NJ SPILLS Database Listing (NJDEP Case No. 97-2-21-1440-39) (AOC-12)

CMX advanced two (2) soil borings (SB-1 and SB-2) in the vicinity of the generator located at the exterior of Building B. Soil boring locations are presented on Figure 4. Since no evidence of contamination (i.e. odors, staining, elevated PID readings) was observed, the soil samples were collected from the six-inch (6") interval at the base of the soil boring (14.5-15.0' below grade). Soil samples were forwarded to Accutest for total petroleum hydrocarbon-diesel range organics (TPH-DRO) analysis. Contingency VO+10 analysis was to be performed in the event that TPH-DRO was reported at a concentration exceeding 1,000 mg/kg. Analytical results reported TPH-DRO as non-detect or at concentrations below the NJDEP threshold of 1,000 mg/kg for soil samples collected from the soil borings; therefore, contingent VO+10 analysis was not performed. A summary of analytical results for soil samples collected to investigate this AOC is included in Table 4. Based on the analytical results, CMX recommended no additional investigation of this AOC.

3.2.5 Regional Ground Water Contamination (AOC-14)

CMX installed five (5) temporary well points (TWP-1 through TWP-5) to investigate the potential for impact to ground water at the site. Temporary well points were installed at the following locations: one (1) temporary well point (TWP-1) was installed at soil boring SB-5 advanced adjacent to the hydraulic lift system (AOC-11); one (1) temporary well point (TWP-2) was installed at soil boring SB-6 installed in the vicinity of the septic system (AOC-5); one (1) temporary well point (TWP-3) was installed at soil boring SB-1 advanced within the vicinity of the generator to investigate potential impacts from the reported spill (AOC-12); and, two (2) temporary well points (TWP-4 and TWP-5) were installed at soil borings SB-10 and SB-11 advanced at the east property line to evaluate the potential for migration of contaminants to the site from the east adjacent RF Products property via ground water (AOC-14). Temporary well point locations are presented on Figure 4. Since four (4) of the five (5) temporary well points did not yield enough ground water for collection of samples and clay was identified within the soil column of several of the soil borings, CMX suspects that the ground water conditions observed during the soil boring investigation are representative of a perched ground water condition. Analytical results for

sample (TWP-1) collected from the temporary well point installed adjacent to the hydraulic lift system (AOC-11) reported all VO+10 and BN+15 compounds as non-detect or at concentrations below their respective most stringent NJDEP GWQS. A summary of analytical results for this ground water sample is included in Table 6. Based on these results, CMX concludes that shallow/perched ground water at the site has not been impacted.

As discussed in our July 2008 PA report, the NJDEP Site Remediation and Waste Management Program, Division of Remediation Support, Bureau of Environmental Measurement and Site Assessment conducted ground water investigations to evaluate the north adjacent RF Products/Fast Doors, Inc. site as a potential source of contamination identified in the Camden Parkside Wellfield. The NJDEP findings were summarized in an Expanded Site Investigation Report dated September 2007. According to the report, TCE was indentified at concentrations exceeding the NJDEP GWQS in ground water beneath the RF Products/Fast Doors, Inc. site and the Camden Laboratories property. The NJDEP concluded that the RF Products/Fast Doors, Inc. site was the source of the TCE ground water contamination and that the TCE ground water contamination has migrated to the Camden Laboratories property from the RF Products/Fast Doors, Inc. site. Since depth to ground water during NJDEP's ground water investigation was identified between thirty-two (32) to forty-one (41) feet below grade, TCE impact to the deep aquifer has been confirmed.

CMX recommended no additional investigation of this AOC; however, future site improvements will need to consider vapor intrusion mitigation measures.

3.2.6 Conductive Area (AOC-15)

CMX completed a geophysical survey of the subject site on April 8, 2008. During the geophysical survey, a large conductive area (AOC-15) measuring approximately fifty (50) feet by seventy-five (75) feet was encountered within the western grassed portion of the site. CMX initially investigated this AOC on April 9, 2008. CMX advanced two (2) soil borings (SB-8 and SB-9) at the east and west flank of the conductive area identified during the geophysical survey. Soil boring locations are presented on Figure 4. Ash-like material was encountered in each of the borings within the upper fourteen (14) inches of the soil column. Soil samples were collected from each soil boring to characterize the ash-like material identified within the soil column. Soil samples were forwarded to Accutest for PP+40 and TPH-QAM analyses. Copper was reported at a concentration exceeding the NJDEP Residential Direct Contact Soil Cleanup Criteria/Non-Residential Direct Soil Cleanup Criteria (RDCSCC/NRDCSCC) of 600 mg/kg for sample SB-8

(1,380 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg and NRDCSCC of 600 mg/kg for sample SB-8 (667 mg/kg). All other PP+40 and TPH-QAM compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP SCC for both soil samples. A summary of analytical results for soil samples collected to investigate this AOC is included in Table 5.

Based on the above, CMX performed follow-up investigations of this AOC on June 23, 2008 to characterize the conductive ash-like material and determine the horizontal boundary and vertical limits of this material. CMX advanced two (2) soil borings (AM-1 and AM-2) through the conductive area. One (1) soil sample was collected from each boring to characterize the ash-like material identified within the soil column. One (1) additional sample was collected from each boring in order to establish the vertical limit of the ash-like material. In addition, fourteen (14) soil borings (AM-3 through AM-16) were advanced in an effort to determine the horizontal extent of the ash-like material. One (1) soil sample was collected from each boring where no indications of impact (i.e. the presence of ash-like material) were identified in order to establish the horizontal limit of material. Soil boring and sampling locations are presented on Figure 4. Soil samples were forwarded to Accutest for copper and lead analyses. With the exception of one (1) sample (AM-2), copper and lead were reported at concentrations below the NJDEP most stringent SCC for all samples collected. Copper was reported at a concentration exceeding the NJDEP RDCSCC/NRDCSCC of 600 mg/kg for sample AM-2 (1,150 mg/kg). Lead was reported at a concentration exceeding the NJDEP RDCSCC of 400 mg/kg for sample AM-2 (450 mg/kg). A summary of analytical results for supplemental soil samples collected to investigate this AOC is included in Table 7.

The estimated extent of the ash-like material identified based on the findings of the SI is presented on Figure 4. The extent of ash-like material was horizontally delineated to the north by soil borings AM-4 and AM-5; to the east by soil borings AM-3 and AM-12; and to the south by soil borings AM-14 and AM-15. While ash-like material was identified on a portion of the Camden Laboratories property, a substantial area of ash-like material was observed across the south adjacent Whitman Park. The ash-like material was thicker on Whitman Park when compared to the Camden Laboratories property, and extended to a greater depth. Based on these observations, the ash-like material originates on Whitman Park and extends onto the Camden Laboratories property.

Based on the analytical results for soil samples collected to investigate the conductive area, copper and lead impacted subsurface soil has been horizontally and vertically delineated by samples collected during the April 9 and June 23, 2008 soil boring investigations. Impacted subsurface soil has been horizontally delineated to the north by on-site subsurface soil samples AM-4 and AM-5; to the east by on-site subsurface soil sample AM-3; to the south by off-site subsurface soil samples AM-7 and AM-8; and to the west by on-site subsurface soil samples AM-6. Furthermore, impacted subsurface soil has been vertically delineated by on-site subsurface soil sample AM-1A and AM-2A.

Analytical results indicated that the area of copper and lead impacted ash is limited to the onsite conductive area initially identified during the geophysical survey. Therefore, the extent of impact is limited to an approximate 3,750 square foot area. The ash-like material was 1.1 feet thick. The copper and lead impacted area was estimated to be 4,125 cubic feet (152.8 cubic yards), or approximately 230 tons in volume.

CMX recommended that Camden Laboratories L.P. address the limited area of copper and lead impacted soils on the Camden Laboratories property through excavation and off-site disposal, as this remedy is permanent and will not require a deed notice or long term monitoring if executed appropriately.

4.0 Remedial Action

This section presents a summary of the remedial actions completed at the subject site pursuant to N.J.A.C. 7:26E-6.7(b)2. Remedial actions included excavation with off-site disposal to address the copper and lead impacted soils identified during the SI (AOC-15). Soil remediation activities were photo-documented. Copies of pertinent photographs are provided in Appendix A. The following paragraphs provide a summary of remedial actions completed to date.

4.1 Pre-Mobilization Activities

CMX developed and implemented a site-specific Health and Safety Plan (HASP) covering Remedial Action construction activities. The HASP is provided in Appendix B.

4.2 Mobilization

On August 13, 2008, CMX mobilized to the site to install field stakes at the boundary of the conductive area. The conductive area measured 75 feet in length by 50 feet in width. Field stakes were used to define the horizontal limits of the proposed excavation.

Construction equipment, including a rubber-tired backhoe and dump truck, was mobilized to the site and staged in a designated equipment staging area during the project. A temporary equipment decontamination/staging area was established adjacent to the excavation area to facilitate collection of soil and mud from equipment. Furthermore, trucks and equipment were restricted to designated travel routes and staging locations.

4.3 Excavation and Off-Site Disposal

On September 8 and 9, 2008, CMX and its subcontractor, McIntire Excavating (McIntire) of Mount Laurel, New Jersey, mobilized to the site for excavation of the copper and lead impacted ash-like material from the conductive area. Surficial overburden soil which was determined not to contain impacted ash-like material was excavated from the conductive area utilizing a rubber-tired backhoe and stockpiled adjacent to the excavation. Overburden soil was excavated until the black ash-like material was encountered. The depth to ash ranged between twelve inches (12") and twenty inches (20") below ground surface.

Once overburden soil was removed, the ash-like material was excavated and staged adjacent to the excavation. The material was placed on and covered with plastic. The ash-like material was excavated vertically until native soil was encountered, and was excavated horizontally to the conductive anomaly boundary. Ash-like material encountered ranged between sixteen (16) and

twenty-four (24) inches thick. The final excavation measured thirty-six inches (36") deep.

Approximately 167 tons of material were excavated for off-site reuse at Stags Leap of Mullica

Hill, New Jersey, an approved beneficial re-use facility. A copy of the waste transportation and disposal manifest is provided in Appendix C.

4.3 Post-Excavation Sampling

Post-excavation soil samples were collected in accordance with the frequency outlined in N.J.A.C. 7:26E-6.4(a)2.ii.(2) which states "one sample from the bottom of each sidewall for every 30 linear feet of sidewall and one sample from the excavation bottom for every 900 square feet of bottom area." Since the final excavation area was 3,750 square feet in size, CMX collected ten (10) sidewall samples (PE-1 through PE-10) and five (5) bottom samples (PE-11 through PE-15) from the excavation area. Post-excavation sidewall samples were collected at a depth of eighteen inches (18") below grade, which is consistent with the depth of the remaining ash-like material observed at the perimeter of the excavation area. Post-excavation bottom samples were collected at a depth of thirty-six inches (36") below grade. Soil samples were forwarded to Veritech Laboratories (Veritech) of Fairfield, New Jersey for copper and lead analysis. Post-excavation soil sampling locations are presented on Figure 5.

Copper and lead were reported as non-detect or at a concentration below their respective most stringent NJDEP SCC for post-excavation soil samples PE-1 through PE-15. A tabulated summary of analytical results is provided in Table 8. Laboratory analytical results and electronic data deliverables are provided in Appendix D.

Analytical results from post-excavation soil samples (PE-1 through PE-15) confirmed that the extent of impacted ash-like material was of removed from the site. Following removal of impacted material, the excavation area was backfilled with certified clean fill material and the ground surface was graded. A copy of the clean fill certification is provided in Appendix E.

4.4 Reliability of Data

13

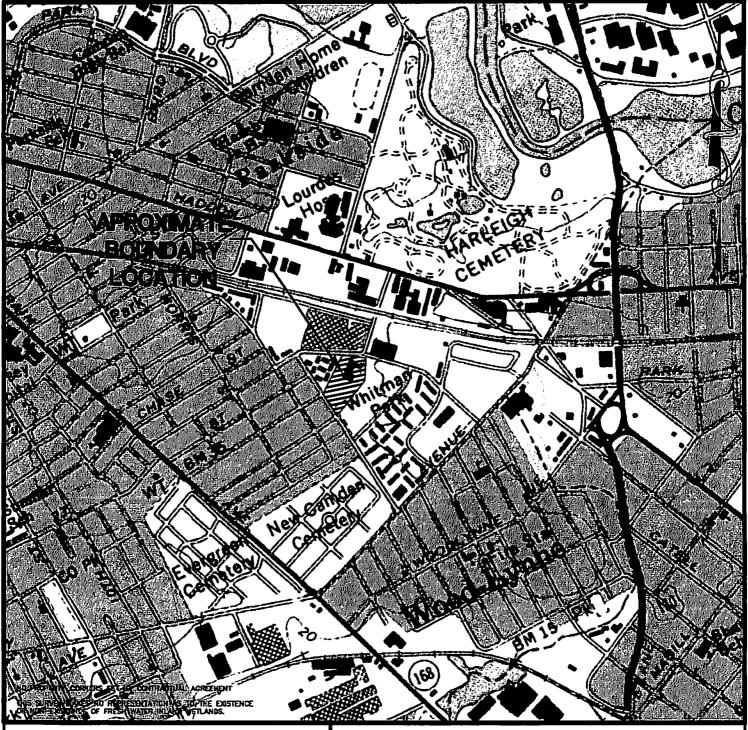
RA activities included collection of post-excavation soil samples in order to investigate contaminants identified in the SI at concentrations above applicable NJDEP remediation standards. Soil samples were biased towards locations and depths exhibiting contamination in samples collected as part of the SI. Each sample was laboratory analyzed for parameters exhibited in the SI samples. All soil samples were collected in accordance with N.J.A.C. 7:26E and the 2005 NJDEP Field Sampling Procedures Manual.

Samples collected during RA were analyzed at Veritech. Reliability of laboratory analytical data is indicated by compliance with USEPA and NJDEP sample holding times, the laboratory's ability to achieve method detection limits (MDLs), precision and accuracy with respect to the analytical method used, and/or any other indicators of data quality. Information pertaining to the reliability of laboratory analytical data was obtained from the Reduced Tier II Laboratory Data Deliverable report for each sampling event. Chain of Custody documentation, laboratory Quality Assurance/Quality Control (QA/QC) data, and laboratory non-conformance summaries (which contain details with respect to laboratory contamination) are included in the laboratory analytical data package compiled for each sampling event and have been provided in Appendix D.

4.5 Site Restoration

Surficial overburden soil removed from the excavation was reused as backfill and augmented with certified clean soil from an off-site source. The excavation area was then rough graded. The excavation area is presented on Figure 5.

4.6 Remediation Costs


Remedial activities associated with this phase of the project included mobilization and site preparations, site restoration, demobilization and preparation of a RAR. The cost for implementation of these activities is on the order of \$36,050.00.

5.0 Conclusions/Recommendations

CMX has performed a RA at the Camden Laboratories property, designated as Block 1392, Lot 33 in the City of Camden, Camden County, New Jersey on behalf of Camden Laboratories, L.P. RA activities were conducted between August and September 2008 and included excavation with off-site disposal to address copper and lead impacted soils at the site. The findings of the post-excavation sampling completed at the site to date have confirmed the extent of copper and lead impacted soil has been successfully remediated through excavation with off-site disposal. Based on the above, CMX recommends no additional investigation of the conductive anomaly. Therefore, CMX respectfully requests a determination of no further action for this AOC (AOC-15).

Figures

9 EXX

FIGURE 1 - SITE LOCATION 1667 DAVIS STREET

BLOCK 1392, LOT 33 CITY OF CAMDEN COUNTY NEW JERSEY

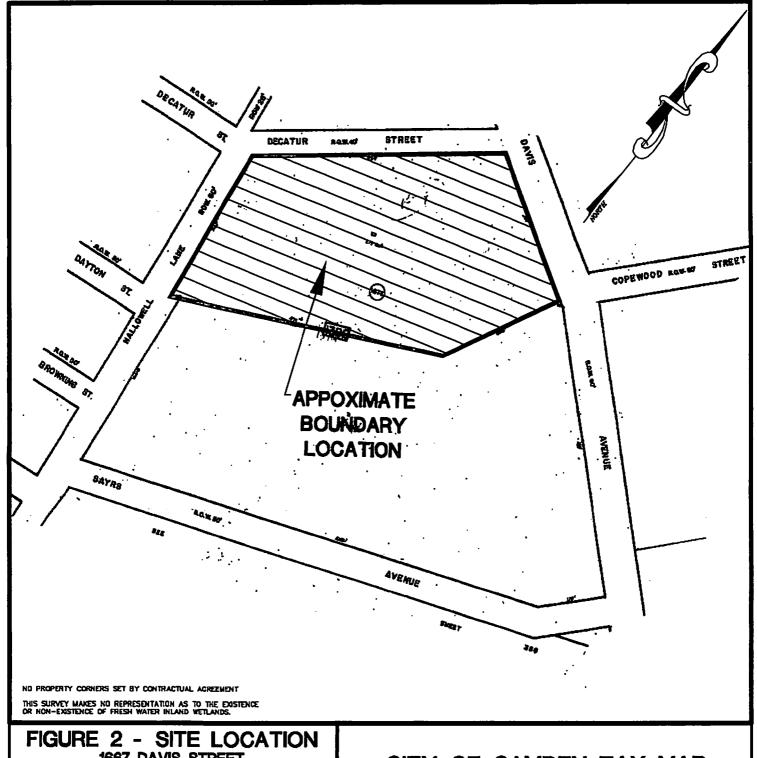
-NOTICE-

THIS DRAWING AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

DATE REVISIONS ORDER NO.


U.S.G.S. TOPOGRAPHIC MAP CAMDEN QUADRANGLE

Cert. Of Authorization 24GA27926200 1101 LAUREL OAK ROAD, SUITE 160 P.O. BOX 1346 VOORHEES, NJ 08043

TEL (856)783-1900 FAX (856)783-2100

SCALE DATE DRAWN BY DES. BY FILE NO. CHECKED BY 1"=1.000" 12/3/2007 RO 070235802 MP

1667 DAVIS STREET

BLOCK 1392 LOT 33 CITY OF CAMDEN CAMDEN COUNTY NEW JERSEY

-NOTICE-

THIS DRAWING AND ALL INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED.

THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE WRITTEN CONSENT OF CMX.

COPYRIGHT 2007 CMX. ALL RIGHTS RESERVED

DATE REVISIONS ORDER NO.

CITY OF CAMDEN TAX MAP

Cert. Of Authorization 24GA27926200 1101 LAUREL OAK ROAD, SUITE 160 P.O. BOX 1346 VOORHEES, NJ 08043 TEL (856)783-1900 FAX (856)783-2100

		<u>-</u>				
	SCALE	DATE	DRAWN BY	DES. BY	FILE NO.	CHECKED BY
-	N.T.S.	12/03/2007	RQ	MP	070235802	MP

Tables

副

Table 1: Summary of Analytical Methods and Quality Assurance Indicators Camden Laboratories 1867 Oavis Street City of Camden, Camden County, New Jersey Project Number: 070235804

AOC	Sample IO	Dhase	Sample Orde	Sample Depth	Matrix	Sampling Method	December	Analytical Method	(D	0	17-1	(Indian a William
AOC-5	SB-6	SI	4/8/2008	5.5-6.0	Soil	Direct Push Geoprobe	Parameter	82608, 8270C, 8081A, 6010B, C10-C28	Preservative		Volume 8 oz., Encore	Holding Time
AOC-5	SB-7	Si	4/8/2008		Soil	Direct Push Geoprobe			ice, Encore	Glass	8 oz., Encore	
AOC-11	SB-3	Si	4/8/2008	13.5-14.0	Soil	Direct Push Geoprobe	TPH-QAM	C10-C28	Ice, Encore	Glass	8 oz., Encore	28 Oays
AOC-11	SB-4	SI	4/8/2008	14.5-15.0	Soil	Direct Push Geoprobe	TPH-QAM	C10-C28	Ice	Glass	8 oz.	28 Oays
AOC-11	SB-5	Si	4/8/2008	13.5-14.0	Soil	Oirect Push Geoprobe	TPH-QAM	C10-C28	Ice	Glass	8 oz.	28 Oays
AOC-12	SB-1	SI	4/8/2008	14.5-15.0	Soil			C10-C28, 8260B	Ice, Encore	Glass	8 oz., 5 g.	28 Days, 14 Days
AOC-12	SB-2	SI	4/8/2008	14.5-15.0	Soll	Direct Push Geoprobe	TPH-DRO, VO+10	C10-C28, 8260B	Ice, Encore	Glass	8 oz., 5 g.	28 Days, 14 Days
AOC-15	SB-8	SI	4/8/2008	0,5-1,0	Soil		PP+40, TPH-QAM		Ice, Encore	Glass	8 oz., Encore	
AOC-15	SB-9	Si	4/8/2008	0.75-1.25'	Soil	Direct Push Geoprobe	PP+40, TPH-QAM	8260B, 8270C, 8081A, 6010B, C10-C28	Ice, Encore	Glass	8 oz., Encore	
AOC-11	TWP-1	SI	4/9/2008	14.5-15.0	Aqueous	Direct Push Geoprobe	VO+10, BN+15	8260B, 8270C	Ice, Elicule	Glass	120 mL., 1 L.	14 Oays, 7 Oays, 20 Days
	Flaid Blank	Si	4/9/2008	NA	Aqueous	Direct Push Geoprobe	VO+10, BN+15	8260B, 8270C	Ice, HCL	Glass	120 mL., 1 L.	14 Oays, 7 Days
	Trip Blank	SI	4/9/2008	NA NA	Aqueous	Direct Push Geoprobe	VO+10	8260B	Ice, HCL	Glass	120 mL.	14 Days
AOC-15	AM-1	Si	6/23/2008	0.85-1.35	Soil	Direct Push Geoprobe	Cu. Pb	60108	Ice	Glass	4 oz.	6 mps.
AOC-15	AM-1A	- Si	6/23/2008	1.75-2.25	Soil	Direct Push Geoprobe	Cu, Pb	6010B	Ice	Glass	4 OZ.	6 mos.
AOC-15	AM-2	Si	6/23/2008	1.0-1.5	Soil	Direct Push Geoproba	Cu, Pb	6010B	Ice	Glass	4 0Z.	8 mos.
AOC-15	AM-2A	Si Si	6/23/2008	1.75-2.25	Soil	Direct Push Geoprobe	Cu, Pb	60108	Ice	Glass	4 oz.	6 mos.
AOC-15	AM-3	Si	6/23/2008	0.85-1.35	Soil	Direct Push Geoprobe	Cu, Pb	60108	Ice	Glass	4 0Z.	6 mos.
AOC-15	AM-4	Si	6/23/2008	0.85-1.35	Soil	Direct Push Geoprobe	Cu, Pb	60108	Ice	Glass	4 0Z. 4 0Z.	6 mos.
AOC-15	AM-5	Si	6/23/2008	1.0-1.5	Soli	Direct Push Geoprobe	Cu, Pb	60108		Glass		6 mos.
AOC-15	AM-6	Si	6/23/2008	5.0-5.5	Soil	Direct Push Geoprobe	Cu, Pb	6010B	Ice Ice	Glass	4 oz.	6 mos.
AOC-15	AM-7	SI	6/23/2008	1.75-2.25'	Soil						4 oz.	
AOC-15	AM-7A	SI	6/23/2008	2.75-3.25	Soil	Otrect Push Geoprobe Otrect Push Geoprobe	Cu, Pb Cu, Pb	6010B 6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	AM-8	Si	6/23/2008	2.25-2.75	Soil	Oirect Push Geoprobe	Cu, Pb	6010B 6010B	Ice	Glass	4 OZ.	6 mos.
AOC-15	AM-8A	SI	6/23/2008	2.75-3.25	Soil	Oirect Push Geoprobe			Ice	Glass	4 oz.	6 mos.
AOC-15	AM-12	Si	6/23/2008	0.85-1.35°	Soil	Otrect Push Geoprobe	Cu, Pb	6010B	Ice	Glass	_ 4 oz.	6 mos.
AOC-15	AM-14	SI	6/23/2008	0.85-1.35	Soil			6010B	1ce	Glass	4 oz.	6 mos.
AOC-15	AM-15	SI	6/23/2008	1.75-2.25'	Soil	Direct Push Geoprobe Direct Push Geoprobe	Cu, Pb	60108	Ice	Glass	4 oz.	6 mos.
AOC-15	AM-16	Si	6/23/2008	2.5-3.0	Soil		Cu, Pb	6010B 6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-1	RA	9/8/2008	1.0-1.5'	Soil	Direct Push Geoprobe Stainless Steel Spoon	Cu, Pb		Ice	Glass	4 oz.	6 mos.
AOC-15	PE-2	RA	9/8/2008	1.0-1.5			Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-2 PE-3	RA	9/8/2008	1.0-1.5	Soil Soil	Stainless Steel Spoon Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-3	RA	9/8/2008	1.0-1.5	Soli		Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-4		9/8/2008	1.0-1.5'	Q - III	Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-5	RA	9/8/2008	1.0-1.5	Soil Soil	Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-7	RA RA	9/8/2008	1.0-1.5		Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-8		9/8/2008	1.0-1.5	Soil	Stainless Stael Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-9	RA	9/8/2008		Soil	Stainless Stael Spoon	Cu, Pb	6010B	Ice	Glass	_4 oz.	6 mos.
AOC-15	PE-10	RA RA		1.0-1.5	Soil	Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15			9/8/2008	1.0-1.5	Soil	Stainless Steel Spoon	Cu, Pb	60108	Ice	Glass	4 oz.	6 mos.
	PE-11	RA	9/9/2008	2.5-3.0	Soil	Stainless Steel Spoon	Cu, Pb	60108	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-12 PE-13	RA.	9/9/2008	2.5-3.0	Soil	Stainless Stael Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
		RA	9/9/2008	2.5-3.0	Soil	Stainless Steel Spoon	Cu, Pb	60108	Ice	Glass	4 oz.	8 mos.
AOC-15	PE-14	RA	9/9/2008	2.5-3.0	Soil	Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.
AOC-15	PE-15	RA	9/9/2008	2.5-3.0	Soll	Stainless Steel Spoon	Cu, Pb	6010B	Ice	Glass	4 oz.	6 mos.

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-6	·	·	SB-7		
Lab ID	Residential	Non-Residential		J87954-6			J87954-7		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				5.5-6.0'			13.5-14.0		
Result				Result	Qual	RDL	Result	Qual	RDL
GC/MS Volatiles (ppm)							7.000		
Acrolein	NS	NS	NS	ND		3200	ND		2900
Acrylonitrile	1	5	1	ND		3200	ND		2900
Benzene	3	13	1	ND		64	ND		58
Bromodichloromethane	11	46	1	ND		320	ND		290
Bromoform	86	370	1	ND		320	ND	\vdash	290
Bromomethane	79	1000	1	ND		320	ND	\vdash	290
Carbon tetrachloride	2	4	1	ND		320	ND		290
Chlorobenzene	37	680	i	ND		320	ND	\vdash	290
Chloroethane	NS	NS	NS	ND		320	ND	-	290
2-Chloroethyl vinyl ether	NS	NS	NS	ND		1600	ND		1400
Chloroform	19	28	1	ND		320	ND		290
Chloromethane	520	1000	10	ND		320	ND		290
Dibromochloromethane	110	1000	1	ND		320	ND		290
1,2-Dichlorobenzene	5100	10000	50	ND		320	ND	 	290
1,3-Dichlorobenzene	5100	10000	100	ND		320	ND	\vdash	290
1,4-Dichlorobenzene	570	10000	100	ND		320	ND		290
Dichlorodifluoromethane	NS	NS	NS	ND ND		320	ND	_	290
1,1-Dichloroethane	570	1000	10	ND		320	ND		290
1,2-Dichloroethane	6	24	1	ND		64	ND		290 58
1,1-Dichloroethene	8	150	10	ND ND		320	ND		290
cis-1,2-Dichloroethene	79	1000	1	ND ND		320	ND		
trans-1,2-Dichloroethene	1000	1000	50	ND		320			290
1,2-Dichloropropane	1000	43	NS NS				ND		290
cis-1,3-Dichloropropene	NS	NS	NS NS	ND ND		320 320	DA DA		290
trans-1,3-Dichloropropene	NS NS	NS NS	NS NS						290
Ethylbenzene	1000			ND		320	ND		290
Methylene chloride	49	1000	100	ND		64	ND		58
1,1,2,2-Tetrachloroethane	34	210 70	1	ND		320	ND		290
Tetrachloroethene	4	6	1	ND		320	ND		290
Toluene	1000	1000		ND ND		320	ND		290
1,1,1-Trichloroethane			500	ND		64	ND		58
1,1,2-Trichloroethane	210	1000	50	ND		320	ND		290
Trichloroethene	22	420	1	ND		320	ND		290
Trichlorofluoromethane	23	54	1	ND		320	ND		290
Vinyl chloride	NS	NS	NS 40	ND ND		320	ND		290
Xylene (total)	2	7	10	ND		320	ND		290
Total TIC, Volatile	410	1000	67 NC	ND		130	ND 0		120
GC/MS Semi-volatiles (ppm)	NS	NS	NS	0			0		
2-Chlorophenol	380	5000						\Box	465
	280	5200	10	ND		200	ND		190
4-Chloro-3-methyl phenol	10000	10000	100	ND		200	ND		190
2,4-Dichlorophenol	170	3100	10	ND		200	ND		190
2,4-Dimethylphenol	1100	10000	10	ND		200	ND		190
2,4-Dinitrophenol 4,6-Dinitro-o-cresol	110	2100	10	ND		780	ND		770
2-Nitrophenol	NS NS	NS NS	NS	ND	 -∤	780	ND		770
4-Nitrophenol	NS NS	NS NS	NS	ND		200.	ND		190
Pentachlorophenol	6	NS 24	NS 100	ND		780	ND		770
Phenol	10000	24	100	ND		390	ND		390
2,4,6-Trichlorophenol	62	10000	50	ND		78	ND		77
Acenaphthene		270	10	ND		200	ND		190
Acenaphthylene	3400 NS	10000	100	ND		78	ND		77
rocinapitulyicile	NS	NS	NS	ND		78	ND		77

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	un Criteria	SB-6			SB-7		
Lab ID	Residential	Non-Residential		J87954-6	H		J87954-7	Н	
Sampling Date	Direct Contact	Direct Contact	Groundwater		_		4/9/2008	\vdash	
Sample Depth	Direct Contact	Direct Contact	Ordananater	5.5-6.0			13.5-14.0		-
Result	<u> </u>			Result	Qual	RDL	Result	Quai	RDL
Anthracene	10000	10000	100	ND	400	78	ND	-	77
Benzidine	NS	NS	NS	ND		780	ND		770
Benzo(a)anthracene	0.9	4	500	ND		78	ND		77
Benzo(a)pyrene	0.66	0.66	100	ND		78	ND		77
Benzo(b)fluoranthene	0.9	4	50	ND		78	ND		77
Benzo(g,h,i)perylene	NS	NS	NS	ND		78	ND		77
Benzo(k)fluoranthene	0.9	4	500	ND		78	ND		77
4-Bromophenyl phenyl ether	NS	NS	NS	ND		78	ND		77
Butyl benzyl phthalate	1100	10000	100	ND		78	ND		77
2-Chloronaphthalene	NS	NS	NS	ND		78	ND		77
4-Chloroaniline	230	4200	NS	ND		200	ND		190
Chrysene	9	40	500	ND		78	ND		77
bis(2-Chloroethoxy)methane	NS	NS	NS	ND		78	ND		77
bis(2-Chloroethyl)ether	0.66	3	10	ND		78	ND		77
bis(2-Chloroisopropyl)ether	2300	10000	10	ND		78	ND		77
4-Chlorophenyl phenyl ether	NS	NS	NS	ND		78	ND		77
1,2-Dichlorobenzene	5100	10000	50	ND		78	ND		77
1,2-Diphenylhydrazine	NS	NS	NS	ND		78	ND		77
1,3-Dichlorobenzene	5100	10000	100	ND		78	ND		77
1,4-Dichlorobenzene	570	10000	100	ND		78	ND		77
2,4-Dinitrotoluene	NS	NS	NS	ND		78	ND		77
2,6-Dinitrotoluene	NS	NS	NS	ND		78	ND		77
3,3'-Dichlorobenzidine	2	6	100	ND		200	ND		190
Dibenzo(a,h)anthracene	0.66	0.66	100	ND		78	ND		77
Di-n-butyl phthalate	5700	10000	100	ND		78	ND		77
Di-n-octyl phthalate	1100	10000	100	ND		_78	ND		77
Diethyl phthalate	10000	10000	50	ND		78	ND		77
Dimethyl phthalate	10000	10000	50	ND		78	ND		77
bis(2-Ethylhexyl)phthalate	49	210	100	ND		78	ND		77
Fluoranthene	2300	10000	100	ND		78	ND		77
Fluorene	2300	10000	100	ND		78	ND		77
Hexachlorobenzene	0.66	2	100	ND		78	ND		77
Hexachiorobutadiene	1	21	100	ND		78	ND		77
Hexachlorocyclopentadiene	400	7300	100	ND		780	ND		770
Hexachloroethane Indeno(1,2,3-cd)pyrene	6	100	100	ND		200	ND		190
Isophorone	0.9	4	500	ND		78	ND		77
Naphthalene	1100 230	10000	50	ND		78	ND		77
Nitrobenzene	28	4200 520	100	ND		78	ND		77
n-Nitrosodimethylamine	NS NS	NS	10 NC	ND		78	ND		77
N-Nitroso-di-n-propylamine	0.66		NS 10	ND		78	ND		77
N-Nitrosodiphenylamine	140	0.66 600	100	ND ND		78 200	ND		77
Phenanthrene	NS NS	NS	NS	ND		78	ND ND		190 77
Pyrene	1700	10000	100	ND		78	ND		
1,2,4-Trichlorobenzene	68	1200	100	ND		78	ND		77
Total TIC, Semi-Volatile	NS NS	NS	NS NS	0			0		
Pesticides/PCBs (ppm)		.,,,						\dashv	
Aldrin	0.04	0.17	50	ND		1.6	ND		1.5
alpha-BHC	NS	NS	NS	ND	-	1.6	ND		1.5
beta-BHC	NS	NS	NS	ND		1.6	ND	-	1.5
delta-BHC	NS	NS	NS	ND		1.6	ND	-	1.5
gamma-BHC (Lindane)	0.52	2.2	50	ND		1.6	ND		1.5

Table 2: Tabulated Summary of Soil Sample Analytical Results Septic Systems, Leechfields or Seepage Pits (AOC-5) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-6	T		SB-7		
Lab ID	Residential	Non-Residential		J87954-6			J87954-7		
Sampling Date	Direct Contact	Direct Contact	Groundwater				4/9/2008		
Sample Depth				5.5-6.0'			13.5-14.0		
Result			<u> </u>	Result	Qual	RDL	Result	Qual	RDL
Chlordane	0.25	2.1	NS	ND		39	ND		39
Dieldrin	0.042	0.18	50	ND		1.6	ND		1.5
4,4'-DDD	3	12	50	ND		1.6	ND		1.5
4,4'-DDE	2	9	50	ND		1.6	ND		1.5
4,4'-DDT	2	9	500	ND		1.6	ND		1.5
Endrin	17	310	50	ND		1.6	ND		1.5
Endosulfan sulfate	NS	NS	NS	ND		1.6	ND		1.5
Endrin aldehyde	NS	NS	NS	ND		1.6	ND		1.5
Endosulfan-I	34	620	NS	ND		1.6	ND		1.5
Endosulfan-II	34	620	NS	ND		1.6	ND		1.5
Heptachlor	0.15	0.65	50	ND		1.6	ND		1.5
Heptachlor epoxide	NS	NS	NS	ND		1.6	ND		1.5
Methoxychlor	280	5200	50	ND		1.6	ND		1.5
Toxaphene	0.1	0.2	50	ND		20	ND		19
Aroclor 1016	0.49	2	50	ND		39	ND		39
Aroclor 1221	0.49	2	50	ND		39	ND		39
Aroclor 1232	0.49	2	50	ND		39	ND		39
Aroclor 1242	0.49	2	50	ND		39	ND		39
Aroclor 1248	0.49	2	50	ND		39	ND		39
Aroclor 1254	0.49	2	50	ND		39	ND		39
Aroclor 1260	0.49	2	50	ND		39	ND		39
Total PHC (mg/kg)	NS	NS	NS	ND		1.6	ND		1.6
Metals Analysis (ppm)									
Antimony	14	340	NS	<2.3		2.3	<2.5		2.5
Arsenic	20	20	NS	9.7		2.3	5.4		2.5
Beryllium	2	2	NS	<0.58		0.58	<0.62		0.62
Cadmium	39	100	NS	<0.58		0.58	<0.62		0.62
Chromium	NS	NS	NS	26.8		1.2	12.2		1.2
Copper	600	600	NS	6.9		2.9	10.6		3.1
Lead	400	600	NS	7.1		2.3	10.4		2.5
Mercury	14	270	NS	<0.039		0.039	<0.036		0.036
Nickel	250	2400	NS	5.7		4.6	<5.0		5
Selenium	63	3100	NS	<2.3		2.3	<2.5		2.5
Silver	110	4100	NS	<1.2		1.2	<1.2		1.2
Thallium	2	2	NS	<1.2		1.2	<1.2		1.2
Zinc	1500	1500	NS	20.9		2.3	8.4		2.5
General Chemistry (ppm)									
Cyanide	1100	21000	NS	<0.31		0.31	<0.31		0.31
Phenois	NS	NS	NS	<2.7		2.7	<2.7		2.7
Solids, Percent (%)	NS	NS	NS	84.0			85.0		
TPH-DRO (C10-C28) (mg/kg)	NS	NS	NS	ND		1.6	ND		1.6

ND=Not detected at the indictaed concentration NS=No standard

Table 3: Tabulated Summary of Soil Sample Analytical Results Hydraulic Lift System (AOC-11)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey

Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-3	Γ		SB-4		ſ	SB-5		
Lab iD	Residential	Non-Residential	Impact to	J87954-3			J87954-4			J87954-5		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008			4/9/2008		
Sample Depth				13.5-14.0			14.5-15.0			13.5-14.0		
Result				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Total PHC (mg/kg)	NS	NS	NS	ND		1.4	ND		1.5	22.8		1.4
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	93.4			86.1			93.5		

ND=Not detected at the indictaed concentration NS=No standard

Table 4: Tabulated Summary of Soil Sample Analytical Results
NJ Spills Database Listing (AOC-12)
Camden Laboratories
1667 Davis Street

Carrier Shows a shall waited by Alexander Carrier Carrier

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-1			SB-2		
Lab ID	Residential	Non-Residential	Impact to	J87954-1			J87954-2		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				14.5-15.0'			14.5-15.0		
Result				Result	Qual	RDL	Result	Qual	RDL
TPH-DRO (C10-C28) (mg/kg)	NS	NS	NS	ND		7.4	8.40		7.6
General Chemistry (ppm)									
Solids, Percent (%)	NS	NS	NS	88.7			86.8		

ND=Not detected at the indictaed concentration NS=No standard

THE TALL OF STREET AND THE STREET

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersev	Class Soil Clean	up Criteria	SB-8			SB-9		
Lab ID	Residential	Non-Residential		J87954-8			J87954-9		
Sampling Date	Direct Contact	Direct Contact	Groundwater	4/9/2008			4/9/2008		
Sample Depth				0.5-1.0			0.75-1.25		
				Result	Qual	RDL	Result	Qual	RDL
GC/MS Volatiles (ppm)									
Acrolein	NS	NS	NS	ND		6500	ND		7100
Acrylonitrile	1	5	1	ND		6500	ND		7100
Веплепе	3	13	1	ND		130	ND		140
Bromodichloromethane	11	46	1	ND		650	ND		710
Bromoform	86	370	1	ND		650	ND		710
Bromomethane	79	1000	1	ND		650	ND		710
Carbon tetrachloride	2	4	1	ND		650	ND		710
Chlorobenzene	37	680	1	ND		650	ND	-	710
Chloroethane	NS	NS	NS	ND		650	ND		710
2-Chloroethyl vinyl ether	NS NS	NS NS	NS	ND		3300	ND		3600
Chloroform	19	28	1	ND		650	ND		710
Chloromethane	520	1000	10	ND		650	ND	-	710
Dibromochloromethane	110	1000	1	ND		650	ND		710
1,2-Dichlorobenzene	5100	10000	50	ND		650	ND		710
1,3-Dichlorobenzene	5100	10000	100	ND ND		650	ND ND		710
1,4-Dichlorobenzene	570	10000	100	ND		650	ND		
Dichlorodifluoromethane	NS NS	NS	NS NS	ND			ND		710
1,1-Dichloroethane	570	1000	10	ND		650	ND ND		710 710
1,2-Dichloroethane	6					650			
1,1-Dichloroethene	8	24	1	ND		130	ND		140
cis-1,2-Dichloroethene	79	150	10	ND		650	ND		710
		1000	1	ND		650	ND		710
trans-1,2-Dichloroethene	1000	1000	50	ND		650	ND		710
1,2-Dichloropropane	10	43	NS	ND		650	ND		710
cis-1,3-Dichloropropene	NS	NS	NS	ND		650	ND		710
trans-1,3-Dichloropropene Ethylbenzene	NS	NS	NS	ND		650	ND		710
Methylene chloride	1000	1000	100	ND		130	ND		140
	49	210	1	ND		650	ND		710
1,1,2,2-Tetrachloroethane	34	70	1	ND		650	ND		710
Tetrachloroethene Toluene	4	6	1	ND		650	ND		710
	1000	1000	500	ND		130	ND		140
1,1,1-Trichloroethane	210	1000	50	ND		650	ND		710
1,1,2-Trichloroethane	22	420	1	ND		650	ND		710
Trichloroethene	23	54	1	ND		650	ND		710
Trichlorofluoromethane	NS	NS	NS	ND		650	ND		710
Vinyl chloride	2	7	10	ND		650	ND		710
Xylene (total)	410	1000	67	ND		260	ND		290
Total TIC, Volatile	NS	NS	NS	0			0		
GC/MS Semi-volatiles (ppm)									i
2-Chlorophenol	280	5200	10	ND		1200	ND		1300
4-Chloro-3-methyl phenol	10000	10000	100	ND		1200	ND		1300
2,4-Dichlorophenol	170	3100	10	ND		1200	ND		1300
2,4-Dimethylphenol	1100	10000	10	ND		1200	ND		1300
2,4-Dinitrophenol	110	2100	10	ND		5000	ND		5100
4,6-Dinitro-o-cresol	NS	NS	NS	ND	· I	5000	ND		5100
2-Nitrophenol	NS	NS	NS	ND		1200	ND		1300
4-Nitrophenol	NS	NS	NS	ND		5000	ND		5100
Pentachiorophenol	6	24	100	ND		2500	ND		2600
Phenol	10000	10000	50	ND		500	ND		510
2,4,6-Trichlorophenol	62	270	10	ND		1200	ND		1300
Acenaphthene	3400	10000	100	ND		500	ND		510
Acenaphthylene	NS	NS	NS	ND		500	ND		510

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Lab ID	Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-8			SB-9		
Sample Depth		 		7 -	J87954-8			J87954-9		
Sample Depth	Sampling Date									
Anthracene 10000 10000 100 ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Benzidine NS NS NS ND 500 ND 510 Butyl benzyl phthalate 1100 10000 100 ND 500 ND 510 Butyl benzyl phthalate NS NS NS ND 1200 ND 510 Butyl benzyl phthalate NS NS NS ND 1200 ND 1300 Chrysene 9 40 500 ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther 0.66 3 10 ND 500 ND 510 Bis[2-Chlororethylther 0.66 3 10 ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlororethylther NS NS NS ND 500 ND 510 Bis[2-Chlorothezene 5100 10000 50 ND 500 ND 510 Bis[2-Chlorothezene 5100 10000 50 ND 500 ND 510 Bis[2-Chlorothezene 5100 10000 50 ND 500 ND 510 Bis[2-Chlorothezene 5100 10000 100 ND 500 ND 510 Bis[2-Chlorothezene 5100 10000 100 ND 500 ND 510 Bis[2-Chlorothezen					0.5-1.0'					
Anthracene						Qual	RDL		Qual	RDL
Benzidine	Anthracene	10000	10000	100						510
Benzo(a)anthracene							5000		l	5100
Benzo(p)yrene									j	
Benzo(b) Denzo										
Benzo(q), h)perylene						J				
Berzot() Loranthene 0.9										
A-Bromophenyl plenter										-
Bulyl benzyl phthalate										-
2-Chloronaphthalene										
A-Chloroaniline 230										
Chrysene										
bis(2-Chloroethoxy)methane NS NS NS ND 500 ND 510 bis(2-Chloroethy)ether 0.66 3 10 ND 500 ND 510 bis(2-Chloroethy)ether 2300 10000 10 ND 500 ND 510 4-Chlorophenyl phenyl ether NS NS NS ND 500 ND 510 1,2-Diphophophoperene 5100 10000 50 ND 500 ND 510 1,3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 1,4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2,4-Dinitrotoluene NS NS NS NS NS NS ND 500 ND 510 2,4-Dinitrotoluene NS NS NS NS NS NS ND 500 ND 510 Dibenostical philate 570 10000									J	
bis(2-Chloroethy)lether 0.66 3 10 ND 500 ND 510 bis(2-Chloroisopropy)lether 2300 10000 10 ND 500 ND 510 1.2-Dichlorobenzene 5100 10000 50 ND 500 ND 510 1.2-Diphlorobenzene 5100 10000 100 ND 500 ND 510 1.3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 1.4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2.4-Dinitrotoluene NS NS NS NS NS NS ND 500 ND 510 2.4-Dinitrotoluene NS NS NS NS NS NS ND 500 ND 510 2.4-Dinitrotoluene NS NS NS NS NS ND 500 ND 510 2.4-Dinitrotoluene 2									H	
bis(2-Chloroisopropylether) 2300 10000 10 ND 500 ND 510 4-Chlorophenyl ether NS NS NS ND 500 ND 510 1,2-Dichlorobenzene 5100 10000 50 ND 500 ND 510 1,2-Diphenylhydrazine NS NS NS ND 500 ND 510 1,3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 2,4-Dinitrofoluene NS NS NS NS ND 500 ND 510 2,6-Dinitrofoluene NS NS NS NS NS ND 500 ND 510 2,6-Dinitrofoluene NS NS NS NS ND 500 ND 510 2,6-Dinitrofoluene 2 6 100 ND 500 ND 510 3,3'-Dichlorobenzidine 2 6 100 ND 500 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
4-Chlorophenyl phenyl ether						\vdash			$\vdash \vdash \vdash$	
1.2-Dichlorobenzene 5100 10000 50 ND 500 ND 510 1.2-Diphenylhydrazine NS NS NS ND 500 ND 510 1.3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 1.4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2.4-Dinitrotoluene NS NS NS ND 500 ND 510 2.4-Dinitrotoluene NS NS NS NS ND 500 ND 510 2.6-Dinitrotoluene NS NS NS NS ND 500 ND 510 2.6-Dinitrotoluene NS NS NS NS ND 500 ND 510 3.3-Dichlorobenzeine 2 6 100 ND 500 ND 510 Dibenzo(a,h)antracene 0.66 0.66 0.66 100 ND 500										
1,2-Diphenylhydrazine NS NS ND 500 ND 510 1,3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 1,4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2,4-Dinitrotoluene NS NS NS ND 500 ND 510 2,6-Dinitrotoluene NS NS NS NS ND 500 ND 510 3,3-Dichlorobenzene 0.66 0.66 100 ND 500 ND 510 Dire-butyl phthalate 1100 10000 100 ND 500 ND 510 Diistyl phthalate						\vdash				
1,3-Dichlorobenzene 5100 10000 100 ND 500 ND 510 1,4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2,4-Dinitrobluene NS NS NS NS ND 500 ND 510 2,6-Dinitrobluene NS NS NS NS ND 500 ND 510 3,3'-Dichlorobenzidine PS 6 100 ND 500 ND 1300 Dibenzo(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Dibenzo(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Di-n-butyl phthalate 5700 10000 100 ND 500 ND 510 Di-n-butyl phthalate 1100 10000 100 ND 500 ND 510 Di-n-butyl phthalate 1100 10000 50 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 100 ND 500 ND 510 Diselethyl phthalate 10000 ND 500 ND 510 Diselethyl phthalate 10000 10000 50 ND 500 ND 510 ND										
1.4-Dichlorobenzene 570 10000 100 ND 500 ND 510 2.4-Dinitrotoluene NS NS NS ND 500 ND 510 2.6-Dinitrotoluene NS NS NS ND 500 ND 510 3.3-Dichlorobenzidine 2 6 100 ND 1200 ND 1300 Dibenzo(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Di-n-butyl phthalate 5700 10000 100 ND 500 ND 510 Di-n-butyl phthalate 1100 10000 1000 ND 500 ND 510 Dierthyl phthalate 11000 10000 50 ND 500 ND 510 Diertyl phthalate 10000 10000 50 ND 500 ND 510 Diretyl phthalate 10000 1000 50 ND 500 ND 510 Di										
2.A-Dinitrotoluene NS NS NS ND 500 ND 510 2.6-Dinitrotoluene NS NS NS ND 500 ND 510 2.6-Dinitrotoluene NS NS NS ND 500 ND 1300 Dib-nocto(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Di-n-octyl phthalate 5700 10000 100 ND 500 ND 510 Di-n-octyl phthalate 1100 10000 50 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 ND 510 Hexachlorobutadiene 1 21 100 ND 500 ND 510 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
2,6-Dinitrotoluene NS NS NS ND 500 ND 510 3,3'-Dichlorobenzidine 2 6 100 ND 1200 ND 1300 Dibenzo(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Di-n-butyl phthalate 1100 10000 100 ND 500 ND 510 Di-n-ctyl phthalate 1100 10000 100 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 49 210 100 ND 500 ND 510 Fluorant 2300 10000 100 ND 500 ND 510 Fluoranthene 2300 10000 100 ND 500 ND 510 Hexachlorobutad										
3,3'-Dichlorobenzidine 2 6 100 ND 1200 ND 1300 Dibenzo(a,h)anthracene 0.66 0.66 100 ND 500 ND 510 Di-n-butyl phthalate 5700 10000 100 ND 500 ND 510 Di-n-butyl phthalate 1100 10000 50 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 100 ND 500 ND 510 Fluoranthene 2300 10000 100 ND 500 ND 510 Hexachlorobusatiene 0.66 2 100 ND 500 ND 510 <										
Dibenzo(a,h)anthracene										
Di-n-butyl phthalate 5700 10000 100 ND 500 ND 510 Di-n-octyl phthalate 1100 10000 100 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 Dis(2-Ethylhexyl)phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 ND 510 Fluorene 2300 10000 100 ND 500 ND 510 Hexachlorobenzene 0.66 2 100 ND 500 ND 510 Hexachlorocyclopentadiene 4 0 7300 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510										
Di-n-octyl phthalate 1100 10000 100 ND 500 ND 510 Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 Bisi(2-Ethylhexyl)phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 ND 510 Fluoranthene 2300 10000 100 ND 500 ND 510 Hexachlorobutadiene 1 21 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 5000 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 <										
Diethyl phthalate 10000 10000 50 ND 500 ND 510 Dimethyl phthalate 10000 10000 50 ND 500 ND 510 bis(2-Ethylhexyl)phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 ND 510 Fluorene 2300 10000 100 ND 500 ND 510 Hexachloroberacene 0.66 2 100 ND 500 ND 510 Hexachloroberadiene 1 21 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 1200 ND 510 Hexachlorocyclopentadiene 6 100 ND 1500 ND 510 Incac										
Dimethyl phthalate 10000 10000 50 ND 500 ND 510 bis(2-Ethylhexyl)phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 ND 510 Fluoranthene 2300 10000 100 ND 500 ND 510 Hexachlorobenzene 0.66 2 100 ND 500 ND 510 Hexachlorobutadiene 1 21 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510										
bis(2-Ethylhexyl)phthalate 49 210 100 ND 500 ND 510 Fluoranthene 2300 10000 100 120 J 500 201 J 510 Fluorene 2300 10000 100 ND 500 ND 510 Hexachlorobenzene 0.66 2 100 ND 500 ND 510 Hexachlorobutadiene 1 21 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 100 ND 500 ND 510 Hexachlorocyclopentadiene 6 100 ND 500 ND 510						\vdash				
Fluoranthene 2300 10000 100 120 J 500 201 J 510 Fluorene 2300 10000 100 ND 500 ND 510 Hexachlorobenzene 0.66 2 100 ND 500 ND 510 Hexachlorobutadiene 1 21 100 ND 500 ND 510 Hexachlorocyclopentadiene 400 7300 100 ND 5000 ND 5100 Hexachlorocyclopentadiene 6 100 100 ND 5000 ND 5100 Hexachlorocyclopentadiene 6 100 100 ND 5000 ND 5100 Hexachlorocyclopentadiene 6 100 100 ND 5000 ND 5100 Hexachlorocyclopentadiene 6 100 ND 500 ND 510 Indeptation 1100 10000 50 ND 500 ND 510										:
Fluorene						.1				
Hexachlorobenzene 0.66						 			H	
Hexachlorobutadiene										
Hexachlorocyclopentadiene										
Hexachloroethane										
Indeno(1,2,3-cd)pyrene 0.9										
Isophorone	Indeno(1,2,3-cd)pyrene									
Naphthalene 230 4200 100 ND 500 ND 510 Nitrobenzene 28 520 10 ND 500 ND 510 n-Nitrosodimethylamine NS NS NS ND 500 ND 510 N-Nitrosodiphenylamine 0.66 0.66 10 ND 500 ND 510 N-Nitrosodiphenylamine 140 600 100 ND 1200 ND 1300 Phenanthrene NS NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS NS 1300 J 0 PestIcldes/PCBs (ppm) NS NS NS ND <										
Nitrobenzene 28 520 10 ND 500 ND 510 n-Nitrosodimethylamine NS NS NS ND 500 ND 510 N-Nitrosodiphenylamine 0.66 0.66 10 ND 500 ND 510 N-Nitrosodiphenylamine 140 600 100 ND 1200 ND 1300 Phenanthrene NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 PestIcldes/PCBs (ppm) NS NS ND 1.7 ND 1.7 Aldrin 0.04 0.17 50 ND 1.7 ND 1.										
n-Nitrosodimethylamine NS NS NS ND 500 ND 510 N-Nitrosodiphenylamine 0.66 0.66 10 ND 500 ND 510 N-Nitrosodiphenylamine 140 600 100 ND 1200 ND 1300 Phenanthrene NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm) .						\vdash				
N-Nitroso-di-n-propylamine 0.66 0.66 10 ND 500 ND 510 N-Nitrosodiphenylamine 140 600 100 ND 1200 ND 1300 Phenanthrene NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm)										
N-Nitrosodiphenylamine 140 600 100 ND 1200 ND 1300 Phenanthrene NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm)						\vdash				
Phenanthrene NS NS NS ND 500 182 J 510 Pyrene 1700 10000 100 111 J 500 177 J 510 1,2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm)	N-Nitrosodiphenylamine									
Pyrene 1700 10000 100 111 J 500 177 J 510 1.2,4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm) NS NS ND 1.7 ND 1.7 Aldrin 0.04 0.17 50 ND 1.7 ND 1.7 alpha-BHC NS NS NS ND 1.7 ND 1.7 beta-BHC NS NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	Phenanthrene									
1.2.4-Trichlorobenzene 68 1200 100 ND 500 ND 510 Total TIC, Semi-Volatile NS NS NS 1300 J 0 0 Pesticides/PCBs (ppm) NS NS ND 1.7 ND 1.7 Aldrin 0.04 0.17 50 ND 1.7 ND 1.7 alpha-BHC NS NS NS ND 1.7 ND 1.7 beta-BHC NS NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	Pyrene					J				
Total TIC, Semi-Volatile NS NS 1300 J 0 Pesticides/PCBs (ppm) NS NS NS 1300 J 0 Aldrin 0.04 0.17 50 ND 1.7 ND 1.7 alpha-BHC NS NS NS ND 1.7 ND 1.7 beta-BHC NS NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	1,2,4-Trichlorobenzene					\vdash				
Pesticides/PCBs (ppm) Description<						J				
alpha-BHC NS NS NS ND 1.7 ND 1.7 beta-BHC NS NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	Pesticides/PCBs (ppm)				_					
alpha-BHC NS NS NS ND 1.7 ND 1.7 beta-BHC NS NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	Aldrin	0.04	0.17	50	ND		1.7	ND		1.7
beta-BHC NS NS ND 1.7 ND 1.7 delta-BHC NS NS NS ND 1.7 ND 1.7	alpha-BHC	NS								
delta-BHC NS NS ND 1.7 ND 1.7	beta-BHC	NS								
	delta-BHC									
	gamma-BHC (Lindane)	0.52								

Table 5: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey	Class Soil Clean	up Criteria	SB-8	J		SB-9		
Lab ID	Residential	Non-Residential		J87954-8			J87954-9		
Sampling Date	Direct Contact						4/9/2008		
Sample Depth	1			0.5-1.0'			0.75-1.25'		
	·		<u> </u>	Result	Qual	RDL	Result	Qual	RDL
Chlordane	0.25	2.1	NS	ND		42	ND	-	43
Dieldrin	0.042	0.18	50	ND		1.7	ND		1.7
4,4'-DDD	3	12	50	1.9		1.7	3.3		1.7
4,4'-DDE	2	9	50	18.5		1.7	14.8		1.7
4,4'-DDT	2	9	500	9.1		1.7	3.6		1.7
Endrin	17	310	50	ND		1.7	ND		1.7
Endosulfan sulfate	NS	NS	NS	ND		1.7	ND		1.7
Endrin aldehyde	NS	NS	NS	ND		1.7	ND		1.7
Endosulfan-l	34	620	NS	ND		1.7	ND		1.7
Endosulfan-II	34	620	NS	ND		1.7	ND		1.7
Heptachlor	0.15	0.65	50	ND		1.7	ND		1.7
Heptachlor epoxide	NS	NS	NS	ND		1.7	ND		1.7
Methoxychlor	280	5200	50	ND		1.7	ND		1.7
Toxaphene	0.1	0.2	50	ND		21	ND		21
Aroclor 1016	0.49	2	50	ND		42	ND		43
Aroclor 1221	0.49	2	50	ND		42	ND		43
Arodor 1232	0.49	2	50	ND		42	ND		43
Aroclor 1242	0.49	2	50	ND		42	ND		43
Aroclor 1248	0.49	2	50	ND		42	ND		43
Aroclor 1254	0.49	2	50	ND		42	ND		43
Aroclor 1260	0.49	2	50	ND		42	ND		43
Total PHC (mg/kg)	NS	NS	NS	64.4		4.7	53.8		4.8
Metals Analysis (ppm)		-							
Antimony	14	340	NS	2.6		2.6	<2.7		2.7
Arsenic	20	20	NS	14.5		2.6	11.0		2.7
Beryllium	2	2	NS	1.0		0.66	0.89		0.68
Cadmium	39	100	NS	7.2		0.66	3.4		0.68
Chromium	NS	NS	NS	26.5		1.3	9.9		1.4
Copper	600	600	NS	1380		3.3	271		3.4
Lead	400	600	NS	667		2.6	146		2.7
Mercury	14	270	NS	0.13		0.038	0.27		0.041
Nickel	250	2400	NS	57.4		5.3	14.8		5.4
Selenium	63	3100	NS	<2.6		2.6	<2.7		2.7
Silver	110	4100	NS	2.5		1.3	3.9		1.4
Thallium	2	2	NS	<1.3		1.3	<1.4		1.4
Zinc	1500	1500	NS	626		2.6	231		2.7
General Chemistry (ppm)									
Cyanide	1100	21000	NS	<0.32		0.32	<0.34		0.34
Phenois	NS	NS	NS	<3.4		3.4	<3.2		3.2
Solids, Percent (%)	NS	NS	NS	79.2			77.9		
Total PHC (mg/kg)	NS	NS	NS	64.4		4.7	53.8		4.8

ND=Not detected at the indictaed concentration NS=No standard

Table 6: Tabulated Summary of Ground Water Sample Analytical Results Hydraulic Lift System (AOC-11)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey Class	TWP-1	· ·	Γ	FB-1		ı	TRIP BLANK	Г	1
Lab ID	IIA Groundwater	J88150-1	 	 	J88150-2			J88150-3		├──
Sampling Date	Quality Criteria	4/11/2008	 		4/11/2008			4/11/2008		┝
Sample Depth	Quality Officia	14.5-15.0	-		NA			NA	 	├─-
001111111111111111111111111111111111111		Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
GC/MS Volatiles (ppb)		- result	QUAI	INDL	Nesult	Quai	INDL	1/630it	Quai	KDL
Acrolein	5	ND		50	ND		50	ND	 	50
Acrylonitrile	2	ND	-	50	ND		50	ND ND	-	50
Benzene	1	ND		1	ND ND		1	ND ND		1
Bromodichloromethane	† <u>†</u>	ND		1	ND		1	ND		+
Bromoform	4	ND ND		4	ND		4	ND ND		4
Bromomethane	10	ND		2	ND	-	2	ND ND		2
Carbon tetrachloride	1	ND	-	1	ND		1	ND ND	\vdash	1
Chlorobenzene	50	ND		- 	ND		1	ND ND		- -
Chloroethane	NS NS	ND		1	ND		1	ND ND		1
2-Chloroethyl vinyl ether	NS NS	ND		10						
Chloroform	70	0.56	J		ND		10	ND	-	10
Chloromethane	NS	ND		1	ND		1	ND	\vdash	1
Dibromochloromethane	1 1				ND ND		1	ND	 	1
1,2-Dichlorobenzene	600	ND ND		1	ND		1	ND ND		1
1,3-Dichlorobenzene	600	ND		1	ND ND		1		<u> </u>	1
1,4-Dichlorobenzene	75			1	ND		1	ND	\vdash	1
Dichlorodifluoromethane	1000	ND ND		5	ND			ND		1
1,1-Dichloroethane	50				ND		5	ND		5
1,2-Dichloroethane		ND		1	ND ND		1	ND		1
1,1-Dichloroethene	2	ND		1	ND		1	ND		1
cis-1,2-Dichloroethene	70	ND			ND		1	ND ND		1
trans-1,2-Dichloroethene		ND		1	ND		1	ND		1
	100	ND		1	ND		1	ND		1_
1,2-Dichloropropane	1	ND_		1	ND		1	. ND		1
cis-1,3-Dichloropropene	NS	ND		_1_	ND		1	ND_		1
trans-1,3-Dichloropropene	NS	ND		1	ND		1	ND		1
Ethylbenzene	700	ND		1	ND		1	ND		1
Methylene chloride	3	ND		2	ND		2	ND		2
1,1,2,2-Tetrachloroethane	1	ND			ND		1	ND		1
Tetrachloroethene	1	ND		1	ND		1	ND		1
Toluene	600	0.24	J	1	ND		1	ND		1
1,1,1-Trichloroethane	30	ND		1	ND		1	ND		1
1,1,2-Trichloroethane	3	ND		1	ND		1	ND		1
Trichloroethene	1	ND		1	ND		1	ND		
Trichlorofluoromethane	2000	ND		5	ND		5	ND		5
Vinyl chlonde	1	ND		1	ND		1	ND		1
Xylene (total)	1000	ND		1	ND		1	ND		1
Total TIC, Volatile	NS	6.7	J		0			0		
GC/MS Semi-volatiles (ppb)	400	110		0.00	110			110		
Acenaphthene	400	ND		0.22	ND		0.2	NA NA		
Acenaphthylene	NS	ND		0.22	ND		0.2	NA		
Anthracene	2000	ND		0.22	ND		0.2	NA		
Benzidine	20	ND		22	ND		20	NA NA		
Benzo(a)anthracene	0.1	ND		0.11	ND		0.1	NA NA	 	
Benzo(a)pyrene	0.1	ND		0.11	ND		0.1	NA NA	\vdash	
Benzo(b)fluoranthene	0.2	ND	\vdash	0.22	ND		0.2	NA NA		
Benzo(g,h,i)perylene	NS 0.5	ND		0.22	ND		0.2	NA NA		
Benzo(k)fluoranthene	0.5	ND		0.22	ND		0.2	NA NA		
4-Bromophenyl phenyl ether	NS 100	ND ND		2.2	ND		2	NA NA		
Butyl benzyl phthalate	100	ND ND		2.2	ND ND		2	NA NA		
2-Chloronaphthalene	600	ND		5.4	ND		5	NA NA		
4-Chloroaniline	30	ND		5.4	ND		5	NA		

Table 6: Tabulated Summary of Ground Water Sample Analytical Results Hydraulic Lift System (AOC-11)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jersey Class	TWP-1			FB-1	Γ	Г	TRIP BLANK		
Lab ID	IIA Groundwater	J88150-1			J88150-2			J88150-3		
Sampling Date	Quality Criteria	4/11/2008			4/11/2008			4/11/2008		
Sample Depth		14.5-15.0			NA			NA		
		Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Chrysene	5	ND		0.22	ND		0.2	NA		
bis(2-Chloroethoxy)methane	NS	ND		2.2	ND		2	NA		
bis(2-Chloroethyl)ether	7	ND		2.2	ND		2	NA		
bis(2-Chloroisopropyl)ether	300	ND		2.2	ND		2	NA		_
4-Chiorophenyl phenyl ether	NS	ND		2.2	ND		2	NA		
1,2-Dichlorobenzene	600	ND		2.2	ND		2	NA		
1,2-Diphenylhydrazine	20	ND		2.2	ND		2	NÁ		
1,3-Dichlorobenzene	600	ND		2.2	ND		2	NA		
1,4-Dichlorobenzene	75	ND		2.2	ND		2	NA NA		
2,4-Dinitrotoluene	NS	ND		2.2	ND		2	NA		
2,6-Dinitrotoluene	NS	ND		2.2	ND		2	NA		
3,3'-Dichlorobenzidine	30	ND		5.4	ND		5	NA		
Dibenzo(a,h)anthracene	0.3	ND		0.22	ND		0.2	NA		
Di-n-butyl phthalate	700	ND		2.2	ND		2	NA		
Di-n-octyl phthalate	100	ND		2.2	ND		2	NA		
Diethyl phthalate	6000	2.2		2.2	ND		2	NA		
Dimethyl phthalate	NS	ND		2.2	ND		2	NA		
bis(2-Ethylhexyl)phthalate	3	1.3	7	2.2	ND		2	NA		
Fluoranthene	300	ND		0.22	ND		0.2	NA		
Fluorene	300	ND		0.22	ND		0.2	NA		
Hexachiorobenzene	0.02	ND		0.022	ND		0.02	NA		
Hexachlorobutadiene	1	ND		2.2	ND		2	NA		
Hexachlorocyclopentadiene	40	ND		22	ND		20	NA		
Hexachioroethane	7	ND		5.4	ND		5	NA		
Indeno(1,2,3-cd)pyrene	0.2	ND		0.22	ND		0.2	NA		
Isophorone	40	ND		2.2	ND		2	NA		
Naphthaiene	300	ND		0.22	ND		0.2	NA		
Nitrobenzene	6	ND		2.2	ND		2	NA		
n-Nitrosodimethylamine	0.8	ND		2.2	ND		2	NA		
N-Nitroso-di-n-propylamine	10	ND		2.2	ND		2	NA		
N-Nitrosodiphenylamine	10	ND		5.4	ND		5	NA		
Phenanthrene	NS	ND		0.22	ND		0.2_	NA		
Pyrene	200	ND		0.22	ND		0.2	NA		
1,2,4-Trichlorobenzene	9	ND		2.2	ND		2	NA		
Total TIC, Semi-Volatile	NS	10.1	J		0			NA		L

ND=Not detected at the indictaed concentration NS=No standard

Table 7: Tabulated Summary of Soil Sample Analytical Results

Conductive Area (AOC-15) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-1	ł		AM-1A			AM-2		
Lab iD	Residential	Non-Residential	Impact to	J93728-1			J93728-2			J93728-3		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)	<u>-</u>		<u> </u>			-		-			-	
Copper	600	600	NS	321		3.2	8.8		2.9	1150		2.9
Lead	400	600	NS	73.9		2.6	8.5		2.3	450		2.3
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	79.8			87.6			88.5		

Table 7: Tabulated Summary of Soil Sample Analytical Results
Conductive Area (AOC-15)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey

Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	ıp Criteria	AM-2A			AM-3			AM-4		
Lab ID	Residential	Non-Residential	Impact to	J93728-4			J93728-5			J93728-6		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)		,									 	
Copper	600	600	NS	10		3.1	5.3		3	7.0		2.9
Lead	400	600	NS	7.2		2.5	7.2		2.4	8.6		2.3
General Chemistry (ppm)			,									Г
Solids, Percent (%)	NS	NS	NS	84.3			81.6			85.9		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15) **Camden Laboratories**

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	p Cnteria	AM-5			AM-6			AM-7		
Lab ID	Residential	Non-Residential	Impact to	J93728-7			J93728-8			J93728-9		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008		-	6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)		.,,			-					<u> </u>		<u> </u>
Copper	600	600	NS	8.6		3	105		2.8	132		2.9
Lead	400	600	NS	8.8		2.4	92.1		2.3	18.5		2.3
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	87.2			88.4			89.2	Ì	

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15) Camden Laboratories

hinama.

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	ıр Criteria	AM-7A			AM-8			AM-8A		
Lab ID	Residential	Non-Residential	Impact to	J93728-10			J93728-11		-	J93728-12		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metals Analysis (ppm)			7								-	-
Copper	600	600	NS	8.1		3	50.1		3.2	5.6		3
Lead	400	600	NS	6.8		2.4	58.8		2.6	7.0		2.4
General Chemistry (ppm)			•							-		
Solids, Percent (%)	NS	NS	NS	86.6			80.7			87.3		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	ıp Criteria	AM-12			AM-14			AM-15		
Lab ID	Residential	Non-Residential	Impact to	J93728-13			J93728-14			J93728-15		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008			6/20/2008			6/20/2008		
Sample Depth				Result	Qual	RDL	Result	Qual	RDL	Result	Qual	RDL
Metais Analysis (ppm)												-
Copper	600	600	NS	12.8		2.7	5.1		2.8	5.8		2.7
Lead	400	600	NS	41.8		2.2	9.3		2.2	9.8		2.1
General Chemistry (ppm)												
Solids, Percent (%)	NS	NS	NS	89.6			93.2			92.2		

Table 7: Tabulated Summary of Soil Sample Analytical Results Conductive Area (AOC-15) Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Cleanu	p Criteria	AM-16		
Lab ID	Residential	Non-Residential	Impact to	J93728-16		
Sampling Date	Direct Contact	Direct Contact	Groundwater	6/20/2008		
Sample Depth				Result	Qual	RDL
 Metals Analysis (ppm)						
Copper	600	600	ŃS	67.2		3.2
Lead	400	600	NS	53.9		2.5
General Chemistry (ppm)		· · ·				
Solids, Percent (%)	NS	NS	NS	81.8		

Table 8: Tabulated Summary of Post-Excavation Soil Sample Analytical Results Conductive Area (AOC-15)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Clean	up Criteria	PE-1		PE-2		PE-3		PE-4		PE-5		PE-6	
Lab ID	Residential	Non-Residential	Impact to	AC39795-001		AC39795-002		AC39795-003		AC39795-004		AC39795-005		AC39795-008	
Sampling Date	Direct-Contact	Direct-Contact	Ground Water	9/8/2008		9/8/2008		9/8/2008		9/8/2008		9/8/2008		9/8/2008	
Sample Depth				12-18"	П	12-18"		12-18"		12-18"		12-18"		12-18"	
				Result	ŘL	Result	RL	Result	RL	Result	럾	Result	럾	Result	RL
Metals (mg/kg)						T									Ш
Copper	600	800	NA	9.9	5.4	72	5.7	28	5.7	42	5.2	41	5.6	240	5.7
Lead	400	800	NA	28	5.4	89	5.7	73	5.7	78	5.2	98	5.8	140	5.7
% Solids	NA	NA	NA	92		88		87		98		89		88	

RL=Reporting Limit

NA≃Not Applicable

ND=Not Detected at the Indicated Concentration

Table 8: Tabulated Summary of Post-Excavation Soil Sample Analytical Results

Conductive Area (AOC-15) Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey Project Number: 070235804

Sample ID	New Jerse	y Class Soil Clean	up Criteria	PE-7		PE-8		PE+9		PE-10		PE-11		PE-12	
Lab ID	Residential	Non-Residential	Impact to	AC39795-007		AC39795-008		AC39795-009		AC39795-010		AC39826-001		AC39826-002	
Sampling Date	Direct-Contact	Direct-Contact	Ground Water	9/8/2008		9/8/2008		9/8/2008		9/8/2008		9/9/2008		9/9/2008	
Sample Depth				12-18"		12-18"		12-18"		12-18"		30-36"		30-36"	
	i			Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Metals (mg/kg)															
Copper	600	800	NA	33	5.9	28	5.7	56	5.5	18	5.7	16	5.5	ND	5.6
Lead	400	600	NA	150	5.9	98	5.7	98	5.5	69	5.7	7.3	5.5	6.8	5.8
% Solids	NA	NA	NA	85		67		91		87		91		89	

RL=Reporting Limit

NA=Not Applicable

ND=Not Detected at the Indicated Concentration

Table 8: Tabulated Summary of Post-Excavation Soil Sample Analytical Results Conductive Area (AOC-15)

Camden Laboratories

1667 Davis Street

City of Camden, Camden County, New Jersey

Project Number: 070235804

Sample ID	Now Jerse	y Class Soil Clean	up Criteria	PE-13		PE-14		PE-15	
Lab ID	Residential	Non-Residential	Impact to	AC39826-003		AC39826-004		AC39826-005	
Sampling Date	Direct-Contact	Direct-Contact	Ground Water	9/9/2008		9/9/2008		9/9/2008	
Sample Depth				30-36"		30-38"		30-36"	
				Result	RL	Result	RL	Result	RL
Metals (mg/kg)									
Copper	800	600	NA	8.3	5.9	9.8	5.6	6.3	5.8
Lead	400	600	NA	ND	5.9	13	5.6	14	5.8
% Solids	NA	NA	NA	85		89		89	

RL=Reporting Limit

NA=Not Applicable

ND=Not Detected at the Indicated Concentration

Appendix A Photographs

Ash-like material staged on and covered with plastic.

Vertical limit of excavation following removal of ash-like material.

Horizontal limit of excavation within the conductive area.

Appendix B Health and Safety Plan

Project # 070235804 HEALTH AND SAFETY PLAN

FOR

Camden Laboratories 1667 Davis Street City of Camden, Camden County Camden, New Jersey

CMX 1101 Laurel Oak Road, Suite 160 Voorhees, New Jersey 08043-7346

August 5, 2008

	TABLE OF	CONTENTS							
Se	ction		Title						
Section 1.0		Scope of Work and HASP	Approval						
Section 2.0		CMX Site Personnel and	Certification Status						
Section 3.0		Subcontractor Site Perso	nnel and Certification Status						
Section 4.0		Training and Briefing Top	ics						
Section 5.0		Hazard Assessment							
Section 6.0		Personal Protective Equipment							
Section 7.0		Air Monitoring							
Section 8.0		Site Control Measures							
Section 9.0		Decontamination Plan							
Section 10.0		Emergency Response/Co	ontingency Plan						
Section 11.0		Spill Containment Progra	am						
Section 12.0		Hazard Communication	Program						
Section 13.0		Health and Safety Plan S							
	Appendices (cl	neck all that apply)							
Appendix A: Biological Hazards	Appendix B: Bloodborne Pathogens	Appendix C: Heat and Cold Stress	Appendix D: Heavy Equipment/Site Safe						
Appendix E: Nolse	Appendix F:	Appendix G: Respiratory Protection	Appendix H: NIOSH Pocket Guide excer						
Appendix I: Excavation Areas	Appendix J: Equipment Manuals	Appendix	Appendix						
Appendix	☐ Appendix	Appendix	Appendix						
Appendix	Appendix	Appendix	Appendix						
Appendix	Appendix	Appendix	Appendix						

		SITE HEALTH AND SAFETY PLAN
	1.0	SCOPE OF WORK AND HASP APPROVAL
Prepared By:	Mary Ann Gilmore	Job Number: 070235804
Site Name: Owner/Client:: Work Location	Camden Laboratories City of Camden Address: 1667 Davis Street	Site History: The site was a former medical research facility. During a geophysical survey of the site, a conductive anomaly was identified. During soil boring investigation of the anomaly, copper and lead were identified in a subsurface ash layer in excess of NJDEP Soil Cleanup Criteria.

Scope of Work:

- Excavation and off-site disposal of copper and lead impacted ash from the conductive anomaly;
- Collection of post-excavation soil samples from the area of excavated material; and
- Restoration of excavation area through backfilling.

	•				_			_		4 1	ntatio	-
-		1	 ٠.	 					 			
_	0			 300		חוח	wai			nor.	112411	11 1

Project Manager Approval

mi

Date:

8/n/18 8/8/08

Name (Print)

Signature

Corporate

Health & Safety Manager

Approvai

Tony-DAMATO

Name (Print)

Signature

Date:

The Corporate Health and Safety Manager (CHSM) and Project Manager are responsible for developing this HASP and will be responsible for providing consultation on health and safety related Issues that may be identified in the field. Any alterations and/or modifications to this HASP must be approved by the PM and CHSM.

The purpose of this HASP is to define the procedures, practices, and equipment to be used by CMX employees during this project to protect the health and safety of the project personnel. This HASP establishes minimum standards and levels of protection that must be used by project personnel while performing the various project-related tasks.

This HASP is based on safety standards as defined by the United States Environmental Protection Agency (USEPA), Occupational Safety and Health Administration (OSHA), National Institute for Occupational Safety and Health (NIOSH), health effects and standards for known contaminants, and procedures designed to account for the potential for exposure to unknown substances. Specifically, the following references have been consulted:

- 29 CFR Part 1910.120 (OSHA) and 40 CFR Part 311 (USEPA)
- NIOSH/OSHA/USCG/EPA Occupational Health and Safety Guidance Manual for Hazardous Waste Site Activities
- USEPA, Office of Emergency and Remedial Response, Standard Operating Safety Guides
- NIOSH/OSHA Pocket Guide to Chemical Hazards
- American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values

All contractors and subcontractors are required to develop their own health and safety related procedures and programs required for work. Health and safety requirements for authorized visitors concerning CMX activities are included in this HASP.

CMX REPRESENTATIVES				
Name/Title	Telephone # Cell #		Certification Status	
Mark Pietrucha/Project Manager	(856) 783-1900 ext. 3106 (732) 616-0556	Medical Current¹	☐ Fit Test Current ²	☑ Training Current ³
Mary Ann Gilmore / Environmental Scientist /SHSO	(856) 783-1900 ext. 3027 (732) 740-1223		Fit Test Current ²	☑ Training Current ³
Anthony Damato/CHSM	(732) 577-9000 (732) 740-3993	Medical Current¹	☑ Fit Test Current ²	☑ Training Current ³
		☐ Medical Current¹	Fit Test Current ²	☐ Training Current ³
		☐ Medical Current¹	Fit Test Current ²	☐ Training Current ³
		Medical Current ¹	Fit Test Current ²	☐ Training Current ³
		☐ Medical Current¹	☐ Fit Test Current²	☐ Training Current ³
		☐ Medical Current¹	☐ Fit Test Current²	☐ Training Current ³
Mary Ann Gilmore Mary Ann Gilmore Mark Pietrucha Anthony Damato: 1 In accordance with 29 CFR 1910.1 fit to work and approved to wear a maintained by CMX. 2 All project personnel who may be reprogram that covers respirator seentening any area requiring the use in accordance with 29 CFR 1910.3	respirator, if necessary. Proof required to use respiratory prot election, fit testing, cleaning, n	exclusion or contamir of employee participal tection will be required naintenance, and stort or must have a qualit	nation reduction zone ation in a medical sur d to participate in a r rage of respirators.	espiratory protection All project personnel fit test administered
All project personnel required to p OSHA HAZWOPER training. If the documentation of OSHA HAZWOPE site supervisors will have complete CMX.	perform work as defined by 29 e 40-hour training was comp	CFR Part 1910.120 Deted more than 12 Dequired, Per 29 CFR 1	must have complete months prior to p L910.120(e)(4), indiv	ed the initial 40-hour roject start-up, then riduals designated as
SITE SPECIFIC HEALTH AND SAFE	TY PERSONNEL			
The Site Health and Safety Officer (S	HSO) for activities to be conducted	cted at the site is: Ma	ary Ann Gilmore	
The SHSO is responsible for the impl				he following:
Document that project pers	onnel are aware of the provisi			
procedures;	the project work is proceeding			

Name of Subcontractor: To be Address of Subcontractor:	e determined			
Activities to be conducted by subco	ntractor: Excavation and o	off-site disposal of copper a	and lead impacted ma	aterial; Restoration
Subcontractor Personnel				
Name/Title	Telephone #		Certification Status	
reality ride	Cell #	☐ Medical Current²	☐ Fit Test Current ³	☐ Training Current ⁴
		Medical Current2	☐ Fit Test Current ³	☐ Training Current ⁴
		☐ Medical Current²	☐ Fit Test Current ³	☐ Training Current ⁴
		☐ Medicai Current²	☐ Fit Test Current³	☐ Training Current⁴
		☐ Medical Current²	☐ Fit Test Current ³	☐ Training Current ⁴
Name of Subcontractor: Address of Subcontractor:				
Activities to be conducted by subc	ontractor:			
Subcontractor Personnel				
Name/Title	Telephone # Cell #		Certification Status	
		☐ Medical Current²	☐ Fit Test Current ³	☐ Training Current ⁴
		☐ Medical Current²	☐ Fit Test Current ⁹	☐ Training Current⁴
		☐ Medical Current²	☐ Fit Test Current ³	☐ Training Current4
		☐ Medical Current²	Fit Test Current ³	☐ Training Current ⁴
		☐ Medical Current²	Fit Test Current ³	☐ Training Current⁴
		☐ Medical Current²	Fit Test Current ³	☐ Training Current4
		☐ Medicai Current²	Fit Test Current ³	☐ Training Current⁴
 All contractors and subcontractive required for work. In accordance with 29 CFR 191 fit to work and approved to we and approval to wear respirator. Current fit test documentation for All contractor and subcontract certifications of completion of applicable, OSHA 40-hour HAZ Proof of training must be provided. 	O.120, all personnel entering ar a respirator, if necessary protection must be provide or contractor and subcontractor personnel, and visitors, a training in accordance wit WOPER initial training, refre	ig the exclusion or contami . Proof of employee partic id upon request of CMX. ctor personnel must be pro entering the exclusion or	nation reduction zon ipation in a medical vided upon request contamination reduced 1926. Certification	es must be medically surveillance program of CMX. tion zone must have one must include, as

4.0 TRAINING AND	D BRIEFING TOPICS
All project personnel, including subcontractors and visitors, will be hazards. This will be accomplished by reviewing this HASP and meetings. Items to be covered will include:	ne informed of the foreseeable project-specific health and safety
Health and safety meetings conducted prior to the start of each de	ay's activities will include the following (check all that apply):
☑ Training Requirements (Section 4.0)	⊠ MSDS's
☑ Physical/Chemical/Environmental Hazards (Section 5.0)	Site Characterization
Personnel Protective Equipment (Section 6.0)	Overhead and Underground Utilities
☑ Air Monitoring (Section 7.0)	⊠ Heavy Machinery
☑ Site Control (Section 8.0)	☐ Working at Elevations (ladders, scaffolds, roofs, etc.)
☑ Decontamination (Section 9.0)	□ Traffic Control
☑ Emergency Response (Section 10.0)	☐ Handling Drums and Containers
Spill Containment (Section 11.0)	Confined Space
☑ Heat and Cold Stress	Other:
☑ HASP Appendices	

Page 5 of 35

5.0 HAZARD ASSESSMENT					
Has the site been eva	aluated to identify site s	specific hazards and t	to determine appropr	riate safety and health co	ontrol procedures:
⊠ Yes					
If no, why?					
		an en en en en en en en en en en en en	Amerikan dalah Masakan dara		
	inder This HASP:	Type Tracking and Aller Mark of the Aller Age of the			nedule
Task No.	Task on of copper and lead		Description pper and lead impac		
	d material	ash material		August 10 th	rough 20, 2008
2.0 Post-exc	avation soil sampling	Collection of 1 samples	5 post-excavation so	il August 18 th	rough 20, 2008
3.0 Site rest	oration	Backfilling in e	xcavation area	August 21	and 22, 2008
Types of Hazards (s	ee Hazard Evaluatio	n Form for addition	ai information)		
Physio-chemical	Carcinogen	Radiation	Biological	Physical	Environmental
☐ Organic Vapors	☐ Mutagen	⊠ Sunlight	Poison Ivy		Weather Weather
☐ Flammable	☐ Teratogen	☐ Non-Ionizing	☑ Ticks	☐ Electricity	
□ Explosive	Other:	Ultraviolet		⊠ Noise	☐ Cold Stress
☐ Corrosive		☐ infrared	⊠ Rodents	Slips, Trips	☐ Altitude
☐ Reactive		☐ Microwave	Other:	☐ Elevated Surfaces	☐ Other:
Oxygen Rich		Radio		(Falls)	
Oxygen Deficient	Oxygen Deficient		:	Confined Space	
🔀 otner: lead and		lonizing 1		Water	
copper		☐ Alpha		Cther:	
		☐ Beta			
		☐ Gamma			
		Other:			
Potential Route(s) of Exposure:					
☑ Inhalation ☐ Ingestion ☑ Contact (dermal) ☐ Other:					
¹ Ionizing radiation presents a potentially serious health and environmental hazard that requires immediate consultation with Supervisor, PM and/or CHSM.					
The site SHSO will conduct periodic inspections during the project to identify other types of hazards. The SHSO, in consultation with the PM and CHSM, will:					
 Notify project personnel of findings; Ensure that measures are implemented to minimize or remove the hazard(s); Amend safety equipment and procedures, as necessary. 					

		H/	ZARD EVAL	UATION FORM - CHI	MICAL HAZARD	s	
Material Safety Data Sheets (MSDS) are included with this HASP for products with hazardous ingredients that are brought on site such as decontamination chemicals, calibration gases, welding/cutting gases, fuels and oils, etc.							
The following information for known site contaminants is taken from sources such as the NIOSH Pocket Guide.							
	Task			Chemical Name		Concentration/Effects	
	1.0/2.0/3.0		Copper, Lead			See NIOSH Pocket Guide excerpt	
OVERALL HAZARD:	☐ Serious	☐ Moderate	Low	Unknown			
Comment:							
Moderate - workers	may or may not be a	t source of chemical rce of chemicals: ove	s; overexposure rexposure not e	ion/contact/absorption; co a concern via inhalation o xpected to be a concern vi ion allows for reduction in	g contact/absorption; a Inhalation or contac	d regulatory standards. concentration(s) may or may not exceed regul t/absorption; concentration(s) do not exceed to	atory standards. regulatory standard

Page 7 of 35

位層的

...

	HAZARD EVALUATION FOR	И - BIOLOGICAL HAZARDS	
☑ POISONOUS PLANTS	• •	⊠ INSECTS	
Location/Task:	Field Tasks 1.0/2.0/3.0	Location/Task:	Fleid Tasks 1.0/2.0/3.0
Type(s) of plant (if known):	Poison Ivy	Type(s) of insect (if known):	Ticks
Route(s) of exposure:	*	Route(s) of exposure:	
☐ Inhalation ☐ Ingestion ☑ Contact ☐ Direct Penetration		☐ Inhalation ☐ Ingestion ☐ Contact ☑ Direct Penetration	
Overali Hazard:		Overall Hazard:	
☐ Serious ☐ Moderate ☑ Low ☐ Unknown		☐ Serious ☐ Moderate ☑ Low ☐ Unknown	
Comment: Wear proper ciothing	g wash hands after contact with suspect vegetation.	Comment: Wear proper clothing, a	apply repellent as needed. See Appendices.
☑ ANIMALS			
Location/Task:	Field Tasks 1.0/2.0/3.0		
Type(s) of animal (if known):	Rodents, snakes		
Route(s) of exposure:			
☐ Inhaiation ☐ ingestion ☑ Contact ☐ Direct Penetration			
Overali Hazard:			
Serious Moderate Low Unknown		·	
Comment: Avoid animai feces	and animals that don't shy away from humans.	<u></u>	
Serious - work environment	; overgrown vegetation, abandoned/dilapidated structure(s), unp	opulated area, remote iocation, or s area, or similar.	similar.

Serious – work environment: overgrown vegetation, abandoned/dilapIdated structure(s), unpopulated area, remote location, or similar Moderate – work environment: overgrown vegetation, abandoned structure(s), unpopulated area, or similar.

Low – work environment: low growing vegetation, occupied structure(s), minimal seasonal concerns, or similar.

Unknown – requires hazard to be considered as Serious unless new information allows for reduction in overall hazard rating.

HAZARD EVALUATION FORM - PHYSICAL AND ENVIRONMENTAL HAZARDS

Task	Physical or Environmental Hazard	Hazard Prevention
1.0/2.0/3.0	Exposure to airborne contaminants released during intrusive activities.	Monitor per Section 7.0; wear required PPE.
1.0/2.0/3.0	Moving equipment and hand tools.	Wear required PPE; follow safe work practices.
1.0/2.0/3.0	Heat stress.	Monitor co-worker, drink fluids (heat stress), and wear appropriate clothing
1.0/2.0/3.0	Noise.	Wear proper hearing protection.
1.0/2.0/3.0	Slip/trip/fall hazards.	Awareness of surroundings and work areas; fall protection as needed.
1.0/2.0/3.0	Contact with contaminated media.	Wear required PPE, follow proper decontamination steps.
/ '-		

	6.0 PERSONNEL	PROTECTIVE EQUIP	MENT					
Engineering and Administrative	Controls							
Engineering Controls: Excavation area will be backfilled. All excavated material deemed to be impacted will be containerized for off-site disposal.								
Administrative Controls: CMX personnel must evacuate area up	oon determination of possible o	overexposure to hazardou	s chemicals.	The Conference of the Conferen				
Levels of Protection								
Engineering and/or administrative corprotection requires the use of PPE, the	ntrols are preferred to control e level of protection selected w	potential employee expos ill be based on the following	sure to health and, ng:	or safety risks. When employee				
 Potential for exposure to subperformed. Knowledge of chemicals ons Monitoring results, as described to the control of chemicals. 	ite along with the properties subbed in Section 7.0 (Air Monitor	ulds, or other direct contact ich as toxicity, route of exing and Personal Air Samp	posure, and contar pling) of this HASP.	minant matrix. otection must be selected based				
on professional judgment until the habeen divided into four categories acco	azards can be better defined.	The specific levels of pro	otection and neces	ssary components for each have				
Level A: Should be worn when the hig Level B: Should be worn when the hig Level C: Should be worn when the crit Level D: Should be worn when minima	hest level of respiratory, skin, a thest level of respiratory protections for using air-purifying rest	and eye protection is requ tion is needed, but a less pirators are met, and a les	er level of skin pro- ser level of skin pro- s with no respirato	Olection is needed.				
Task	Level A	☐ Level B		: ⊠Level D				
1.0/2.0/3.0	Level A	☐ Level B	Level C	☐Level D				
	Level A	Level B	Level C	Level D				
Level A	Level B		C	Level D				
☐ NIOSH and/or Mine Safety Health Association (MSHA) approved pressure demand full face self contained breathing apparatus (SCBA), or positive pressure demand supplied air respirator (SAR) with escape SCBA.	☐ NIOSH and/or MSHA approve pressure demand full face se contained breathing apparate (SCBA), or positive pressure demand SAR with escape SC☐ Hooded chemical resistant	od NIOSH and/or MSI face or half face al respirator equippe	r purifying d with: [O/OV/CL/HC/ [O/HS/FM/HF	□ Hard Hat. □ Disposable coverall □ Non-disposable coverall. □ Safety glasses.				
Fully encapsulating chemical resistant suit. Chemical resistant inner gloves.	clothing. Chemical resistant outer and Inner gloves.	Chemical resistan as coveralls, two p splash suit, dispos resistant coveralls	iece chemical sable chemical	□ Safety goggles. ☑ Work boots.				
Chemical resistant boots with steel toe and shank (worn over or under	☐ Chemical resistant outer boo	ots. Chemical resistan	t outer and inner	 □ Work boots - chemical resistant. □ Safety boots/shoes with steel toe and shank, and chemical resistant. 				
suit boot). Disposable gloves and boot covers (worn over fully encapsulating suit).	shank. Boot covers (outer), chemica resistant (disposable).	Chemical resistan Outer boots with s	teel toe and	 Hearing protection. Inner gloves (latex or nitrile). 				
☐ Hard Hat (under sult).	☐ Hard Hat.	Boot covers (oute		☑ Outer Gloves – work gloves.				
☐ Two-way radio (optional).	Two-way radio (optional).	resistant (disposa	ble).	☐ Boot Covers.				
Long cotton underwear (optional).	Long cotton underwear (optional).	☐ Hard Hat.		── Reflective vest.				
Other (Describe):	Other (Describe):	☐ Two-way radio (op	tional)	Fall Protection.				
		Long cotton under	rwear (optional).	Other (Describe):				
If Level A or Level B conditions a with the PM/CHSM.	 re encountered, all personr	Other (Describe): nel will be <u>evacuated</u> fro	om the area and	the situation will be reviewed				
Level D protective components worn as necessary when upgradi	that may not be listed und	er Level C, such as ref	flective vest and	hearing protection, must be				
wom as necessary when applicati	ng to Level C.							

	6.0 PERSONNEL	PROTECTIVE EQUIT	PMENT		
Engineering and Administrative	Controls				
Engineering Controls: Excavation area will be backfilled. All	#2 158 2	be impacted will be cont	ainerized for off-s	te disposal.	_
Administrative Controls: CMX personnel must evacuate area u	pon determination of possible	overexposure to hazardo	us chemicals.		
Levels of Protection					
Engineering and/or administrative co protection requires the use of PPE, the	introls are preferred to control e level of protection selected w	potential employee expo III be based on the follow	sure to health ar Ing:	d/or safety risks. When	ı employee
 Potential for exposure to subperformed. Knowledge of chemicals ons 	cted concentration of the chemostances in air, splashing of liquities site along with the properties sibed in Section 7.0 (Air Monitor	uids, or other direct conta uch as toxicity, route of e	ct with hazardous oposure, and cont	s materials due to the w aminant matrix.	ork being
In situations where the type of cheml on professional judgment until the h been divided into four categories acco	azards can be better defined.	The specific levels of pr	own, the level of potection and nec	orotection must be selected by components for	cted based each have
Level A: Should be worn when the hig Level B: Should be worn when the hig Level C: Should be worn when the cri Level D: Should be worn when minima	shest level of respiratory protections for using air-purifying res	ction is needed, but a less plrators are met, and a les hazards is needed in area	ser level of skin pr sser level of skin p as with no respirat	protection is needed.	
Task 1.0/2.0/3.0	☐ Level A	Level of P ☐ Level B	rotection	r ≠ ⊠Lev	el D
1.0/2.0/3.0	Level A	Level B	Level (
·····	Level A	Level B	Level (
Level A	Level B	Level	1	Level D	
NIOSH and/or Mine Safety Health Association (MSHA) approved pressure demand full face self contained breathing apparatus (SCBA), or positive pressure demand supplied air respirator (SAR) with escape SCBA.	□ NIOSH and/or MSHA approve pressure demand full face secontained breathing apparate (SCBA), or positive pressure demand SAR with escape SC □ Hooded chemical resistant	face or half face a us respirator equippe	olr purifying ad with: D/OV/CL/HC/	 ☑ Hard Hat. ☑ Disposable coverall ☑ Non-disposable covera ☑ Safety glasses. 	il.
Fully encapsulating chemical resistant suit.	clothing. Chemical resistant outer and inner gloves.	Chemical resistan as coveralls, two p splash suit, dispo	piece chemical	☐ Safety goggles. ☑ Work boots.	
☐ Chemical resistant inner gloves.		resistant coveralis		☐ Work boots - chemica	l recictant
Chemical resistant boots with steel toe and shank (worn over or under suit boot).	Chemical resistant outer boo Outer boots with steel toe an shank.	☐ Chemical resistan	t outer and Inner	Safety boots/shoes wi	th steel toe
Disposable gloves and boot covers (worn over fully encapsulating suit).	Boot covers (outer), chemica resistant (disposable).	Chemical resistan Outer boots with s		☐ Hearing protection.	
☐ Hard Hat (under suit).	☐ Hard Hat.	shank.			iitrile).
☐ Two-way radio (optional).	☐ Two-way radio (optional).	Boot covers (oute resistant (disposa		☑ Outer Gloves – work gl☐ Boot Covers.	loves.
Long cotton underwear (optional).	☐ Long cotton underwear	☐ Hard Hat.		_	
Other (Describe):	(optional).	☐ Two-way radio (op	tional)		
	Other (Describe):	☐ Long cotton unde	rwear (optional).	Fall Protection.	
If Level A or Level B conditions ar	e encountered, all personn	Other (Describe):	om the area and	Other (Describe): the situation will be r	reviewed
with the PM/CHSM.	· p · ·				
Level D protective components t worn as necessary when upgradia		er Level C, such as ref	lective vest and	hearing protection,	must be
** Level C respiratory protection area for evacuation or other					secure

Page 11 of 35

6.0 PERSONNEL PROTECTIVE EQUIPMENT (CONTINUED)

Reassessment of Protection Program

The level of protection provided by the PPE selected may be upgraded or downgraded by the SHSO based on changes in site conditions and/or findings of the monitoring program and investigation. If a significant change in the scope-of-work occurs, the hazards will be reassessed. Some changes that result in the need for reassessment include:

- Commencement of a new phase of work.
- Change in tasks during a work phase.
- Changes in season/weather.
- When temperature extremes, medical considerations, or other compromise the use of the PPE.
- When contaminants other than those previously identified are encountered.
- Changes in ambient levels of contaminants, as determined by onsite monitoring.
- Changes in scope-of-work that affects the degree of, or potential for, contact with contaminated materials.

Work Duration

Before workers begin activities in their PPE ensembles, the anticipated duration of work should be established. Several factors limiting the duration of work include:

- Air supply consumption (SCBA use).
- Permeation and penetration rates of chemicals through PPE.
- Ambient temperature and weather conditions (such as heat stress and cold stress).
- Ability of personnel to safely work in PPE.

 			ITOR	
 	IL R	77. HXI		

The location, frequency and type of monitoring for the identified project tasks are described in this section. Monitoring will be conducted for the following purposes:

- Identification of work areas and activities that require the use of engineering/work practice controls, or the use of PPE.
- Provide data to confirm that levels of PPE selected are adequate for the protection of workers.
- Provide data to document the effectiveness of site controls.
- Provide data to determine the need to implement emergency control procedures and contingency plans.

The site SHSO will be responsible for implementing the air-monitoring program and making sure sufficient air monitoring equipment is available at all times. An individual trained in the operation, calibration, care and limitations of the instrument will use air monitoring and air sampling equipment. Instrument serial numbers, calibration, readings, and sample locations, times and dates will be documented for the project.

dates will be documented for the proj	ect.				F* =			
Direct Reading Air Monitoring Program								
Instrument	Task No.(s)	Number Required	Check Upon Receipt	Comment	Initials			
Photoionization Detector (PID)								
☐ MiniRAE 2000 (10.6 eV lamp)								
☐ MinIRAE 2000 (11.7 eV lamp)								
☐ Photovac 2020								
☐ Other								
□ Aerosol Monitor								
☑ MIE pDR - 1000		1 + backup						
☐ MIE DataRAM - 4								
☐ Other								
□ FID								
Foxboro TVA 1000				•				
4 - Gas Meter (02/LEL/and two Toxic* sensors)								
☐ MultiRAE PLUS PGM-50								
QRAE PLUS PGM-2000								
Detector Tubes, specify below								
☐ Benzene					}			
☐ Chlorine								
Ethyl benzene								
☐ Sulfur dioxide								
☐ Toluene								
☐ Xylene								
☐ Other								

* Toxic sensors are typically hydrogen sulfide (H2S) and carbon monoxide (CO).

Other available sensors include ammonia (NH₃), chlorine (Cl₂), chlorine dioxide (ClO₂), hydrogen cyanide (HCN), nitric oxide (NO), nitrogen dioxide (NO₂), phosphine (PH₃), and sulfur dioxide (SO₂).

Direct Reading Air Monitoring	1 45 4 47 1124 448 110 110 110 110 110 110 110 110 110 11	a.在其中的性别性的性情,是一种一个生态的。
Air Monitoring Instrument	Photoionization Detector (PI	
Air Monitoring Frequency:	☐ Continuously	☐ Other:
Air Monitoring Locations: Upwind of site activities	Downwind of site activities	Other:
Key site locations: Decontamination area Excavation area Storage tanks	☐ Staging area ☐ Exclusion zone or Hot zone ☐ Drums	☐ Boring ☐ Drums ☐ Other (specify):
Air Monitoring Instrument	4-Gas Meter	
Air Monitoring Frequency: ☐ Periodically	☐ Continuously	Other:
Air Monitoring Locations: Dpwind of site activities	Downwind of site activities	Other:
Key site locations: Decontamination area Excavation area Storage tanks	Staging area Exclusion zone or Hot zone Drums	☐ Boring ☐ Drums ☐ Other (specify):
Air Monitoring Instrument:	MIE pDR - 1000	
Air Monitoring Frequency:	○ Continuously	☐ Other:
Air Monitoring Locations: ☐ Upwind of site activities	□ Downwind of site activities	☑ Other: At work zone
Key site locations: ☐ Decontamination area ☐ Excavation area ☐ Storage tanks	Staging area Exclusion zone or Hot zone Drums	☐ Boring ☐ Drums ☐ Other (specify):
Air Monitoring Instrument:		
Air Monitoring Frequency:	☐ Continuously	☐ Other:
Air Monitoring Locations: Upwind of site activities	□ Downwind of site activities	Other:
Key site locations: Decontamination area Excavation area Storage tanks	Staging area Exclusion zone or Hot zone Drums	☐ Boring ☐ Drums ☐ Other (specify):
Air Monitoring Instrument:		
Air Monitoring Frequency:	☐ Continuousiy	☐ Other:
Air Monitoring Locations: Upwind of site activities	☐ Downwind of site activitles	☐ Other:
Key site locations: Decontamination area Excavation area Storage tanks	☐ Staging area ☐ Exclusion zone or Hot zone ☐ Drums	☐ Boring ☐ Drums ☐ Other (specify):

Site Air Monitoring and Samp	Tasks	Action L	evel	Action
Explosive Atmosphere		Ambient Air Concentration	Confined Space Concentration	
	of A.S. S. A. A. A. S. S. S. Miller States, March	< 10% LEL		Continue on-site monitoring
1	Not applicable	10%-25% LEL		Continuous on-site monitor required. Work with extrem caution. Evaluete/remove a ignition sources.
l		>25% LEL		Explosion hazard. Stop wor Evecuate eree immediately Ventilate area if possible.
Oxygen Deficiency or Enrichment		Ambient Air Concentration	Confined Space Concentration	
		<19.5% O ₂		Stop work. Evacuate area immediately. Ventilate area possible. Entry with SCBA of
	Not applicable	19.5% to 23.5% O ₂		Continue on-site monitorin
		>23.5% 02		Stop work. Evacuate area necessary. Explosion haza Evaluate/remove any ignit sources. Ventilate area if possible.
Organic Vapors and Gases		Ambient Air Concentration	Confined Space Concentration	
Action based on benzene		1 - 5 ppm above beckground in breathing zone and sustained for greater than 1 minute.		Stop work end implement measures to control OV emissions. As needed, we minimum ½ face negative pressure respirator with P cartridges.
Action based on benzene	Not applicable	5 ppm - 25 ppm ebove beckground In breething zone end sustained for greater than 1 minute.		Stop work and evacuate n essential personnel. Weer minimum ½ face negative pressure respirator with P cartridges. (If not abated, evacuate remaining perso after 10 minutes). Contact and CHSM.
Action based on benzene		>25 ppm above background in breathing zone and sustained for greater than 1 minute.		Stop work end evacuate a immediately. Contact Proj Manager and CHSM
☑ Particulate	1.0/2.0/3.0	Ambient Air Concentration	Confined Space Concentration	
		>0.05 mg/m³ sustained ebove beckground.		Stop work. Implement more to reduce dispersion of dispersion of dispersion of dispersion with PF 10 es needed.
 Consult NIOSH Pocker regulation, is ½ of curr 	et Guide for air concentration rrent and most stringent PEL/	on/toxicity data. Gene /REL/TLV.	ral action level, if	not defined by stand
 PID readings may be a 	adjusted for instrument respo	onse factors (see Manu	facturer's instructi	ions).

8.0 SITE CONTROL MEASURES								
Buddy System								
Most activities in contaminated areas should be conducted with a co-worker who is able to provide his/her partner with assistance; observe his/her partner for signs of chemical or heat exposure; periodically check the integrity of his/her partners PPE; provide notification if emergency help is needed.								
Site Communication Plan								
Emergency alert communications will consist of verbal and telephone communications. If a telephone is not available on-site and in close proximity to the work area, CMX will have a mobile cellular phone on site for use in the event of a medical, fire, or other environmental emergency. Any necessary pass codes for phone use will be provided to site personnel for emergency use.								
The site SHSO or his/her designee shall implement emergency communications. A list of emergency contacts is included in this HASP.								
The following additional communications systems will be available during activities at the site:								
☐ Hand Signals/Verbal ☐ Two-way radios ☐ Cell Phone ☐ Whistle ☐ Air horn ☐ Other:								
The following hand signals will be used on site:								
Signal Definition								
Hands clutching throat Out of air / cannot breath								
Hands on top of head Need assistance								
Thumbs up OK / I am all right / I understand								
Thumbs down No / negative								
Arms waving upright Send backup support								
Grip partners wrist Exit area immediately								
Work Zone Definition								
The three general work zones that may be established at a site are the Exclusion Zone, Contamination Reduction Zone, and Support Zone.								
The three zones are defined below:								
1. The Exclusion Zone, or EZ, is defined as the area that is considered to be contaminated, potentially contaminated, or that could become contaminated. For example, exclusion zones are established around test pit excavations, ground water monitoring wells, test borings and other locations. All project personnel who work in the EZ are required to use the appropriate level of PPE for the task, as determined by the HASP and SHSO. Exclusion zones are typically separated from the project area with fencing, caution tape, and/or traffic cones. For drilling operations, a default radius of 30 feet will be used for the exclusion zone. For other operations, a radius equivalent to the reach of the equipment or 10 feet, whichever is greater, will be used.								
2. The Contamination Reduction Zone, or CRZ, serves as the buffer zone between the exclusion zone and the support zone. Materials and supplies are staged in this zone for the servicing of equipment and project personnel in the exclusion zone. All vehicles, equipment, and project personnel coming out of the exclusion zone pass through the CRZ for decontamination. All protective clothing removed by employees coming out of the exclusion zone will be staged in this area for disposal.								
3. The Support Zone, or SZ, is considered to be uncontaminated. The support zone will be clearly delineated so as to prevent active or passive contamination from the work site. This area serves as the entry point to the CRZ for site personnel, equipment, materials, and visitors and contains trailers, offices, break areas, sanitary facilities, clean staging, etc.								
Defining Work Zones: Work zone will be defined by one or more of the following:								
☐ Chain link fence ☐ Snow fence (orange) ☐ Traffic cones (orange) ☐ Yellow warning tape on stakes/poles								
☐ Other:								

L	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	9.0 DECONTAMINATION PLAN	
t	Personnel Decontamination		
	of protection required, the following is the		ed for the project. Consistent with the level
t	The levels of protection required for persor	nnel assisting with decontamination will be:	
	Level B	Level C	☐ Level D
	Modifications include: Disposable Tyvek su	sult and safety goggles when hazards exist from	n splashing or similar.
	Sampling Equipment Decontamination		
	Provide a description of sampling equipme	ent decontamination, as applicable.	
١	procedures. (Liquinox, water, DI water rins		
	Sampling equipment will be decontaming Environmental Protection (NJDEP) Field Sa	ninated in accordance with procedures out ampling Procedures Manual, 2005.	lined in the New Jersey Department of
	A summary of decontamination procedure	es is included in Section 9.0.	and the complete medical case of the contribution of
	Equipment Decontamination		
	Provide a procedure for decontamination	of non-sampling equipment and heavy machi	nery.
	decontamination will be done in the co	decontaminated prior to being moved to a contamination reduction zone or a similar of equipment with a mixture of water and laborate eaned as necessary with hand tools such as tainerized for proper disposal.	atory-grade detergent solution followed by a
	Disposition of Decontamination Waste	.es	受到的
ŀ	Devide a description of waste disposition	n including identification of storage area, haul	er, and final disposal site, as applicable.
١	Provide a description of waste disposition		• • • • • • • • • • • • • • • • • • • •
	All contaminated elething and water w	vill be disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at an authorized facility aloud the disposed at a solution and aloud the disposed at a solution and authorized facility aloud the disposed at a solution and aloud the disposed at a solution and aloud the disposed at a solution and aloud the disposed at a solution and aloud the disposed at a solution at a solution and a solution aloud the disposed at a solution at a solution and a solution at a solut	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. Al
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A
	All contaminated clothing and water wi investigation derived wastes will be hand	ill be disposed at an authorized facility als	ong with other project derived wastes. A

Function	CONTAMINATION PLAN
	Description of Process, Solution and Container
Exclusion Zor	ne Decontamination Activities
Segregated equipment drop	For re-usable sampling equipment.
☐ Boot cover and glove wash	
☐ Boot cover and glove rinse	
Tape removal - outer glove and boot	
Suit rinse	
⊠ Boot cover removal	Direct disposal.
☑ Outer glove removal	Direct disposal.
	ction Zone Decontamination Activities
Suit/safety boot wash	and any control of the method for the second of the second
Suit/boot/glove rinse	
Safety boot wash	Use wipe, spray or step-in pan with disposal of wipes and pan water.
Sult removal	Direct disposal.
☐ Inner glove wash	
☐ Inner glove rinse	
Inner glove removal	Direct disposal.
☐ Inner clothing removal	
□ Disposable Sampling Equipment	Direct disposal.
Re-usable Sampling Equipment	
Support Zo ☑ Field Wash ☐ Re-dress	ne Decontamination Activities Personal hygiene hand washing.
All disposable PPE, equipment and wash/rinse	naterials and liquid will be bagged for off-site disposal.

Emergency Contacts and Phone Numbers	the state of the s	
Organization	Contact	Telephone/Cell Number
Ambulance	Emergency Squad	911
Police Department	Camden Police	911
Fire Department	[name of Town] Fire Company	911
Poison Control Center	Operator	800-222-1222
NJDEP Hotline	Operator	800 WARN DEP (926-6337)
National Response Center	Operator	800-424-8802
Centers for Disease Control	Operator	800-232-4636
Chemtrec (Chemical Information Resources)	Operator	800-262-8200
CMX	Marl Pletrucha	(856) 783-1900
CMX Certified Industrial Hygienist	Anthony Damato	(732) 577-9000 / (732) 740-3993
CMX Medical Emergency Contact	Human Resources	(732) 577-9000
Site Telephone	Mary Ann Glimore	(732) 740-1223
Local Emergency Medical Facility(s):		
Name of Hospital: Our Lady of Lourdes Medic	cal Center	
Address: 1600 Haddon Avenue, Camden, NJ, 08	103 Phone #: (856) 757-3	500
Written Directions to Hospital: 1. Start out going SOUTHEAST on DAVIS 2. Turn LEFT onto COPEWOOD ST go 0 3. Turn LEFT onto HADDON AVE/CR-56		

Hospital is about 0.4 miles from job site.

Call Date: _____

Emergency responders <u>must be contacted</u> before the on-site work begins to ensure that they understand the nature of the work and site contamination, and that they will be able to respond to both minor medical emergencies and life threatening emergencies in the SZ, CRZ and EZ.

()

Designated Emergency Meeting Area: Site entrance at Davis Street.

Appendix C Waste Transportation and Disposal Manifest

SLRC Company Mullica Hill, N.J.

•						•				
					0600986 40.881	9812 6 988261	ocees p.Tas	LONWEGE CYTA LCIVTS		明月上
								a dan aka a masa sa tao aka da ka	ga ba kiya ci ili gagaba da ili ki ki ki ki a ila ili ga	e Same :
DOM:NA	7 HB06 K	2年日日章日	9960	1.4.4	02129	୍ରନ୍ୟଞ୍ଚିତ୍ର	09003	83:81 8008/05/6	05/6/ 806//00/6	436
OOMMN	5 1 5 5 6 C 4	17HRON	5866	ivid	901.96	೧೧೪೪ವ	를 열다. 함호	16141 8008/00/6	edia1 6005/2018	677
CONTRA	X QCBHV	THHNON	2062	1774	00197	arota	Orlea	or at edos/osie	rs:41 600g/oc/R	1.5
00898	81960 a	NCURM	£962	1010	CBELLE	09392	92150	SCHOOL BOOCHOOLS	9330/2008 (9:30	1.8
ា១ ង៕ម	XOCCHV	KAHNON	7882°	Fe La	QO) 69	୍ଷ୍ଟେମ୍ବର	08001	77771 5007/00/6	890000000000000000000000000000000000000	3. 3.
009AM	81.967°T	CYRNON	0960	ivia	00968	02042	98899	2211 8002/06/6	4004 9002000S	47
DOHAM	X SOSHV	Z THOM	962	PAA	12350	07072	08657	67-01-9002/02/3	19.01 8000/06/8	ទាច
	Nepro N	THEOL	eor	Hery			28375	CO SECULO	M. Nachamil	SHELL
	MEGINER								1	
0.36	多国 单任语序数	:#####################################	សុខជក្						hogeMinelbi	380000

GLOBAL JOB NUMBER: 1997 9	FACILITY APPROVAL NUMBER: 60300000
Please Check One:	
24 Middlesex Avenue 1469 Oak Rldge Place 94 Carteret, NJ 07008 Hagerstown, MD 21740 N	ean Earth of New Castle I Pyles Lane ew Castle, DE 19720 h: 302-427-6633 Other STRGS LEAP IRDUTE 77 IVILLIA H. III
3201 S. 61st Street 3815 South State Route 2 7 Philadelphia, PA 19153 Friendly, WV 26146 M	ean Earth of Southeast Pennsylvania Steel Road East orrisville, PA 19067 h: 215-428-1700
Non-Hazardous	s Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
を整備しております。	☑Tons ☐Yards 0
1060 0.5 V1.0 - 70100011	TARE WEIGHT:
	∑Tons
GENERATOR'S PHONE:	NET WEIGHT: ÄTons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCAT	<u>ION</u>
For DOW/RCHA Regulated Non Haz	ardous
Petroleum Contaminated Materia	1
GENERATOR'S CERTIFICATION - Incomplete and/or unsig	ned manifests will cause the load to be delayed and/or rejected.
is not a hazardous waste as defined by 40 CFR Part 261 or any a	free liquid as defined by 40 CFR Part 260.10 or any applicable state law, pplicable state law, is not a DOT hazardous substance as defined by 49 urately described above, classified, packaged and is in proper condition gulations.
Name) Commission BEHALF of CAMBEN LAB	LP Title:
Signature: D	Date and Time: <u>\$\frac{9}{30}\tag{08}</u> \sqrt{5.30}
TRANSPORTER	
Company: vich_Mark Contracting, Inc	Phone Number: 732-369-3771
Address: P.O. Box 124, Coms River, MJ	Truck # and License Plate: 39-1+1.805 A
Driver: // // // // // // Driver:	SW Haulers Permit #: \(\frac{1707764}{\text{(applicable state permit #)}}\)
(Type or Print Clearly)	naterial was picked up at the site listed above.
OW MANA	Date and Time: 9/30/07
Driver Signature:	Date and Time:
<u>DESTINATION</u>	1 1
I hereby certify that the above named material was	delivered without incident to the facility noted above.
Driver Signature:	Date and Time: 9/2/
	Il has been accepted at the above referenced facility. 1 Date and Time: 9-30-08

SL.RD

The second of th

ELECTRICAL PROPERTY OF THE PRO

Mullica Hill, NJ 08062

: 09-30-08 Date

: 16:50 INBOUND TIME .

: 16:58:34 **OUTBOUND TIME**

: 126 TRANSACTION

Customer
Origin : : AHBØ5X TRUCK ID

: CAMDEN * MONHAZ Product

: 2958 Manifest

: PIA1 Area

80060 GROSS TARE 26840

53220 NET

26.61 Tons

Weighmaster Signature

> Driver Signature

* MARCO

GLOBAL JOB NUMBER: 106283 FA	CILITY APPROVAL NUMBER: 083050043
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Py Carteret, NJ 07008 Hagerstown, MD 21740 New C	Earth of New Castle es Lane STAGSLEAP Route 77 2-427-6633 Mullica Hill, NJ
3201 S. 61st Street 3815 South State Route 2 7 Stee Philadelphia, PA 19153 Friendly, WV 26146 Morris	Earth of Southeast Pennsylvania il Road East ville, PA 19067 5-428-1700
Non-Hazardous N	laterial Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
MARTIN MARCO	Tons Yards 64160
1667 DAVIS STREET	TARE WEIGHT:
CAMDEN, NJ	▼ Tons
GENERATOR'S PHONE:	NET WEIGHT:
•	▼ Tons
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	
Non DOT/RCRA Regulated Non Hazar	A day
	Jous
Petroleum Contaminated Material	10 . 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	, er
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, has been fully and accurat for transportation according to all applicable state and federal regula	ely described above, classified, packaged and is in proper condition
Name: D Compress on R=HALF of CAMEN LAB LP	Title:
Signature: 10	Date and Time: 9-30-08 14:25
TRANSPORTER	
	ne Number: 732_349_3771
* * * * * * * * * * * * * * * * * * *	ck # and License Plate: (AT 961 R
	Haulers Permit #: NJ07764
(Type or Print Clearly)	(applicable state permit #)
I hereby certify that the above named mater	ial was picked up at the site listed above.
Driver Signature:	
<u>DESTINATION</u>	
I hereby certify that the above named material was del	
Driver Signature: 10- 15- 16-	Date and Time: 9-30-08
I hereby certify that the above named material ha	\sim \sim \sim \sim \sim
Authorized Signature:	Daft and Time: 9-30-08

SLRD

Mullica Hill, NJ 08052

Date : 09-30-08

: 15:29 INBOUND TIME

OUTBOUND TIME : 15:37:33

TRANSACTION : 116

Customer : MARCO TRUCK ID : AJ961R Origin * CAMDEN

Product : MONHAZ

Manifest 🗅 : 2966 Area : P1A1

64160 **GROSS** TARE 25460

38700 NET

19.35 Tons

The state of the s

Weighmaster Signature

Driver

Signature

GLOBAL JOB NUMBER: 106283	FACILITY APPROVAL NUMBER: 083050043
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	Ciean Earth of New Castle 94 Pyles Lane New Castle, DE 19720 Ph: 302-427-8633 Cither STAGS LEAP Route 77 ROUTE 77
☐ Clean Earth of Philadeiphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 Clean Earth of West Virginia 3815 South State Route 2 Friendly, WV 26146 Ph: 304-652-8580	☐ Clean Earth of Southeast Pennsylvania 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700
Non-Hazard	lous Material Manifest
Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT: 73147
MARTIN MARCO	X Tons
1667 DAVIS STREET	TARE WEIGHT:
CAMDEN, NJ	↑ Tons □ Yards
GENERATOR'S PHONE:	NET WEIGHT:
	↑ Tons
I hereby certify that the above named material does not cont is not a hazardous waste as defined by 40 CFR Part 261 or a	unsigned manifests will cause the load to be delayed and/or rejected. tain free liquid as defined by 40 CFR Part 260.10 or any applicable state law, any applicable state law, is not a DOT hazardous substance as defined by 49 d accurately described above, classified, packaged and is in proper condition al regulations.
Signature:	Date and Time: 9/30/08 /3:35
TRANSPORTER	
Company: Pich-Mark Contracting, Inc Address: P.O. Box 124, Toms River, NJ Driver: (Type or Print Clearly)	Phone Number: 732-349-3771 Truck # and License Plate: 31-11-11-11-11-11-11-11-11-11-11-11-11-1
10/1/1	7/ 20/0/
Driver Signature:	l was delivered without incident to the facility noted above. Date and Time: Date and Time: Date and Time:

GENERATOR

SLAD Mullica Hill, NJ 08062 Date INBOUND TIME : 14:21 OLIBOUND TIME : 14:40:42 TRANSACTION : 97

TRUCK ID : AHB05X Product : WONHHZ Manifest : 2967 Area : P1A1

Customer : MARCO Origin : CAMDEN

> GROSS 73140 TARE 27040 NET 46100

23.05 Neighmaster Signature

Tons

Signature

Driver

できる。

•

The state of the s

,

GLOBAL JOB NUMBER: 106233 FA	CILITY APPROVAL NUMBER: 083050043
24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia Clean Earth of West Virginia Clean Earth of West Virginia	Earth of New Castle es Lane astle, DE 19720 2-427-6633 Earth of Southeast Pennsylvania I Road East
Philadelphia. PA 19153 Friendly, WV 26146 Morris	ville, PA 19067 5-428-1700
Non-Hazardous N	laterial Manifest
(Type or Print Clearly)	an aga with a way a way a way a way a way a way a way a way a way a way a way a way a way a way a way a way a
GENERATOR'S NAME & SITE ADDRESS: MARTIN MARCO	GROSS WEIGHT: U3140
1667 DAVIS CURDET	TARE WEIGHT:
	TARE WEIGHT: ▼ Tons
CAMDON, MJ	NET WEIGHT:
GENERATOR'S PHONE:	KTons Yards
is not a hazardous waste as defined by 40 CFR Part 261 or any applicable cFR Part 172 or any applicable state law, has been fully and accurate for transportation according to all applicable state and federal regular Name: Commodus & Beisa F of GMAEN LAW LI	manifests will cause the load to be delayed and/or rejected. liquid as defined by 40 CFR Part 260.10 or any applicable state law, cable state law, is not a DOT hazardous substance as defined by 49 sely described above, classified, packaged and is in proper condition stions.
Address: 2.0. Box 124, Poms River, MJ Tn	732-349-3771 uck # and License Plate: 48 A J 961 R V Haulers Permit #: 3077764 (applicable state permit #)
I hereby certify that the above named mate	_
Driver Signature:	Date and Time:
DESTINATION	
I hereby certify that the above named material was de Driver Signature: I hereby/certify that the above named material had	Date and Time: $9-30-08$ as been accepted at the above referenced facility.
Authorized Signature:	Date and Time:

GENERATOR

SLRD

Mullica Hill, NJ 08062

Date : 09-30-08

IMBOUND TIME : 13:20

OUTBOUND TIME : 13:29:09

TRANSACTION : 81

TRUCK ID

: AJ961R

Customer : MARCO

Product : MONHAZ

Origin : CAMDEN

Manifest Area

: 2963 a PIA1

GROSS 63120 TARE 25740

MET 37380

Tons 18.69

Signature Weighmaster

Driver . Signature

GLOBAL JOB NUMBER: 106283	FACILITY APPROVAL NUMBER: 083050043
Please Check One:	Close Forth of New Cootle
Clean Eerth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	Clean Earth of New Castle 94 Pyles Lane. New Castle, DE 19720 Ph: 302-427-6633 Clean Earth of New Castle STAGS LEAP Route 77 Mullica Hill, NJ
Cleen Eerth of Philadelphia 3201 S. 61st Street 3815 South State Route 2 Philadelphia, PA 19153 Ph: 215-724-5520 Clean Earth of West Virginia 3815 South State Route 2 Friendly, WV 26146 Ph: 304-652-8580	Clean Earth of Southeast Pennsylvania 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700
Non-Hazardo	us Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS: MARTIN MARCO	GROSS WEIGHT: Tons [Yards] GROSS WEIGHT:
1667 DAVIS STREET	TARE WEIGHT:
CAMDEN, NJ	▼Tons □Yards
GENERATOR'S PHONE:	NET WEIGHT:
	▼Tons □Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCA	TION .
Non DOT/RCRA Regulated Non Ha	zardous
Petroleum Contaminated Materi	al
GENERATOR'S CERTIFICATION - Incomplete and/or uns	igned manifests will cause the load to be delayed and/or rejected.
is not a hazardous waste as defined by 40 CFR Part 261 or any	in free liquid as defined by 40 CFR Part 260.10 or any applicable state law, applicable state law, is not a DOT hazardous substance as defined by 49 ccurately described above, classified, packaged and is in proper condition regulations.
Name: D. Cummines on REMARE OF CAMDEN LABS	<u> </u>
Signature:	Date and Time: 9/30/08
TRANSPORTER	
Company: Rich-Mark Contracting.Inc	Phone Number: 732-349-3771
Address: P.O. Box 124, Toms River, NJ	Truck # and License Plate: 39-HH805X
Driver: Neil Waytowo (Type or Print Clearly)	SW Haulers Permit #: NJ07764 (applicable state permit #)
1	material was picked up at the site listed above
Driver Signature:	Date and Time: 4/34/06
	Pas delivered without incident to the facility noted above.
I hereby certify that the above named mate	Date and Time: 7-30 68
Ğ.	NERATOR

SLRD Mullica Hill, 'NJ @D@62 Date
INBCUND TIME : 12:32
OUTBOUND TIME : 12:42:38
TRAMSACTION : 71

TRUCK ID : AHBWSX Product : NONHAZ Manifest : P164

Customer : MARCO Origin : CAMDEN

> GRDSS 75080 TARE 26980 NET 49100

24.55 Weighmaster Signature_

Tons

Signature

Driver

ture true

		TO 4	CIT TITS! A DDD (\text{\text{V}} \text{\text{\text{DDD} (\text{\text{V}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{V}}} \text{\text{\text{\text{DDD}} (\text{\text{V}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{\text{V}}} \text{\text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{\text{V}}} \text{\text{\text{\text{V}}} \text{\text{\text{\text{\text{V}}} \text{\text{\text{\text{\text{V}}} \text{\te	L NUMBER: 083050043	
GLOBAL JOB NUMBE	R: <u>106293</u>	FA	CILITI AFFROVA	BINORDEAN INSTRUMENT	
Please Check One:			•	~~	
☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	94 Pyl New C Ph: 30	Earth of New Castle es Lane astle, DE 19720 2-427-6633	STAGS LE Route 77 MULLICA HIL	
☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	Clean Earth of West Virginia 3815 South State Route 2 Friendly, WV 26146 Ph: 304-652-8580	7 Stee Morris	Earth of Southeast Pennsyl I Road East ville, PA 19067 5-428-1700	vania	
	Non-Hazar	dous M	laterial Manifes	t	
(Type or Print Clearly)			GROSS WEIGHT:	1/2-80	-
GENERATOR'S NAME &			MTons □Yards	65280	
MARDIN MA					
1667 DAVI	C STRUET		TARE WEIGHT:		
CAMDEN, W	्र		Tons Yards		
GENERATOR'S PHONE:			NET WEIGHT: ☐ Tons ☐ Yards		
DESCRIPTION OF MAT	ERIAL/SAMPLE ID AND L	OCATION			
· · · · · · · · · · · · · · · · · · ·		3		•	
	RCFA Regulated Non				
Petroleum	Contaminated Mat	erial	10	lood to be deleved and/or reject	ed
GENERATOR'S CERTIF	FICATION - Incomplete and/o	or unsigned	manifests will cause the	e load to be delayed and/or reject	de state law
is not a hazardous waste a		or any appu and accura	tely described above, cla	CFR Part 260.10 or any applicab DOT hazardous substance as de- assified, packaged and is in prope	
	BEHALF OF CAMBEN LA		Title:		
Signature:			Date and Time:	1/30/08	
TRANSPORTER				_	
Company: Did ob - Mar-	- Contracting Tro	Ph	one Number:	732-349-3771	
		<u>्र </u> Тг	uck # and License Plate:	KMP 38 AIG	OIR
	(Type or Print Clearly)	sv	V Haulers Permit #:	NJ 07764 (applicable state permit #)	
	I hereby certify that the above i	named mate	erial was picked up at th	e site listed above.	
Driver Signature:	Tonly		Date and Time:		1.00
DESTINATION		ış.			
I hereby ce	rtify that the above named mate	erial was de	livered without incident	to the facility noted above.	ł
Driver Signature:	In M	<u> </u>	Date and Time:	9-30-08	
I here Authorized Signature:	by certify that the above named	materialh	as been accepted at the a	9-31-08	
1	108	41	`		

GENERATOR

NJ ØBØGE Mullica Hill,

09-30-08 11:07 CUTBOUND TIME INBOUND TIME) Date

a AJ961R 2960 P1A1 Product Manifest Area TRUCK ID

Customer Origin :

6528*0* 25620 39660 GROSS TARE ----MET.

Signature Signature

Tong

19.83 Weighwaster

GLOBAL JOB NUMBER: 106233 FA	CILITY APPROVAL NUMBER: 083050043
Please Check One:	Other
24 Middlesex Avenue 1469 Oak Ridge Place 94 Py Carteret, NJ 07008 Hagerstown, MD 21740 New Ph: 732-541-8909 Ph: 301-791-6220 Ph: 3	Earth of New Castle les Lane Castle, DE 19720 D2-427-6633 Cother TAGS LEAF Route 77 MULLICA HIII, NJ
3201 S. 61st Street 3815 South State Route 2 7 Ste Philadelphia PA 19153 Friendly, WV 26146 Morri	Earth of Southeast Pennsylvania el Road East sville, PA 19067 15-428-1700
Non-Hazardous No	Material Manifest
(Type or Print Clearly)	THOUSE MENONE
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
MARTIN HARCO	
1667 DAVIS STREET	TARE WEIGHT:
CAMDEN, NJ	X Tons Yards
GENERATOR'S PHONE:	NET WEIGHT: Tons
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATIO	<u>Y</u>
Non DOT/RCRA Regulated Non Hazai	
Petroleum Contaminated Material	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	I manifests will cause the load to be delayed and/or rejected.
I hereby certify that the above named material does not contain free	liquid as defined by 40 CFR Part 260.10 or any applicable state law, licable state law, is not a DOT hazardous substance as defined by 49 stely described above, classified, packaged and is in proper condition
Name: D. Commission on Bithauf of Camben Lies L.P.	Title:
	Date and Time: 9/3c/08
Signature:	2.00
TRANSPORTER	
Company: Pich-Merk Contracting, Inc P	none Number: 732-349-3771
Address: P.O., Sox 124, Forms River, NJ T	ruck # and License Plate: 39-AH805X
Driver: 1/e/1 1/1/arzano S (Type or Print Clearly)	W Haulers Permit #: NJ07764 (applicable state permit #)
	erial was picked up at the site listed above.
Driver Signature:	Date and Time:
DESTINATION	.7
I hereby certify that the above named material was d	elivered without incident to the facility noted above.
Driver Signature:	Date and Time: 9/36/9
I hereby certificathat the above mamed material I	has been accepted at the above referenced facility.
Authorized Signature:	Date and Time: 9-30-00
Targett .	

GENERATOR

Custoner Origin 09-30-00 -10:43:19 35 Mullica Hill, NJ 88062 : AHGGSX 2961. P1A1 INBOUND TIME OUTBOUND TIME TRANSACTION 72960 27040 45920 TRUCK 10 Menifest Product I ARE SLAD Yons NET

Appendix D Laboratory Analytical Results and Electronic Data Deliverables

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 1275 BLOOMFIELD AVE, UNIT 50 A · FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770 FAX: 973-244-9787

WWW.HCVLAB.COM

Camden Laboratories **Project:**

Client PO: Not Available

Report To: CMX

1101 Laurel Oak Road

PO Box 1346

Voorhees, NJ 08043

Attn: M.Pietrucha

Received Date: 9/8/2008

Report Date: 9/30/2008

Deliverables: NJDEP-R

Lab ID: AC39795

Lab Project No: 8090809

This report is a true report of results obtained from our tests of this material. All results meet the requirements of the NELAC standards. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Verilech's total fee for analytical services rendered.

OR

Stanley Gilewicz - Laboratory Director

(07071 and 07069)

NY (ELAP11408 and 11939) CT (PH-0671)

PA (68-00463 and 68-04409) KY (90124) WV (353)

USACE

MA (NJ386)

TABLE OF CONTENTS

HC·V LABORATORY RESULTS	<u>PAGE NOS.</u>
Sample Key	1
Chains Of Custody	2
Condition Upon Receipt Forms	3
Internal Chain Of Custody Records	4
Laboratory Chronicles	5-6
Nonconformance Summary	7
Method References	8-9
Reporting Limit Definitions	10
Report of Analysis & Sample Form 1 Data Package	11-22
Metals Form 2 Calibration Summaries	23
Metals Form 3 Blank Summaries	24
Metals Form 4 ICP Interference Check Sample Summary	25
Metals Form 5/7 Spike / LCS Recovery Data	26
Metals Form 6/9 Duplicate / Serial Dilution Sample Data	27
Inorganic Spreadsheet / QC Summary	28

Veritech Sample Key

30-Sep-08

Lab#	SampleID	
AC39795-001	PE-1	
AC39795-002	PE-2	
AC39795-003	PE-3	
AC39795-004	PE-4	
AC39795-005	PE-5	
AC39795-006	PE-6	
AC39795-007	PE-7	
AC39795-008	PE-8	
AC39795-009	PE-9	
AC39795-010	PE-10	

1 14 15 15 15 15 15 15 15 15 15 15 15 15 15													Vide:	6.	21 -	ř,									the state of the s	4. · · · · · · · · · · · · · · · · · · ·
	7	e Cesson	il po	וא והו ראווי	OW IS:	sega Illic	OUT ANS	dure (Hqmo:	o ron oខ្នួរាជ	ns. an a tot b	nest (L:	REKI	MUN C	156 not	1914 101 A		•	-							
8.8		<u> </u>		:0)8				.,,	•		,		1034		ms2 (
Cooler Tmp																						ļ		·	·	
														•					-					1/-	<u> </u>	
															ل	, ,	þ	1:1	41	80/8	3/L		7	% , c	12	1200
						_*	1-	£/	1	Λ	1 8	52	-	45	Ω	H	5	017	<u> </u>	808	3 6	7	A	7	1 LONK	1/1/W/1/L
	SOS	AZA	H ,81	นอน	ierilu	_	leloe:													ata(+	Kg pe;	Accept		10) Refinanished By:
	TT		T	T	Ì	<u> </u>		Ť	$\overline{}$			Ť	<u> </u>	T	T		ī	TV	T	<u> </u>	_					X 1010- A
	+	╁┼╴	+	H		╣	+	\dashv				-	├	-	┼	13		吊	+	208		8086	04		01-3	1 600-
	+-	-	+	-	\vdash	4		_				 	<u> </u>	 	 	13	17	X	4		- 14	3086	04		0-30	1 800-
	$\bot \bot$		1	L		1						<u> </u>	_		<u> </u>	17	17	YI)	4	91h		086	P		8-31	1/2
						1		_								13	<u> </u> ``			201	71	808 b	೦		L-3	
						N		- 1								1	<u> </u>	c		059	, 1	८०४ ८	26		9-3	d 100-
			1			1									П	X	K	Ŋ	VT.	2192	I	१८८४	26		5-3	30 300-
			1			1										X	13	1		008	T	8086	05		1-3	30 100-
			十	Γ		T			一				T		1	力	1	T,	Ĭ	55	21	sasb	PG		ξ-:	31 500-
	11	\vdash	╁		П	T						 	T	†	1	廿			it	351	-+	8036			7-7	14 200-
	+		十	 			+	\dashv				一	1	╁╌	1	11	H	\dot{k}	îT	Oh?	_	8084			<u> </u>	100-
	요물	표	E	g	素	Z /	 	\forall	-	$\overline{}$		/ 	ا	/ 	/	/ 	大	7				otsO	MITEM		Ol sigmaß '	gambje#
Comments	Other	5	불	Encore	N O H	Zone) /		Grab(G)	[eiq	urs (9	(9	EO-0	AW-Waste Water	767979A
			(8 ₀ 8)() #		y /	/ /		/ /	/	/ ,	/ ,	/		R	/\$ ^y	/	۱			3	ertO-10	əf	SP-2pq	OW-Drinking Water	·
Bottle Numbers (If applicable)			10			/		/						/ /	/ /		,		[3	⊇ ├ ─		1M-A	:98	Matrix Code 8-Sol	Selection Me	Patch# 1
lonsriteM (e					" /	/ /	/ /	′ /	/ /	/		/	/						eqy)	L			•			ONTA NZE
វពទម្ពស់វិក	FK K COI	=Сре	==>	f	+	+	-/-	+	$-\!\!\!/$	$\overline{}$	_	-		/	/-/		_			Bultao	K C	Среск				8A.1 907
									jsər	sedr	A sis	SYIBU	A (L												<u> </u>
Hock with (ab)1	oscol9)	oldalla\	ays an	wia t	ON TA					_													- W	42144	12 7/20W	1d) Send Report To: -
- narthO					•	brsi	bnet2 nentO						(əlqi		\ A \) ¥				(p;		_			77407	TIBCE KIEN	1C) Send Invoice To:
Excel PAAcill	6	9f-¥ ™NC9H			(%	9K(52	1-Wei	<u> </u>	+2 < JUDO F JUS (ALD) (A					(City/s	nod	ן רסכים	(၁)	z	b) Email/Cell/FavPh: 996 787 1900 /85 787 2100					1D) EmailyCell/FaxPhr		
Excel-Nytagm	GANYI	LP ACMJA	Ð		(%0	g) und	oh-st VBCI 4	-		<u> च्</u>	43/	71K	<u>ל עו</u>	<u> 710</u>	W se							5 40	50	S U S	19-4100V	SearbbA
(Hazsita/Cay)		ata Sun O <u>se</u> to	M	L	(3.00 (3.00) 1)πυς 5)πυς	48-HC	上	Şə	זכנ	at.	טאנט	16-	1 5	عام	رهه	-:pe	- Jord	(e;	2					XV	13) Customer C. N
Electronic Deliv		hoqə					muT							il toei	ପ୍ୟ									Jemoini :		AEDACANA # 14022 C
(elɔniɔ esse					1013 Orbino		9911-6	£1-€/	6 : XU-	1			50	040 Ye	SIBL WE	N 'Pie	ihie	1 ,A0	in 50 1 E	Ս , <u>6 gոlb</u> թ.թ.թ. # Թ	iva. 9 8	BUNBYA bibi	Bloomi AREL	M #AM 17	(O yesiel wen ,bisihi An-Ha #T:) oanto	VITE US HWY 46 West, Fe
7 to 1 e8	명	Mno.					Z666-1	0-436	08 :44	ВD	00	, RE	rao	TSU	DE CI) NI	AΗ	o O			-					Veritech/Divisio

CONDITION UPON RECEIPT

Batch Number AC39795

Entered By: ricardo

Date Entered 9/8/2008 5:23:00 PM

		Date Entities and Entitle 1.
1	Yes	is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 3.3C
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	is there enough sample sent for the analyses listed on the COC? if no, specify:
11	NA	Are samples preserved correctly?
12	NA	Are all soils preserved in methanol accompanied by dry soil?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify Ilem number and corrective action taken).

Appendix E Clean Fill Certificates

FILLS SEEM FERNIS SERVICE SERVICE FILLENDER FILMFILMFILMFER FRANKLISCHEN FRANKLISCHEN

Land, Air & Water, LLC

P.O. Box 603 Markon, New Jersey 08053

Phone (856) 810-8048 Fax (856) 810-8128

October 2, 2008

McIntire Excavating, LLC 121 Waverly Avenue Mt. Laurel, NJ 08054

Re: Fill dirt

Marty:

Per your request, to the best of our knowledge, the fill dirt delivered to Camden, NJ on our trucks was clean, bank run fill.

We have complete soils report and Phase I Environmental Site Assessment report that the fill is clear and free of any contamination. It was excavated from 500 Cooper Landing Road, Cherry Hill, NJ (property owned by Cherry Hill township). If you need the complete report, a copy will be provided to you for \$75.00.

Any questions or concerns, please do not hesitate to contact me.

Sincerely,

John Marques

Jon S. Corzine Governor

Department of Environmental Protection

Lisa P. Jackson Commissioner

Bureau of Southern Field Operations Horizon Center P.O. Box 407 Trenton, NJ 08625-0407 Phone #: 609-584-4150 Fax #: 609-584-4170

December 3, 2008

Martin P. Manco C/O Camden Laboratories, L.P. P.O. Box 2614 West Chester, PA 19380

NOTICE OF DEFICIENCY

Preliminary Assessment / Site Investigation Report / Remedial Action Workplan Re:

dated August 2008 submitted by CMX

Re: Remedial Action Report dated October 2008 submitted by CMX

Camden Laboratories 1667 Davis St Camden, Camden County SRP PI# 016718 Activity Number Reference: BFO080001 Communication Center #: 08-07-01-1547-19

BFO File # 04-08-168

Dear Martin P. Manco:

The New Jersey Department of Environmental Protection (Department) acknowledges receipt on September 11, 2008 of the Preliminary Assessment / Site Investigation Report / Remedial Action Workplan submitted pursuant to the Memorandum of Agreement (MOA) effective on September 5, 2008 and the Technical Requirements for Site Remediation at N.J.A.C. 7:26E (Tech Rule).

Deficiencies

The Department has completed its review of your submittal and identified the following deficiencies:

Failure to document the effectiveness of the remedial action [N.J.A.C. 7:26E-6.4(a)].

✓ AOC # 1 – Above Ground Storage Tanks (AST's)

Further investigation is required to identify the source of the odor that was from the spill from a vandalized AST. Complete delineation, remediation and post-remediation samples will be required.

AOC # 2 A, B, C – Underground Storage Tanks (UST's)

Submit soil samples for the two 6,000 gallon heating oil UST's (AOC # 2 A and B) and one 2,000 gallon # 2 heating oil UST (AOC # 2 C) that was removed in August 1989.

AOC #3 – Storage Containers

Storage containers (e.g., drums) on-site must be removed and disposed off-site. Submit disposal receipts of all storage containers.

✓ AOC #4 – Floor Drains located at Building C

The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No further investigation is required.

AOC #5 - Septic Systems, Leachfields or Seepage Pits

If the septic system will not be used as part of future site redevelopment, then closure of the septic system in accordance with the Technical Requirements for Site Remediation will be required. No further investigation is required at this time.

AOC # 6 − Dry Well located at Building B

No further investigation is required at this time.

✓ AOC # 7 – Incinerator

No further investigation is required.

AOC #8 – Transformers

The transformers were in good condition and no staining or stressed vegetation was observed at the ground surface beneath any of these transformers. No further investigation is required.

AOC # 9 A – Staining located at Building A

The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No further investigation is required.

✓ AOC # 9 B – Staining located at Building D

The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No further investigation is required.

✓ AOC # 9 C – Staining located at Building F

The floors appeared to be in good condition and no apparent cracks or migration pathways were noted. No further investigation is required.

AOC # 10 – Compressor Blowdown

Stained soil in this area was not observed during site reconnaissance. No further investigation is required.

AOC # 11 – Hydraulic Lift System

No further investigation is required at this time.

✓ AOC # 12 – NJ Spills Database Listing NJDEP Case No. 97-02-21-1440-39

CMX advanced two soil borings in the vicinity of the generator located at the exterior of Building B. Soil sample results were below the SCC. No further investigation is required.

/ AOC # 13 – NJ Spills Database Listing NJDEP Case No. 98-11-20-1919-54

Liquid nitrogen was spilled in the building. The Camden County Department of Health (CCDH) provided a file completion memo dated 9/15/1999. Submit the document from the CCDH for review.

AOC # 14 – Regional Ground Water Contamination

The geologist will review ground water data conducted at RF Products / Fast Doors by the Bureau of Environmental Measurement and Site Assessment (BEMSA) to verify if there is an off-site contamination coming on to the Camden Laboratories site.

Site Map

Submit a site map that includes the following items:

- 1-All the area of concerns (AOCs)
- 2-Sample locations
- 3-Constructions details of Septic System, Dry Well, and Hydraulic Lift

Future Vapor Intrusion Investigation

For future site improvements a vapor intrusion investigation will be required pursuant to N.J.A.C. 4.4(h) 3.viii.

✓ AOC # 15 – Conductive Area

No further remediation is required.

AOC # 16 - Mercury Investigation

The Bureau of Air Monitoring (BAM) presented mercury (Hg) data that was measured during on-site air monitoring for the above site. The Bureau of Environmental Evaluation & Risk Assessment (BEERA) reviewed the mercury data. Technical Coordinator (TC) from BEERA could not identify any potential mercury sources on the KCSL or NJEMS sites and required that a mercury investigation be conducted to identify the mercury source.

The Department discussed on-site that soil should be investigated for mercury at one particular location identified by BAM. Soil core borings must be completed within the

vicinity of the particular location and boring logs must be created to characterize all soil type. Soil samples must be bias to the highest impacted area and be analyzed for mercury.

Corrective Actions

To correct these deficiencies please take the following actions or make the required submittals within the timeframes indicated:

Comply with the requirements within 240 days after receipt of this notice by submitting the items as described above.

Note that if deficiencies included herein are not addressed to the Department's satisfaction within the specified time period the Department may terminate the MOA pursuant to N.J.A.C. 7:26C-3.3(c)2-4. Subsequent to MOA termination the Department may initiate enforcement action pursuant to the Spill Compensation and Control Act. If you require copies of Department Guidance Documents or applications, many of these are available on the internet http://www.state.nj.us/dep/srp. If you have any questions regarding this matter contact Raymond Souweha Case Manager, at (609) 584-4176, or at Raymond Souweha@dep.state.nj.us, prior to the date indicated.

Sincerely,

William H. Dunfee, Section Chief Bureau of Southern Field Operations

cc:

BFO File Number: 04-08-168
Raymond Souweha, BSFO
William H. Dunfee, BSFO
Rudy Zsolway, BAM
Kevin Schick, BEERA
Dave Caulfield, BGWPA
Local, County, Regional Health Department(s)
Mayor/Clerk/Town Council, Camden
CMX

VIA EMAIL AND US MAIL

February 25, 2009

Raymond S. Souweha
Case Manager
New Jersey Department of Environmental Protection
Brownfields Remediation & Reuse Element)
Bureau of Southern Field Operation
Route 130 South
300 Horizon Center
Robbinsville, NJ 08691

RE: Supplemental Site Investigation Report Camden Laboratories Property 1667 Davis Street City of Camden Camden County, New Jersey Case Number 08-07-01-1547-19 Our Project Number 070235805

Dear Mr. Souweha:

As you are aware, CMX attended a November 19, 2008 site meeting with New Jersey Department of Environmental Protection (NJDEP) representatives to discuss the Department's findings related to mercury air readings for the Camden Laboratories property and to discuss the findings and recommendations of CMX's assessment, investigations and remediation completed at the site to date. NJDEP representatives in attendance included Case Manager Raymond Souweha, Section Chief William Dunfee, David Caulfield, Geologist, and Rudy Zsolway of the Air Program. The following paragraphs provide a summary of items discussed at the meeting.

In April 2004, the NJDEP measured elevated levels of mercury in air while installing the on-site weather station tower. Elevated levels of mercury were measured by the NJDEP's air monitoring equipment while excavating soils for the tower foundation. Based on our review of data provided at the site meeting, the highest measured reading was 1,800 nanograms per meter cubed (ng/m³) of vapor phase mercury. It is NJDEP's opinion that the mercury air readings identified in soil along the western perimeter of the NJDEP air monitoring station may be the result of a mercury surface spill; therefore, additional investigation of soils in this area was requested by NJDEP. For the purposes of this Site Investigation (SI), CMX designated the mercury surface spill as AOC-16.

In addition, evidence of a surface spill from a 275-gallon diesel fuel aboveground storage tank (AST) (AOC-1) and/or associated generator was identified at the south exterior of the building compound as a result of recent vandalism. Additional investigation of the surface spill was requested by Mr. Dunfee and Mr. Souweha during the site visit.

Lastly, the NJDEP expressed concern regarding potential on-site sources for the chlorinated solvent ground water contamination identified in the subject area during recent investigations conducted by the NJDEP.

WORKING TOGETHER FOR A BETTER TOMORROW

As discussed in our SI Report, the NJDEP confirmed that the adjacent RF Products property is a source of the regional ground water contamination. To further evaluate potential on-site sources of the regional ground water contamination, Mr. Caulfield requested site mapping that depicts the locations of the sanitary waste piping system and associated sumps and/or pits as well as any potential piping discharge locations.

Subsequent to the November 19, 2008 site meeting, CMX received a Notice of Deficiency from your office dated December 8, 2008. As expected, the correspondence outlined the items to be completed in accordance with the items discussed at the site meeting. In addition to the above outlined items, NJDEP also required that post-remediation soil samples be collected from each of the three (3) former underground storage tank (UST) excavation areas (AOC-2A, AOC-2B and AOC-2C) and submitted for appropriate laboratory analysis, the removal and disposal of the storage containers (i.e. drums) staged on site (AOC-3), closure of the on-site septic system (AOC-5), submittal of documentation regarding the liquid nitrogen spill in the building compound (AOC-13), inclusion of construction details for the on-site septic system, drywell and hydraulic lift, and recommendations for a future vapor intrusion investigation at the site. The following paragraphs provide a summary of the additional scope of work completed in accordance with NJDEP's recommendations and requested items.

December 11, 2008 Site Reconnaissance and Site Plan Preparation

According to the December 8, 2008 correspondence, the NJDEP requested construction details for the onsite septic system, drywell and hydraulic lift in order to eliminate these features as potential sources of ground water contamination. In support of preparation of the Preliminary Assessment (PA), CMX previously submitted a records request to the City of Camden Municipals Clerk's Office in order to obtain available building/engineering records pertaining to the site. The City of Camden Municipal Clerk's Office responded via correspondence dated December 13, 2007 indicating that the Building and Engineering Departments had not responded to CMX's information request at the time the letter was issued by the Municipal Clerk. CMX contacted the Clerk's Office via phone on December 13, 2007 to inquire on the status of CMX's records request and was informed that if any records are found, they would be forwarded as appropriate. To date, CMX has not received any additional information from the City of Camden Building and/or Engineering Departments relative to the site. Based on these findings, CMX has determined that site plans pertaining to the building compound, including construction details for the on-site septic system, drywell and hydraulic lift are not available at the City of Camden Building and/or Engineering Departments.

In addition, CMX previously performed a geophysical survey of the site on April 8, 2008 in order to determine the locations and associated subsurface components of the on-site septic system (AOC-5), drywell (AOC-6) and hydraulic lift (AOC-11). Based on the geophysical survey findings, an approximate 10,000-gallon subsurface septic tank and associated discharge pipe were identified at the septic system location east of Building F. In addition, piping associated with a large sump, floor drain and sanitary sewer line were identified within Building B boiler room; however, piping associated with the floor drain could not be traced due to the thickness of the building's concrete floor and the discharge location of the sump and floor drain system was not identified. Furthermore, a round anomaly was identified approximately twenty (20) feet southeast of the hydraulic lift system. The anomaly was located within a small depression in the asphalt and appeared to be connected to the lift system by subsurface piping. Geophysical survey anomalies identified are presented on the attached site plan (Figure 1). Subsequent to the geophysical survey, CMX conducted a soil boring investigation in order to investigate the on-site septic system (AOC-5) and hydraulic lift (AOC-11). Based on the findings for the geophysical survey and soil boring investigation, no further investigation of the septic system (AOC-5), drywell (AOC-6) or hydraulic lift system (AOC-11) was recommended. The NJDEP concurred with these investigation findings in the December 3, 2008 letter of correspondence.

During CMX's December 3, 2007 PA site reconnaissance, CMX identified floor drains/pits within Building A, Building B, Building C and Building F. Auxiliary piping was also identified within Building A boiler room, Building B boiler room, Building C and the mechanical room of Building F. In addition, CMX identified a central pit located in the mechanical room of Building F. Based on the information provided by Martin Manco, Jr., a representative Camden Laboratories, LP, the Building B boiler blowdown is directed to a floor drain system which discharges to a dry well. All other site sanitary, process, Heating Ventilation Air Conditioning and boiler waste streams identified discharge to a central pit located in Building F and then to the Camden County Municipal Utilities Authority sewer. All observed portions of the floor drains and auxiliary piping identified were constructed of cast iron. Based on the age of the building, CMX assumes that all of the inaccessible piping within the building compound is also constructed of cast iron.

Based on these findings, CMX requested copies of any as-built drawings or construction plans which provide the construction details for the on-site septic system, drywell and hydraulic lift from Camden Laboratories, LP. Mr. Manco, Jr. indicated that any plans which provide this type of information were maintained at the site; however, Mr. Manco, Jr. indicated that the plans were either removed or damaged during acts of vandalism and were not available. Since construction details for the on-site septic system, drywell and hydraulic lift are not available, CMX conducted a site reconnaissance on December 11, 2008 in order to confirm the locations of the sanitary waste piping system and associated sumps and/or pits as well as any potential piping discharge locations for the Camden Laboratories building compound. Information regarding the locations of these features was obtained from previous SI activities and information provided by Martin Manco, Sr., a knowledgeable representative of Camden Laboratories, LP, during the site reconnaissance.

During the December 11, 2008 site reconnaissance, CMX identified a series of floor drains and drain cleanout ports within Building A and Building B which were not previously visible at the time of the PA site inspection. These features were also constructed of cast iron, consistent with the findings of CMX's December 7, 2007 PA site reconnaissance. Based on the location and orientation of the floor drains and drain cleanout ports, CMX determined that these floor drains and drain cleanout ports are connected to the piping identified at the south exterior of Building B following completion of the geophysical survey on April 8, 2008. This piping terminates at a round anomaly within the asphalt paved area, also identified after completion of the geophysical survey. Based on these findings, CMX has determined that the round anomaly is the Building B drywell referenced in our PA Report (AOC-6). Previously, CMX assumed that the round anomaly was associated with the nearby hydraulic lift system (AOC-11) based on the location and orientation of the features identified. All other boiler blowdown areas, sumps and/or pits identified within the building compound during the December 11, 2008 site reconnaissance were determined to be connected to the sanitary waste piping system that services the site and discharge to the Camden County Municipal Utilities Authority sanitary sewer.

In accordance with the NJDEP's request, CMX has prepared a site plan which depicts the locations of sanitary system features based on the comprehensive results of the geophysical survey and site recompassance activities completed to date. The locations of sanitary system features are presented on Figure 1.

December 12, 2008 Soil Boring Investigation

CMX and its subcontractor, Enviroprobe Service, Inc. (Enviroprobe) of Westmont, New-Jersey, conducted a soil boring investigation at the site on December 12, 2008. The soil boring investigation was performed in an effort to investigate the potential for impact resulting from a surface spill of diesel fuel from a 275-gallon AST (AOC-1) and/or associated generator, to characterize soils following closure and removal of the former 6,000-gallon UST (AOC-2A), 6,000-gallon UST (AOC-2B) and 2,000-gallon UST (AOC-2C) and to

characterize soils in the vicinity of the elevated mercury vapor measurements (AOC-16). A tabulated summary of analytical methods and quality assurance indicators is provided in Table 1. All soil boring/sample locations were recorded using Trimble Global Positioning System (GPS) survey equipment and are presented on Figure 1.

275-gallon AST (AOC-1)

CMX advanced three (3) soil borings (S-1 through S-3) to investigate the diesel fuel surface spill area. Since the spill was limited to the asphalt surface, the soil borings were advanced to a maximum of four feet (4') below ground surface (bgs) utilizing direct push equipment. Soil borings were field screened with a calibrated photo-ionization detector (PID) and logged. Soil boring logs are included in Appendix A.

One (1) sample was collected from each boring at the six-inch (6") interval of greatest observed contamination based on PID readings. During the soil boring investigation, a strong petroleum odor was observed within the immediate vicinity if the diesel-fuel surface spill. As a result, an ambient PID reading of 4.0 parts per million (ppm) was encountered during the soil boring investigation. PID readings ranging between 4.0 ppm and 5.1 ppm were encountered in the soil borings advanced. Since the diesel fuel spill was limited to the asphalt surface, subsurface soil samples (S-1 through S-3) were collected from the soil borings S-1 through S-3 respectively at the six-inch (6") interval 0.5-1.0' bgs beneath the asphalt surface. Soil samples were forwarded to Hampton Clark-Veritech Laboratories (HC-V) for total petroleum hydrocarbon – diesel range organics (TPH-DRO) analysis. In accordance with Table 2-1 of the Technical Requirements for Site Remediation (N.J.A.C. 7:26E), volatile organic compound with a forward library search analysis (VO+10) was performed for 25% of the samples reporting a TPH concentration greater than 1,000 mg/kg.

TPH-DRO was reported at a concentration below the contingency threshold for VO+10 analysis for soil sample S-1, therefore, VO+10 was not performed for this sample. TPH-DRO was reported at a concentration exceeding the contingency threshold for VO+10 analysis for soil samples S-2 (4,000 mg/kg) and S-3 (1,500 mg/kg); therefore VO+10 analysis was performed for sample S-2 which reported the highest TPH-DRO concentration. All VO+10 compounds were reported as non-detect or at concentrations below their respective most stringent NJDEP Soil Remediation Standards (SRS) for soil sample S-2. It should be noted that all reported VO+10 compounds were also identified at concentrations below their NJDEP Default Impact to Ground Water Soil Screening Level (IGWSSL). A tabulated summary of analytical results is provided in Table 2. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 2.

Former 6,000-gallon UST (AOC-2A)

According to the report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., one (1) 6,000-gallon No.2 heating oil UST (Tank-2) was closed and removed at the southwest exterior of Building C in 1989. Five (5) post-excavation soil samples were collected from the excavation and were laboratory analyzed for total petroleum hydrocarbons (TPH). TPH was reported as non-detect or at concentrations below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the current 1,000 mg/kg threshold for contingency VO+10 analysis for soil samples collected.

In order to confirm the post-UST closure soil sampling findings, CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-2. Soil borings were advanced to a maximum of twelve feet (12') bgs utilizing direct push equipment. Soil borings were field screened with a calibrated PID and logged. Soil boring logs are included in Appendix A.

CMX collected soil samples which mimic the frequency required at the time of UST closure described in N.J.A.C. 7:26E [i.e. one (1) sample for every five (5) linear feet of the UST]. Based on this frequency and typical lengths for 6,000-gallon USTs (i.e. 15 to 20 feet), CMX collected four (4) soil samples (Tank2-1 through Tank2-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column. With the exception of soil sample Tank2-2, which was collected at the six-inch (6") interval 9.5-10.0' bgs due to refusal encountered, all of the soil samples were collected at the six-inch (6") interval 11.5-12.0' bgs. Since the UST was utilized for the storage of No. 2 heating oil, soil samples were forwarded to HC-V for TPH-DRO analysis pursuant to Table 2-1 of N.J.A.C. 7:26E. Contingency V0+10 analysis was to be performed for twenty-five (25) percent of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was reported as non-detect for soil samples Tank2-1 through Tank2-4; therefore contingency V0+10 analysis was not performed. A tabulated summary of analytical results is provided in Table 3. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 3.

Former 6,000-gallon UST (AOC-2B)

According to the report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., one (1) 6,000-gallon No.2 heating oil UST (Tank-1) was closed and removed at the north exterior of Building B in 1989. Five (5) post-excavation soil samples were collected from the excavation and were laboratory analyzed for TPH. TPH was reported as non-detect for soil samples collected:

In order to confirm the post-UST closure soil sampling findings, CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-1. Soil borings were advanced to a maximum of twelve feet (12') bgs utilizing direct push equipment. Soil borings were field screened with a calibrated PID and logged. Soil boring logs are included in Appendix A.

CMX collected soil samples which mimic the frequency required at the time of UST closure described in N.J.A.C. 7:26E [i.e. one (1) sample for every five (5) linear feet of the UST]. Based on this frequency and typical lengths for 6,000-gallon USTs (i.e. 15 to 20 feet), CMX collected four (4) soil samples (Tank1-1 through Tank1-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column; therefore the soil samples were collected at the six-inch (6") interval 11.5-12.0' bgs. Since the UST was utilized for the storage of No. 2 heating oil, soil samples were forwarded to HC-V for TPH-DRO analysis pursuant to Table 2-1 of N.J.A.C. 7:26E. Contingency V0+10 analysis was to be performed for twenty-five (25) percent of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was reported as non-detect for soil samples Tank1-1 through Tank1-4; therefore contingency V0+10 analysis was not performed. A tabulated summary of analytical results is provided in Table 4. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 4.

Former 2,000-gallon UST (AOC-2C)

According to the report titled "Removal of Three Underground Storage Tanks" prepared by Edward Kurth and Sons, Inc., one (1) 2,000-gallon No.2 heating oil UST (Tank-3) was closed and removed at the north exterior of Building A in 1989. Five (5) post-excavation soil samples were collected from the excavation and were laboratory analyzed for TPH. TPH was reported as non-detect for soil samples collected.

In order to confirm the post-UST closure soil sampling findings, CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-3. Soil borings were advanced to a maximum of twelve feet

(12') bgs utilizing direct push equipment. Soil borings were field screened with a calibrated PID and logged. Soil boring logs are included in Appendix A.

CMX collected soil samples which mimic the frequency required at the time of UST closure described in N.J.A.C. 7:26E [i.e. one (1) sample for every five (5) linear feet of the UST]. Based on this frequency and typical lengths for 2,000-gallon USTs (i.e. 15 to 20 feet), CMX collected four (4) soil samples (Tank3-1 through Tank3-4) from soil borings advanced along the centerline of the former UST. No evidence of impact (i.e. staining, odors or elevated PID readings) was identified in the soil column; therefore the soil samples were collected at the six-inch (6") interval 11.5-12.0' bgs. Since the UST was utilized for the storage of No. 2 heating oil, soil samples were forwarded to HC-V for TPH-DRO analysis pursuant to Table 2-1 of N.J.A.C. 7:26E. Contingency V0+10 analysis was performed for twenty-five (25) percent of those samples with a TPH-DRO concentration of 1,000 mg/kg or above. TPH-DRO was reported as non-detect for soil samples Tank3-1 through Tank3-4; therefore contingency V0+10 analysis was not performed. A tabulated summary of analytical results is provided in Table 5. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 3.

Potential Mercury Surface Spill (AOC-16)

CMX advanced four (4) soil borings (M-1 through M-4) to characterize soils in the potential mercury surface spill area. Since the initial mercury vapor readings recorded by NJDEP with a Lumex mercury analyzer were limited to shallow surface soils, the soil borings were advanced to a maximum of four feet (4') bgs utilizing direct push equipment. Since the mercury vapor readings were limited to the vicinity of the weather station tower, the initial soil boring (M-1) was advanced in this area. The remaining soil borings (M-2 thought M-4) were advanced approximately eight feet (8') to the south, west and north of initial soil boring M-1 respectively. Soil borings were field screened with a calibrated Lumex mercury analyzer for the presence of mercury and logged. Soil boring logs are included in Appendix A.

One (1) sample was collected from each boring at the six-inch (6") interval of greatest observed contamination based on Lumex mercury analyzer readings. Prior to commencement of the soil boring investigation, mercury vapor readings were collected outside of the area where previous vapor readings were encountered for the purpose of establishing a background ambient value. Background vapor mercury values ranging between 500 ng/m³ and 750 ng/m³ were identified. During the soil boring investigation, an elevated mercury vapor reading of 861 ng/m³ was encountered at a depth of eighteen inches (18") bgs at soil boring M-1. In addition, dark purple staining was encountered at a depth interval of eight to twenty-eight inches (8-28") bgs; therefore, CMX collected subsurface soil sample M-1 from the six-inch (6") interval eighteen to twenty-four inches (18-24") bgs where elevated mercury vapor readings and staining were encountered. An additional soil sample (M-1A) was collected from the initial soil boring at the six-inch (6") interval 3.5-4.0' bgs where background mercury vapor readings were measured. No indications of staining or elevated mercury vapor readings were encountered at soil borings M-2 through M-4; therefore, CMX collected one (1) subsurface soil sample from each of the borings at a depth of eighteen to twenty-four inches (18-24") bgs corresponding to the depth of the elevated mercury yapor reading dark purple staining identified at initial soil boring M-1. The initial soil sample (M-1) was forwarded to HC-V for mercury analysis. In the event that mercury was reported at a concentration exceeding the NJDEP SRS for sample M-1, contingency mercury analysis would be performed for soil samples M-1A, M-2, M-3 and M-4.

Mercury was reported at a concentration exceeding the NJDEP Residential Direct Contact (RDC) SRS of 23 mg/kg and Non-Residential Direct Contact (NRDC) SRS of 65 mg/kg for soil sample M-1 (3,700 mg/kg). The reported concentration also exceeds the IGWSSL of 0.1 mg/kg. Since mercury was identified at a concentration exceeding NJDEP SRS, contingency mercury analyses was performed for the remaining soil

samples. Mercury was reported at a concentration exceeding the RDCSRS of 23 mg/kg-and NRDCSRS of 65 mg/kg for subsurface soil sample M-1A (2,100mg/kg). Mercury was reported as non-detect for sample M-3 and at concentrations below the most stringent NJDEP direct contact SRS for soil samples M-2 (0.5 mg/kg) and M-4 (0.13 mg/kg). The reported mercury concentrations for samples M-1A, M-2 and M-4 also exceed the IGWSSL of 0.1 mg/kg. A tabulated summary of analytical results is provided in Table 6. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 5.

January 23, 2008 Site Reconnaissance

On January 23, 2008, CMX conducted a site reconnaissance within the Camden Laboratories building compound in order to locate the storage containers which were to be collected and disposed per NJDEP's comments (AOC-3). During the reconnaissance, CMX located eight (8) five-gallon paint buckets, fifty (50) one-gallon paint cans, fourteen (14) ten-gallon muriatic acid containers and two (2) one-gallon paint thinner containers within the freezer room of Building B. All containers were empty at the time of the inspection. CMX notes that the four (4) empty 55-gallon muriatic acid drums and five (5) empty 55-gallon caustic soda drums previously observed in this location were not present at the time of the January 23, 2008 site reconnaissance. Based on our discussion with Mr. Manco, Jr., it appears that recent vandalism of the building has resulted in the destruction and removal of much of the building's contents, including the 55-gallon drums. We understand that the remaining empty containers will be removed and disposed in accordance with applicable waste regulation.

January 23, 2009 Soil Boring Investigation

CMX and its subcontractor, Enviroprobe, conducted a soil boring investigation at the site on January 23, 2009. The soil boring investigation was performed in an effort to investigate the potential for impact resulting from the drywell (AOC-6), and to further characterize soils in the vicinity of the elevated mercury vapor measurements (AOC-16).

Building B Drywell (AOC-6)

Based on information obtained during the December 11, 2008 site reconnaissance, CMX determined the location of the drywell that formerly serviced Building B. Previously, the drywell was believed to be associated with the former hydraulic system (AOC-11), and was investigated as part of the former hydraulic lift system (AOC-11) investigation. During the previous investigation activities, CMX advanced one (1) soil boring adjacent to the drywell. One (1) soil sample was collected from the boring and analyzed for TPH-QAM. TPH-QAM was reported at a concentration below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the 100 mg/kg threshold for contingency polynuclear aromatic hydrocarbons (PAH) analysis for hydraulic oil spills. In addition, CMX installed a temporary well point at this location and collected a grab ground water sample for volatile organic compound with a forward library search (VO+10) and base neutral compound with a forward library search (BN+15) analyses. All VO+10 and BN+15 compound were reported as non-detect or at concentrations below their respective New Jersey Ground Water Quality Standard (NJGWQS).

Based on the December 11, 2008 site reconnaissance findings and the protocols prescribed in the Technical Requirements for Site Remediation (N.J.A.C. 7:26E), CMX advanced a duplicate boring (SB-5 DUP) and collected one (1) additional soil sample (SB-5 DUP) to investigate this AOC. The soil boring was advanced to a maximum of sixteen feet (16') bgs utilizing direct push equipment. The soil boring was field screened with a calibrated PID and logged. The soil boring log is included in Appendix A. No staining or odors were observed in the soil boring column; however slightly elevated PID readings were encountered at

depths between seven feet (7') and fifteen feet (15') bgs. PID readings ranged from 0.0 ppm to 4.4 ppm. One (1) sample was collected from the boring at the six-inch (6") interval of greatest observed contamination based on PID readings. CMX collected soil sample SB-5DUP from the soil boring at a depth of 10.0-10.5' below grade. The soil sample was forwarded to HC-V for priority pollutant plus forward library search (PP+40) analysis. All PP+40 compounds were reported as non-detect or at concentrations below their respective most stringent direct contact SRS for soil sample SB-5DUP. All reported compounds were also identified at concentrations below their IGWSSL. A tabulated summary of analytical results is provided in Table 7. Laboratory analytical results and electronic data deliverables are included in Appendix B. Soil boring/sample locations are presented on Figure 6.

Potential Mercury Surface Spill (AOC-16)

CMX advanced four (4) additional soil borings (M-1DUP, M-2DUP, M-4DUP and M-5) to further characterize soils in the mercury surface spill area (AOC-16): Duplicate soil borings M-1DUP, M-2DUP and M-4DUP were advanced at previous soil boring locations M-1, M-2 and M-4 respectively. During the soil boring investigation, CMX noted that the NJDEP air monitoring station had been removed. Therefore, CMX advanced soil boring M-5 approximately eight feet (8') to the east of initial soil boring location M-1. Soil borings M-1DUP, M-2DUP, M-4DUP and M-5 were advanced to a maximum depth of twenty-one feet (21') bgs. Soil borings were field screened with a calibrated Lumex mercury analyzer for the presence of mercury and logged. Soil boring logs are included in Appendix A. All soil boring/sample locations are presented on Figures 1 and 5. The following paragraphs present a summary of soil boring investigation findings for each soil boring advanced at this AOC.

Soil Boring M-1DUP

Since mercury was identified at a concentration exceeding the RDCSRS of 23 mg/kg for initial soil sample M-1 collected at a depth of 1.5-2.0' bgs and M-1A collected at a depth of 3.5-4.0' bgs, CMX advanced duplicate soil boring M-1-DUP at this location. Soil boring M-1DUP was advanced to a depth of twenty-one feet (21') bgs. Ground water was encountered in soil boring M-1DUP at a depth of 19.0' bgs. Mercury vapor readings in the M-1DUP soil column ranged from 9,971 ng/m³ to >50,000 ng/m³. Based on the vapor readings, CMX collected three (3) soil samples from this soil boring in an effort to vertically delineate the mercury contamination identified. Soil-sample (M-1B) was collected at a depth of 15.5'-16.0' bgs. A second sample (M-1C) was collected at a depth of 18.0-18.5' bgs. A third sample (M-1D) was collected at a depth of 20.0-20.5' bgs. Soil samples were forwarded to HCV for mercury analysis. Mercury was reported as non-detect for sample M1-C and at concentrations below the RDCSRS of 23 mg/kg for samples M-1B (0.95 mg/kg) and M-1D (11 mg/kg). It should be noted that the reported mercury concentrations for samples M-1B and M-1D also exceed the IGWSSL of 0.1 mg/kg.

Soil Boring M-2DUP

Since mercury was identified at a concentration exceeding the RDCSRS in soil boring M-1 at depths of 1.5-2.0' bgs and 3.5-4.0' bgs, CMX advanced duplicate soil boring M-2DUP at the location of initial soil boring M-2 in an effort to horizontally delineate the mercury contamination identified. Soil boring M-2 was advanced to a depth of twenty feet (20') bgs. Ground water was encountered in soil boring M-2DUP at a depth of 18.5' bgs. Mercury vapor readings in the M-2DUP soil column ranged from 895 ng/m³ to 43,350 ng/m³. Based on the vapor readings, CMX collected two (2) soil samples from this soil boring. Soil sample (M-2A) was collected at a depth of 11.5-12.0' bgs. A second sample (M-2B) was collected at a depth of 19.5-20.0' bgs. Soil samples were forwarded to HCV for mercury analysis. Mercury was reported at a concentration exceeding the RDCSRS of 23 mg/kg and NRDCSRS of 65 mg/kg for soil sample M-2B (82 mg/kg). Mercury was reported at a concentration below the RDCSRS of 23 mg/kg for soil sample M-

2A (0.84 mg/kg). It should be noted that the reported mercury concentrations for M-2A and M-2B exceed the IGWSSL of 0.1 mg/kg.

Soil Boring M-4DUP

Since mercury was identified at a concentration exceeding the RDCSRS in soil boring M-1 at depths of 1.5-2.0' bgs and 3.5-4.0' bgs, CMX advanced duplicate soil boring M-4DUP at the location of initial soil boring M-4 in an effort to horizontally delineate the mercury contamination identified. Soil boring M-4 was advanced to a depth of nineteen feet (19') bgs. Ground water was encountered in soil boring M-4DUP at a depth of 18.5' bgs. Mercury vapor readings in the M-4DUP soil column ranged from 802 ng/m³ to >50,000 ng/m³. Based on the vapor readings, CMX collected two (2) soil samples from this soil boring. Soil sample (M-4A) was collected at a depth of 15.5-16.0' bgs. A second sample (M-4B) was collected at a depth of 18.5-19.0' bgs. Soil samples M-4A and M-4B were forwarded to HCV for mercury analysis. Mercury was reported as non-detect for soil sample M-4B and at a concentration below the RDCSRS of 23 mg/kg for soil samples M-4A (1.1 mg.kg). It should be noted that the reported mercury concentration for M-4A exceeds the IGWSSL of 0.1 mg/kg

Soil Boring M-5

CMX advanced soil boring M-5 approximately eight feet (8') to the east of initial soil boring M-1, which was now accessible due to the recent removal of the former NJDEP air monitoring station. The soil boring was advanced in an effort to horizontally delineate the mercury contamination identified a depths of 1.5-2.0' bgs and 3.5-4.0' bgs in initial soil boring M-1. Soil boring M-5 was advanced to a depth of twenty feet (20') bgs. Ground water was encountered in soil boring M-5 at a depth of 18.5' bgs. Mercury vapor readings ranged from 200 ng/m³ to >50,000 ng/m³. Based on the vapor readings, CMX collected two (2) soil samples from this soil boring. Soil sample (M-5A) was collected at a depth of 6.0-6.5' bgs. A second sample (M-5B) was collected at a depth of 19.5-20.0' bgs. Soil samples were forwarded to HC-V for mercury analysis. Mercury was reported at a concentration exceeding the RDCSRS of 23 mg/kg for soil sample M-5A (34 mg/kg). Mercury was reported as non-detect for soil sample M-5B. It should be noted that the reported mercury concentration for M-5 exceeds the IGWSSL of 0.1 mg/kg.

Soil boring, sampling locations and cross sections which provide a summary of soil sample depths, Lumex mercury vapor analyzer measurements and mercury analytical results are presented on Figure 5. A tabulated summary of mercury analytical results is provided in Table 8. Laboratory analytical results and electronic data deliverables are included in Appendix B.

January 29, 2009 Soil Boring Investigation

Based on the findings of the January 23, 2009 soil boring investigation, CMX and Enviroprobe advanced eight (8) soil borings (M-2, M-3, M-6, M-7, M-8, M-9, M-10 and M-11) to further characterize and delineate mercury contaminated soils in the mercury surface spill area (AOC-16) on January 29, 2009. Soil borings M-2, M-3, M-6, M-7, M-8 and M-9 were advanced to a maximum depth of twenty-five feet (25') bgs. Due to refusal encountered, soil boring M-11 was advanced to a maximum depth of twenty feet (20') bgs. CMX previously utilized a Lumex mercury analyzer to screen soil borings advanced within the mercury surface spill area. During the previous soil boring investigation, CMX noted erratic readings from the instrument, likely resulting from cold ambient temperatures and damp weather. As a result, soil borings advanced during the January 29, 2008 soil boring investigation were field screened with a calibrated Lumex mercury analyzer and a calibrated Jerome mercury analyzer for the presence of mercury. CMX noted erratic readings from the Lumex during the soil boring investigation; therefore, mercury vapor readings obtained utilizing the Jerome field screening device were logged. Soil boring logs are included in Appendix A. All soil

boring/sample locations are presented on Figures 1 and 5. The following paragraphs present a summary of soil boring investigation findings for each soil boring advanced at this AOC.

Soil Boring M-2

Since mercury was identified at a concentration exceeding the RDCSRS in soil boring M-2 at a depth of 19.5-20.0' bgs, CMX advanced a duplicate soil boring at the location of initial soil boring M-2 in an effort to vertically delineate the mercury contamination identified. Soil boring M-2 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-2 at a depth of 18.5' bgs. Mercury vapor readings ranged from 0.0 ng/m³ to 14.5 ng/m³. CMX collected a duplicate sample (M-2B-DUP) from the six-inch interval corresponding with initial soil sample M-2B (i.e. 19.5-20.0'bgs) to verify the initial analytical results. CMX collected three (3) additional soil samples from the soil boring based on mercury vapor measurements as follows: soil sample M-2C was collected at a depth of 14.0-14.5' bgs; soil sample M-2D was collected at a depth of 18.0-18.5' bgs; and, soil sample M-2E was collected at a depth of 22.5-23.0' bgs. The soil samples were forwarded to HC-V for mercury analysis. Mercury was reported at a concentration exceeding the RDCSRS of 23 mg/kg for soil sample M-2D (81 mg/kg). Mercury was reported as non-detect for sample M-2E and at concentrations below the RDCSRS of 23 mg/kg for samples M-2BDUP (11 mg/kg) and M-2C (2.4 mg/kg). It should be noted that the reported mercury concentrations for M-2A, M-2C, M-2D and M-2BDUP exceed the IGWSSL of 0.1 mg/kg.

Soil Boring M-3

Since mercury was identified at a concentration exceeding the NJDEP Residential Direct Contact SRS in soil boring M-1 at depths of 1.5-2.0' bgs and 3.5-4.0' bgs, CMX advanced a duplicate soil boring at the location of initial soil boring M-3 in an effort to horizontally delineate the mercury contamination identified. Soil boring M-3 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-3 at a depth of 18.5' bgs. Mercury vapor readings ranged from 0.0 ng/m³ to 2.6 ng/m³. Based on the vapor readings, CMX collected six (6) soil samples from this soil boring based on mercury vapor measurements as follows: soil sample (M-3A) was collected at a depth of 6.5-7.0' bgs; soil sample M-3B was collected at a depth of 14.0-14.5' bgs; soil sample M-3C was collected at a depth of 18.0-18.5' bgs; soil sample M-3D was collected at a depth of 19.5-20.0' bgs; soil sample M-3E was collected at a depth of 22.5-23.0' bgs; and soil sample (M-3F) was collected at a depth of 24.5-25.0' bgs.

Initial soil samples M-3B and M-3D were forwarded to HC-V for mercury analysis. In the event that mercury was reported at a concentration exceeding the RDCSRS for samples M-3B or M-3D, contingency mercury analysis would be performed for soil samples M-3A, M-3C, M-3E and M-3F, as appropriate. Mercury was reported as non-detect for sample M-3D and at a concentration below the RDCSRS of 23 mg/kg for soil sample M-3B (1.6 mg/kg). Based on these results, no contingency mercury analyses were performed. It should be noted that the reported mercury concentration for M-3D exceeds the IGWSSL of 0.1 mg/kg.

Soil Boring M-6

Since mercury was identified at a concentration exceeding the RDCSRS in soil boring M-2 at a depth of 18.0-18.5' bgs and 19.5-20.0' bgs, CMX advanced soil boring M-6 approximately eight feet (8') south of soil boring M-2 in an effort to horizontally delineate the mercury contamination identified. Soil boring M-6 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-6 at a depth of 18.5' bgs. Mercury vapor readings ranged from 0.0 ng/m³ to 36.5 ng/m³. CMX collected five (5) soil samples from this soil boring based on mercury vapor measurements as follows: soil sample M-6A was collected at a depth of 14.0-14.5' bgs; soil sample M-6B was collected at a depth of 18.0-18.5' bgs; soil sample M-6C was collected at a depth of

22.5-23.0' bgs; and, soil sample M-6E was collected at a depth of 24.5-25.0' bgs. Based on the analytical results for soil samples collected from soil boring M-2, soil samples M-6A, M-6B and M-6D were forwarded to HC-V for mercury analysis. In the event that mercury was reported at a concentration exceeding the RDCSRS for samples M-6A, M-6B or M-6D, contingency mercury analysis would be performed for soil samples M-6C and M-6E. Mercury was reported at a concentration exceeding the RDCSRS of 23 mg/kg for soil sample M-6B (36 mg/kg). Mercury was reported at concentrations below the RDCSRS of 23 mg/kg for soil samples M-6A (0.13 mg/kg) and M-6D (16 mg/kg). Based on these results, no contingency mercury analyses were performed. It should be noted that the reported mercury concentrations for M-6A, M-6B and M-6D exceed the IGWSSL of 0.1 mg/kg.

Soil Boring M-7

CMX advanced contingency soil boring M-7 approximately thirteen feet (13') south of soil boring M-6 for the purposes of horizontal delineation of mercury contamination, had it been identified at soil boring M-6. Soil boring M-7 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-7 at a depth of 18.5' bgs. Mercury vapor readings ranged from 0.0 ng/m³ to 10.6 ng/m³. CMX collected five (5) soil samples from soil boring M-7 based on mercury vapor measurements as follows: soil sample M-7A was collected at a depth of 14.0-14.5' bgs; soil sample M-7B was collected at a depth of 18.0-18.5' bgs; soil sample M-7C was collected at a depth of 19.5-20.0' bgs; soil sample M-7D was collected at a depth of 22.5-23.0' bgs; and, soil sample M-7E was collected at a depth of 24.5-25.0' bgs. Based on the analytical results for soil samples collected from soil boring M-6, mercury analyses was performed for soil samples M-7B and M-7C by HC-V. In the event that mercury was reported at a concentration exceeding the RDCSRS for samples M-7B or M-7C, contingency mercury analysis would be performed for soil samples M-7A, M-7D or M-7E. Mercury was reported at concentrations below the RDCSRS of 23 mg/kg for soil samples M-7B (8.5 mg/kg) and M-7C (19 mg/kg). Based on these results, no contingency mercury analyses were performed. It should be noted that the reported mercury concentrations for M-7B and M-7C exceed the IGWSSL of 0.1 mg/kg.

Soil Boring M-8

CMX advanced contingency soil boring M-8 twenty-three feet (23') south of soil boring M-7 for the purposes of horizontal delineation of mercury contamination, had it been identified at soil boring M-7. Soil boring M-8 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-7 at a depth of 18.5' bgs. Mercury vapor readings, where measured, ranged from 0.0 ng/m³ to 2.7 ng/m³. CMX collected five (5) soil samples from this soil boring based on mercury vapor measurements as follows: soil sample M-8A was collected at a depth of 14.0-14.5' bgs; soil sample M-8B was collected at a depth of 18.0-18.5' bgs; soil sample M-8C was collected at a depth of 19.5-20.0' bgs; soil sample M-8D was collected at a depth of 22.5-23.0' bgs; and, soil sample M-8E was collected at a depth of 24.5-25.0' bgs. Based on the analytical results for soil samples collected from soil boring M-7, no mercury analyses were performed for soil samples collected from soil boring M-8.

Soil Boring M-9

CMX advanced contingency soil boring M-9 approximately eight feet (8') east of soil boring M-5 for the purposes of horizontal delineation of mercury contamination, had it been identified at soil boring M-5. Soil boring M-9 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-9 at a depth of 19.0' bgs. Mercury vapor readings ranged from 0.0 ng/m³ to 1.5 ng/m³. CMX collected four (4) soil samples from soil boring M-9 based on mercury vapor measurements as follows: soil sample M-9A was collected at a depth of 5.0-5.5' bgs; soil sample M-9B was collected at a depth of 14.0-14.5' bgs; soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and, soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and soil sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was collected at a depth of 18.5-19.0' bgs; and sample M-9C was

9D was collected at a depth of 24.5-25.0'. Based on the analytical results for soil samples collected from soil boring M-5, mercury analyses was performed for soil samples M-9A and M-9B by HC-V. In the event that mercury was reported at a concentration exceeding the RDCSRS for samples M-9A or M-9B, contingency mercury analysis would be performed for soil samples M-9C and M-9D. Mercury was reported as non-detect for sample M-9A and at a concentration below the RDCSRS of 23 mg/kg for soil sample M-9B (1.6 mg/kg). Based on these results, no contingency mercury analyses were performed. It should be noted that the reported mercury concentration for M-9B exceeds the IGWSSL of 0.1 mg/kg.

Soil Boring M-10

CMX advanced contingency soil boring M-10 approximately eight feet (8') east of soil boring M-9 for the purposes of horizontal delineation of mercury contamination, had it been identified at soil boring M-9. Soil boring M-10 was advanced to a depth of twenty-five feet (25') bgs. Ground water was encountered in soil boring M-10 at a depth of 18.5' bgs. Mercury vapor readings, where measured, ranged from 0.0 ng/m³ to 0.4 ng/m³. CMX collected four (4) soil samples from this soil boring based on mercury vapor measurements as follows: soil sample M-10A was collected at a depth of 5.5-6.0' bgs; soil sample M-10B was collected at a depth of 14.0-14.5' bgs; soil sample M-10C was collected at a depth of 18.0-18.5' bgs; and, soil sample M-10D was collected at a depth of 24.5-25.0' bgs. Based on the analytical results for soil samples collected from soil boring M-9, no mercury analyses were performed for soil samples collected from soil boring M-10.

Soil Boring M-11

CMX advanced contingency soil boring M-11 approximately eight feet (8') west of soil boring M-3 for the purposes of horizontal delineation of mercury contamination, had it been identified at soil boring M-3. Soil boring M-11 was advanced to a depth of twenty feet (20') bgs. Ground water was encountered in soil boring M-11 at a depth of 18.5' bgs. Mercury vapor readings, where measured, ranged from 0.0 ng/m³ to 2.9 ng/m³. CMX collected four (4) soil samples from this soil boring based on mercury vapor measurements as follows: soil sample M-11A was collected at a depth of 5.0-5.5' bgs; soil sample M-11B was collected at a depth of 14.0-14.5' bgs; soil sample M-11C was collected at a depth of 18.0-18.5' bgs; and, soil sample M-11D was collected at a depth of 19.5-20.0' bgs. Based on the analytical results for soil samples collected from soil boring M-3, no mercury analyses were performed for soil samples collected from soil boring M-11.

Soil boring, sampling locations and cross sections which provide a summary of soil sample depths, Lumex mercury vapor analyzer measurements and mercury analytical results are presented on Figure 5. A tabulated summary of mercury analytical results is provided in Table 9. Laboratory analytical results and electronic data deliverables are included in Appendix B.

Conclusions and Recommendations

CMX has conducted supplemental SI activities at the Camden Laboratories property pursuant to the recommendations provided by NJDEP representatives during our November 19, 2008 site meeting and in accordance with the Notice of Deficiency correspondence dated December 8, 2008. The following paragraphs present a summary CMX's conclusions and recommendations by AOC.

275-gallon AST (AOC-1)

CMX advanced three (3) soil borings to investigate the diesel fuel surface spill area (AOC-1). Elevated PID readings were encountered in the soil borings advanced. A soil sample was collected from each soil

boring. TPH-DRO was reported at a concentration exceeding the contingency threshold for VO+10 analysis for soil samples S-2 (4,000 mg/kg) and S-3 (1,500 mg/kg); therefore VO+10 analysis was performed for sample S-2. All VO+10 compounds were reported as non-detect or at concentrations below their respective RDCSRS, NRDCSRS and IGWSSL for soil sample S-2. Based on the analytical results, CMX recommends no additional investigation of the diesel fuel surface spill area. Therefore, CMX respectfully requests a determination of no further action for this AOC.

Former 6.000-gallon UST (AOC-2A)

CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-2 (AOC-2A). No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in any of the borings advanced. A soil sample was collected from each soil boring. TPH was reported as non-detect for all samples collected; therefore, contingency VO+10 analysis was not performed. Based on the analytical results, CMX recommends no additional investigation of the former 6,000 gallon UST. Therefore, CMX respectfully requests a determination of no further action for this AOC.

Former 6,000-gallon UST (AOC-2B)

CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-1 (AOC-2B). No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in any of the borings advanced. A soil sample was collected from each soil boring. TPH was reported as non-detect for all samples collected; therefore, contingency VO+10 analysis was not performed. Based on the analytical results, CMX recommends no additional investigation of the former 6,000 gallon UST. Therefore, CMX respectfully requests a determination of no further action for this AOC.

Former 2,000-gallon UST (AOC-2C)

CMX advanced four (4) soil borings along the centerline of the UST excavation for Tank-3 (AOC-2C). No evidence of contamination (i.e. odors, staining, elevated PID readings) was observed in any of the borings advanced. A soil sample was collected from each soil boring. TPH was reported as non-detect for all samples collected; therefore, contingency VO+10 analysis was not performed. Based on the analytical results, CMX recommends no additional investigation of the former 2,000 gallon UST. Therefore, CMX respectfully requests a determination of no further action for this AOC.

Storage Containers (AOC-3)

During CMX's January 23, 2008 site reconnaissance numerous empty paint, muriatic acid and paint thinner containers were identified within the freezer room of Building B; however, the four (4) empty 55-gallon muriatic acid drums and five (5) empty 55-gallon caustic soda drums previously observed in this location were not present at the time of the reconnaissance. Based on discussions Mr. Manco, Jr., it appears that recent vandalism of the building has resulted in the destruction and removal of much of the building's contents, including the 55-gallon drums. We understand that the remaining empty containers will be removed and disposed in accordance with applicable waste regulation. Copies of disposal receipts will be provided:

Septic System, Leachfields or Seepage Pits (AOC-5)

During the April 8, 2008 geophysical survey subsurface components of the on-site septic system were identified, including an approximate 10,000-gallon subsurface septic tank and associated discharge pipe was identified at the septic system location east of Building F. Subsequent to the geophysical survey, CMX

conducted a soil boring investigation in order to investigate the septic system. Based on the findings for the geophysical survey and soil boring investigation, no further investigation of the septic system (AOC-5) was recommended. NJDEP concurred with these investigation findings in their December 3, 2008 letter of correspondence. Based on the information provided by Mr. Manco, Jr. we understand that the septic system is no longer in use at the site. Therefore, CMX recommends closure of the system in accordance with the Standards for Individual Subsurface Sewage Disposal Systems (N.J.A.C. 7:9A) and NJDEP's request for closure of same.

Building B Drywell (AOC-6)

Based on information obtained during the December 11, 2008 site reconnaissance, CMX determined that the round geophysical anomaly and associated piping identified south of the building compound corresponded to the location of the drywell that formerly serviced Building B. Previously, the drywell was believed to be associated with the former hydraulic system (AOC-11), and was investigated as part of the former hydraulic lift system (AOC-11) investigation. During the previous investigation activities, CMX advanced one (1) soil boring adjacent to the drywell. One (1) soil sample was collected from the boring and analyzed for TPH-QAM. TPH-QAM was reported at a concentration below the current NJDEP Health Based Criterion for Total Organic Contaminants (10,000 mg/kg) and the 100 mg/kg threshold for contingency polynuclear aromatic hydrocarbons (PAH) analysis for hydraulic oil spills. In addition, CMX installed a temporary well point at this location and collected a grab ground water sample for VO+10 and BN+15 analyses. All VO+10 and BN+15 compound were reported as non-detect or at concentrations below their respective NJGWQS.

Based on the December 11, 2008 site reconnaissance findings and the protocols prescribed in the Technical Requirements for Site Remediation (N.J.A.C. 7:26E), CMX advanced a duplicate boring and collected one (1) additional soil sample to investigate this AOC. CMX collected soil sample SB-5DUP from the soil boring at a depth of 10.0-10.5' below grade corresponding to an elevated PID reading of 4.4 ppm. The soil sample was forwarded to HC-V for PP+40 analysis. All PP+40 compounds were reported as non-detect or at concentrations below their respective most stringent SRS for soil sample SB-5DUP. Based on these findings, CMX recommends no addition investigation of this AOC.

NJ SPILLS Database Listing (NJDEP Case No. 98-11-20-1919-54) (AOC-13)

According to the December 8, 2008 correspondence from Mr. Dunfee, the NJDEP requested a copy of the Camden County Health Department file completion memo pertaining to the nitrogen gas release at the site. A copy of the file completion memo is included in Appendix C. According to the file completion memo, "the conditions cited have been mitigated to acceptable limits when compared to the current State of New Jersey, NJDEP&E technical regulations." Therefore, CMX respectfully requests a determination of no further action for this AOC.

Regional Ground Water Contamination (AOC-14)

Based on a review of records for the north adjacent RF Products property, RF Products has been identified as a source of chlorinated solvent ground water contamination within the region. As discussed in our Preliminary Assessment (PA) Report, chlorinated solvent ground water contamination was identified on the Camden Laboratories property following investigations completed by NJDEP and has been attributed to migration of contaminants originating from RF Products. CMX recommended no additional investigation of this AOC; however, we understand that the Bureau of Environmental Measurement and Site Assessment will evaluate the RF Products/Fast Doors investigation data to confirm that there is an off-site source of

ground water contamination. We also understand that a vapor intrusion investigation will be required for future site improvements pursuant to N.J.A.C. 7:26E-4.4(h)3.viii.

According to the December 8, 2008 correspondence from Mr. Dunfee, the NJDEP requested a site plan which provides the locations of all site AOCs, sampling locations and construction details for several site features in order to confirm that there are no on site sources of chlorinated solvent ground water contamination. While conducting our PA, CMX requested available City of Camden Building and Engineering Department records via a records request dated November 29, 2007; however, CMX has not received any information regarding records relative to the site to date. Based on these findings, CMX has determined that site plans pertaining to the building compound, including construction details for the onsite septic system, are not available at the City of Camden Building and/or Engineering Departments. CMX requested copies of any as-built drawings or construction plans which provide the construction details for the on-site septic system, drywell and hydraulic lift from Camden Laboratories, LP. Mr. Manco, Jr. indicated that any plans which provide this type of information were maintained at the site; however, Mr. Manco, Jr. indicated that the plans were either removed or damaged during acts of vandalism and were not available. CMX has prepared a site plan which depicts the locations of sanitary system features based on the comprehensive results of the geophysical survey and site reconnaissance activities completed to date (Figure 1).

Potential Mercury Surface Spill (AOC-16)

CMX conducted a soil boring investigation of the potential mercury surface spill area between December 2008 and January 2009. CMX advanced sixteen (16) soil borings to depths ranging between four feet (4') bgs and twenty-five feet (25') bgs. Soil borings were field screened using a calibrated Lumex and/or Jerome mercury analyzer. Elevated mercury vapor readings were observed throughout a majority of the soil borings advanced; however, elevated mercury vapor readings diminished at the extent of each soil boring. CMX collected soil samples from each of the soil borings corresponding with elevated vapor mercury readings and/or visual indications of mercury contamination (i.e. dark purple staining). Where mercury vapor readings were recorded for multiple intervals, soil samples were collected and analyzed. In addition, CMX collected soil samples from each soil boring at the six-inch (6") interval where no indications of impact were identified in order to horizontally and vertically delineate the mercury contamination.

Analytical results reported mercury at a concentration exceeding the RDCSRS of 23 mg/kg for subsurface soil samples M-1 (3,700 mg/kg), M-1A (2,100 mg/kg), M-2B (82 mg/kg), M-2D (81 mg/kg), M-5A (34 mg/kg) and M-6B (36 mg/kg). Mercury was reported as non-detect or at concentrations below the NJDEP SRS for all other soil samples collected.

Based on the analytical results for soil samples collected to investigate the mercury surface spill area to date, mercury contamination has been horizontally and vertically delineated to the RDCSRS. Analytical results indicate that mercury soil contamination has been horizontally delineated to the north by subsurface soil samples M-4 and M-4A, to the east by subsurface soil samples M-9A and M-9B, to the south by subsurface soil samples M-7B and M-7C and to the west by subsurface soil samples M-3 and M-3B. Mercury contamination associated with soil sample location M-1 and M-1A has been vertically delineated by subsurface soil sample M-1B collected from a depth of 15.5-16.0' bgs. Mercury contamination associated with soil sample location M-2B and M-2D has been vertically delineated by subsurface soil sample M-2E collected from a depth of 22.5-23.0' bgs. Mercury contamination associated with soil sample location M-5A has been vertically delineated by subsurface soil sample location M-5B has been vertically delineated by subsurface soil sample location M-6B has been vertically delineated by subsurface soil sample M-6C collected from a depth of 19.5-20.0' bgs.

We estimate that the area of mercury contaminated soils measures twenty-four (24) feet in length by thirty-four (34) feet in width and extends to a maximum depth of twenty-three (23) feet bgs. The volume of mercury contaminated soils is estimated to range from 500 to 700 cubic yards, or approximately 750 to 1050 tons. We are currently exploring remedial strategies to address the mercury contaminated soil with Camden Laboratories, LP. Once an appropriate remedial strategy has been selected, CMX will prepare and submit a Remedial Action Workplan for your review.

We look forward to continuing to work with you on this project. If you have any questions or require anything further do not hesitate to contact me at 856-783-1900.

Very truly yours,

CMX

Mark Pietrucha, P.E. Associate

MP

C: Martin Manco, Camden Laboratories, LP

MEP Enclosure

\\s09svr01\n\project\2007\0702358\05\05_reports\supplemental sir\1667 davis supplemental si summary update.doc

mpletrucha @ cmx ensineering i com

CERTIFICATION

N.J.A.C. 7:26-1.2 et. seq.

Any person making a submission to the Department required by this chapter and pursuant to N.J.A.C. 7:26E, will include the following signature and notarized certification, for each technical submittal. Additionally, the certification will indicate the case name and address, case number, type of documents submitted, e.g. Remedial Action Report, for each technical submittal.

TYPE OF DOCUMENT: SUPPLEMENTAL SITE INVESTIGATION REPORT

CASE NAME: CAMDEN LABORATORIES

CASE ADDRESS: 1667 Davis Street, Block 1392, Lot 33, City of Camden, Camden County,

New Jersey

CASE NUMBER: 08-07-01-1547-19

The following certification will be signed by:

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For a partnership or sole proprietorship, by a general partner of the proprietor, respectively, or:

For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.

4. For persons other than 1 through 3 above, by the person with legal responsibility for the Site.

"I certify, under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate, or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

PRINTED NAME: MARTIN P. MANCO TITLE GENERAL PARTNER

SIGNATURE

NOTARY SIGNATURE

DATE

3/4/2009

DEE ANN WILCOX NOTARY PUBLIC OF NEW JERSEY My Commission Expires Dec. 18, 2013

long.		
# 100 mm		
Mainer	The state of the s	
للمراز المحدد منصيب للماء الماء الم		
		er toje
	en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la composition de la composition de la composition de la composition de la composition de la La composition de la composition de la composition de la composition de la composition de la composition de la	
	and the second of the control of the second	a di s

Tables

Table 1: Summary of Analytical Methods and Quality Assurance Indicators
Supplemental Site Investigation
Camden Laboratories
1667 Davis Street
City of Camden, Camden County, NJ
NJDEP Case Number: 08-07-01-1547-19

Parameter	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	TPH-DRO, VO+10*	Mercury	Mercury	Mercury	Mercury	Mercury	PP+40	Mercury	Mercury	Mercury	Mercuny	Mercuny	Mercury	Mercuny	Mercury														
Sampling Method	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon	Direct Push Macrocore/Stainless Steel Spoon
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample Depth	0.5-1.0'	0.5-1.0'	0.5-1.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	11.5-12.0'	1.5-2.0'	3.5-4.0'	1.5-2.0'	1.5-2.0	1.5-2.0'	10.0-10.5	15.5-16.0'	18.0-18.5'	20.5-21.0'	11.5-12.0'	19.5-20.0	15.5-16.0'	18.5-19.0'	6.0-6.5	19.5-20.0'	19.5-20.0'	14.0-14.5'	18.0-18.5'	22.5-23.0'	14.0-14.5'	19.5-20.0'	14.0-14.5'	18.0-18.5'	22.5-23.0'	18.0-18.5'	19.5-20.0'	5.0-5.5	14.0-14.5
Sample Date	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	12/11/2008	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/23/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009	1/29/2009
Sample ID	S-1	S-2	S-3	Tank2-1	Tank2-2	Tank2-3	Tank2-4	Tank1-1	Tank1-2	Tank1-3	Tank1-4	Tank3-1	Tank3-2	Tank3-3	Tank3-4	M-1	M-1A	M-2	E-M	4-M	SB-5-DUP	M-1-B	N-1-C	M-1-D	M-2-A	M-2-B	M-4-A	M-4-B	M-5-A	M-5-B	M-2B-DUP	M-2C	M-2D	M-2E	M-3B	M-3D	M-6A	M-6B	M-6D	M-7B	DZ-W	M-9A	M-9B
AOC	A0C-1	A0C-1	AOC-1	AOC-2A	AOC-2A	AOC-2A	AOC-2A	AOC-2B	AOC-2B	AOC-2B	AOC-2B	AOC-2C	AOC-2C	AOC-2C	AOC-2C	AOC-14	AOC-14	AOC-14	AOC-14	AOC-14	AOC-6	AOC-14	AOC-14	AOC-14	AOC-14	AOC-14	A0C-14	AOC-14	AOC-14	AOC-14	A0C-14	AOC-14	A0C-14	A0C-14	AOC-14								

^{*}Contingent laboratory analysis based on initial analytical results

Table 1: Summary of Analytical Methods and Quality Assurance Indicators
Supplemental Site Investigation
Camden Laboratories
1667 Davis Street
City of Camden, Camden County, NJ
NJDEP Case Number: 08-07-01-1547-19

Analytical Method	Preservative	Container	Volume	Holding Time
C10-C28, 8260B	<u>as</u>	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>83</u>	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>ə</u> 2	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>8</u>	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	92 <u> </u>	lce, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eol	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eol	ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eol	ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eol	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eol	ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	eoj	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	lce S	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>8</u>	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>ə</u>	Ice, Encore	8 oz., Encore	28 Days, 14 Days
C10-C28, 8260B	<u>8</u> 2	lce, Encore	8 oz., Encore	28 Days, 14 Days
245.1	<u>8</u>	Glass	4 oz.	28 Days
245.1	<u>8</u> 2	Glass	4 oz.	28 Days
245.1	92	Glass	4 oz.	28 Days
245.1	92	Glass	4 oz.	28 Days
245.1	<u>ə</u> 2	Glass	4 oz.	28 Days
8260B, 8270C, 8081A, 6010	eol	ice, Encore	8 oz., Encore	14 days, 7 days, 7 Days, 6 months
245.1	eol	Glass	4 oz.	28 Days
245.1	e	Glass	4 oz.	28 Days
245.1	lce	Glass	4 oz.	28 Days
245.1	lce	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	lce	Glass	4 oz.	28 Days
245.1	lce	Glass	4 oz.	28 Days
245.1	eol	Glass	4 02.	28 Days
245.1	<u>8</u>	Glass	4 oz.	28 Days
245.1	eSI	Glass	4 oz.	28 Days
245.1	<u>es</u>	Glass	4 oz.	28 Days
245.1	92	Glass	4 oz.	28 Days
245.1	lce	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 oz.	28 Days
245.1	eol	Glass	4 02.	28 Days
245.1	lce	Glass	4 02.	28 Days
245.1	eol	Glass	4 oz.	28 Days

Table 2: Suppplemental Site Investigation Analytical Summary
Aboveground Storage Tanks (AOC-1)
Camden Labortaories
1667 Davis Street
City of Camden, Camden County, New Jersey
NJDEP Case Number: 08-07-01-1547-19

Sample ID		NJDEP SRS		S-1		S-2		S-3	Γ
Lab Sample No.			Default Impact to	AC41717-006		AC41717-007		AC41717-008	
Sampling Date	Residential Direct	Non-Residential	Ground Water	12/11/2008		12/11/2008		12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil	
Sample Depth			Levels	0.5-1.0'		0.5-1.0		0.5-1.0	
				Result	RD L	Result	RDL	Result	RDL
TPH-DRO (mg/kg)	SN	SN	SN	150	20	4000	200	1500	69
% Solids (%)	SN	SN	SN	98		88		87	
Volatile Organics (mg/kg)									14.25 15 15 15 15 15 15 15 15 15 15 15 15 15
:Total Volatile Tic	SN	SN	SN	R.	Г	92.7	٢	NR.	
1,1,1-Trichloroethane	290	4200	0.2	R.		QN	0.43	NR.	
1,1,2,2-Tetrachloroethane	1	3	0.005	NR		ND	0.43	NR	
1,1,2-Trichloro-1,2,2-trifluoroethane	SN	SN	SN	NR		ND	0.43	NR	
1,1,2-Trichloroethane	2	9	0.001	NR		ND	0.43		
1,1-Dichloroethane	æ	24	0.2	NR.		ND	0.43		
1,1-Dichloroethene	11	150	0.005	NR	-	ND	0.43		
1,2-Dibromo-3-chloropropane	90:0	0.2	0.005	NR		ND	0.43		
1,2-Dibromoethane	0.008	0.04	0.005	NR		ND	0.43	NR	
1,2-Dichlorobenzene	2300	29000	11	NR		ND	0.43		
1,2-Dichloroethane	6.0	3	0.005	NR		ND	0.22	NR.	
1,2-Dichloropropane	2	5	0.005	NR		ND	0.43		
1,3-Dichlorobenzene	2300	29000	12	NR		ON	0.43		
1,4-Dichlorobenzene	2	13	1	, an		QN	0.43		
2-Butanone	3100	44000	9.0	NR		QN	0.43		
2-Chloroethylvinylether	SN	SN	SN	NR		QN	0.43	NR	
2-Hexanone	SN	SN	SN	NR		ON	0.43		
4-Methyl-2-pentanone	SN	SN	NS	NR		ND	0.43		
Acetone	00002	SN	12	NR		QN	2.2	NR	
Acrolein	0.5	-	0.5	NR		ND	2.5	NR	
Acrylonitrile	6.0	3	0.5	NR		QN	0.43		
Benzene	2	5	0.005	NR.		ON	0.22		
Bromodichloromethane	1	3	0.005	NR		GN	0.43		
Bromoform	81	280	0.02	NR		QN	0.43		
Bromomethane	25	59	0.03	NR		QN	0.43		
Carbon disulfide	1800	110000	4	NR		QN	0.43		
Carbon tetrachloride	9.0	2	0.005	NR		QN	0.43		
Chlorobenzene	510	7400	0.4	Æ		ND	0.43		

Table 2: Suppplemental Site Investigation Analytical Summary 1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19 Aboveground Storage Tanks (AOC-1) Camden Labortaories

Sample ID		NJDEP SRS		S-1	S-2		S-3	
Lab Sample No.			Default Impact to	AC41717-006	AC41717-007	200	AC41717-008	
Sampling Date	Residential Direct	Non-Residential	Ground Water	12/11/2008	12/11/2008	80	12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil	Soil		Soil	
Sample Depth			Levels	0.5-1.0'	0.5-1.0		0.5-1.0'	
				Result RDL	OL Result	- RDI	L Result	RDL
Chloroethane	220	1100	SN	NR	QN	0.43	3 NR	
Chloroform	9.0	2	0.2	NR.	QN	0.43	3 NR	
Chloromethane	4	12	SN	W.	2	0.43	3 NR	
cis-1,2-Dichloroethene	230	999	0.2	AR	Q	0.43	3 NR	
cis-1,3-Dichloropropene	2	2	0.005	NR	QN	0.43	3[NR]	
Dibromochloromethane	3	80	0.005	NR.	QN	0.43	3 NR	
Dichlorodifluoromethane	490	230000	25	NR	ΩN	0.43	3 NR	
Ethylbenzene	7800	110000	8	NR	ΩN	0.43	3 NR	
m&p-Xylenes	12000	170000	12	NR.	2	0.87	7 NR	
Methyl Acetate	78000	SN	14	NR	QN	0.43	3 NR	
Methylene chloride	34	26	200.0	NR	ON	0.43	3 NR	j
Methyl-t-butyl ether	110	320	0.2	NR	QN	0.22	2 NR	
o-Xylene	12000	170000	12	NR	2.6	0.43	3 NR	
Styrene	06	260	2	NR	QN	0.43	3 NR	
t-Butyl Alcohol	1400	11000	0.2	NR	QN	2.2	2 NR	
Tetrachloroethene	2	9	0.005	NR	QN	0.43	3 NR	
Toluene	6300	91000	4	NR	0.78	0.43	3 NR	
trans-1,2-Dichloroethene	300	720	0.4	AN.	QN	0.43	3 NR	
trans-1,3-Dichloropropene	2	2	0.005	NR	QN	0.43	3 NR	
Trichloroethene	2	20	0.007	NR	QN	0.43	3 NR	
Trichlorofluoromethane	23000	340000	22	NR	QN	0.43	3 NR	
Vinyl chloride	0.7	2	0.005	NR	ND	0.43	3 NR	
Xylenes (Total)	12,000	170,000	12	NR.	9.7	0.43	3 NR	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards TPH-DRO - Total Petroleum Hydrocarbons Diesel Range Organics RDL - Reporting Detection Limit

NS - No Standard

ND - Not detected at the indicated concentration

NR - Not Analyzed

than the quantitation limit but greater than zero. The concentration is given an approximate value Bold values indicate exceedances in Residential Direct Contact and/or Non-Residential Direct Contact NJDEP SRS J - Data indicates the presence of a compound that meets the identification criteria. The result is less

Table 3: Supplemental Site Investigation Analytical Summary Underground Storage Tanks (AOC-2A) 1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19 Camden Lavoratories

Sample ID		NJDEP SRS		TANK2-1	TANK2-2		TANK2-3		TANK2-4	
Lab Sample No.			Default Impact to AC41717-013	AC41717-013	AC41717-014		AC41717-015		AC41717-016	
Sampling Date	Residential Direct	Non-Residential	Ground Water	12/11/2008	12/11/2008		12/11/2008		12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil	Soil		Soil		Soil	
Sample Depth			Levels	11.5-12.0'	9.5-10.0'		11.5-12.0'		11.5-12.0'	
				Result R	RDL Result	RDL	Result	RDL	Result	RDL
TPH-DRO (mg/kg)	SN	SN	SN	9 QN	ON 89	29	ON	70	QN	64
% Solids (%)	SN	SN	SN	88	89		98		94	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards RDL - Reporting Detection Limit NS - No Standard NS - No Standard NN - No Standard ND - Not detected at the indicated concentration

Table 4: Supplemental Site Investigation Analytical Summary Underground Storage Tanks (AOC-2B) 1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19 Camden Laboratories

Sample ID		NJDEP SRS		TANK1-1		TANK1-2		TANK1-3		TANK1-4	
Lab Sample No.			Default Impact to AC41717-009	AC41717-009		AC41717-010		AC41717-011		AC41717-012	
Sampling Date	Residential Direct	Non-Residential	Ground Water	12/11/2008		12/11/2008		12/11/2008		12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil		Soil	
Sample Depth			Levels	11.5-12.0'		11.5-12.0'		11.5-12.0'		11.5-12.0'	
STORE THE RESERVE OF THE PROPERTY OF THE PROPE				Result	RDL	Result	RDL	Result	RDL	Result	RDL
TPH-DRO (mg/kg)	SN	SN	SN	Q	63	QN	63	QN	63	QN	99
% Solids (%)	SN	SN	SN	96	П	95		96		91	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards RDL - Reporting Detection Limit NS - No Standard NS - No Standard NS - No Standard ND - Not detected at the indicated concentration

Table 5: Supplemental Site Investigation Analytical Summary Underground Storage Tanks (AOC-2C)
Camden Laboratories 1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19

Sample ID		NJDEP SRS		TANK3-1		TANK3-2	_	TANK3-3		TANK3-4	
Lab Sample No.			Default Impact to	AC41717-017	Г	AC41717-018	<u> </u>	AC41717-019		AC41717-020	
Sampling Date	Residential Direct	Non-Residential	Ground Water	12/11/2008		12/11/2008		12/11/2008		12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil		Soil	
Sample Depth			Levels	11.5-12.0'		11.5-12.0'	_	11.5-12.0'		11.5-12.0'	
				Result	NDL SDL	Result	RDL	Result	RDL	Result	RDL
TPH-DRO (mg/kg)	SN	SN	NS	QN	61	QN	97	QN	65	QN	65
% Solids (%)	SN	NS	NS	86		06		92		92	
					١						ı

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards RDL - Reporting Detection Limit NS - No Standard NS - No Standard NS - No Standard ND - Not detected at the indicated concentration

Table 6: Supplemental Site Investigation Summary of Analytical Results 1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number 08-07-01-1547-19 Potential Mercury Spill (AOC-14) Camden Laboratories

Sample ID		NJDEP SRS		M-1		M-1A		M-2		M-3		M-4	
Lab Sample No.			Default Impact to	AC41717-001		AC41717-002		AC41717-003		AC41717-004		AC41717-005	
Sampling Date	Residential Direct	Residential Direct Non-Residential	Ground Water	12/11/2008		12/11/2008		12/11/2008		12/11/2008		12/11/2008	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil		Soil		Soil	
Sample Depth			Levels	1.5-2.0'		3.5-4.0'		1.5-2.0		1.5-2.0'		1.5-2.0	
				Result	RDL	Result	RDL	Result	RDL	Result	RDL	Result	RDL
Mercury (mg/kg)	23	65	0.1	3700	66	2100	96	0.5	0.095	QN	0.098	0.13	0.095
% Solids	SN	SN	SN	84		87		88		85		88	
					1								

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards
RDL - Reporting Detection Limit
NS - No Standard
ND - Not detected at the indicated concentration
Bold values indicate exceedances in Residential Direct Contact and/or Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water Soil Screening Levels

Table 7: Supplemental Site Investigation summary of Analytical Results Building B Drywell (AOC-6) Camden Laboratories

City of Camden, Camden County, New Jersey Project Number: 070235805

Sample ID		NJDEP SRS		SI	3-5-0	UP
Lab Sample No.			Default Impact to	AC4	1235	1-001
Sampling Date	Residential	Non-Residential	Ground Water	1/	23/2	009
Matrix	Direct Contact	Direct Contact	Soil Screening		Soi	
Sample Depth			Levels	10	0.0-1	0.5'
			Fe. 4 624 (1862)	Result	Flg	RDL
Volatile Organics (mg/kg)	Arte so de Al ce			PM ACTOR	1104F	
:TotalVolatileTic	NS	NS	NS	ND		NA
1,1,1-Trichloroethane	290	4200	0,2	ND		0.005
1,1,2,2-Tetrachloroethane	1	3	0.005	ND		0.005
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS	ND		0.005
1,1,2-Trichloroethane	2	6	0.001	ND		0.005
1,1-Dichloroethane	8	24	0.2	ND		0.005
1,1-Dichloroethene	11	150	0.005	ND		0.005
1,2-Dibromo-3-chloropropane	0.08	0.2	0.005	ND		0.005
1,2-Dibromoethane	0.008	0.04	0.005	ND		0.005
1,2-Dichlorobenzene	5300	59000	11	ND.		0.005
1,2-Dichloroethane	0.9	3	0.005	ND		0.005
1,2-Dichloropropane	2	5	0.005	ND		0.005
1,3-Dichlorobenzene	5300	59000	12	ND		0.005
1,4-Dichlorobenzene	5	13	1	ND		0.005
2-Butanone	3100	44000	0.6	ND		0.005
2-Chloroethylvinylether	NS	NS	NS	ND		0.005
2-Hexanone	NS	NS	NS	ND		0.005
4-Methyl-2-pentanone	NS	NS	NS	ND		0.005
Acetone	70000	NS	12	ND		0.025
Acrolein	0.5	1	0.5	ND		0.025
Acrylonitrile	0.9	3	0.5	ND		0.005
Benzene	2	5	0.005	ND		0.001
Bromodichloromethane	1	3	0.005	ND		0.005
Bromoform	81	280	0.02	ND		0.005
Bromomethane	25	59	0.03	ND		0.005
Carbon disulfide	7800	110000	4	ND		0.005
Carbon tetrachloride	0.6	2	0.005	ND		0.005
Chlorobenzene	510	7400	0.4	ND		0.005
Chloroethane	220	1100	NS	ND		0.005
Chloroform	0.6	2	0.2	ND		0.005
Chloromethane	4	12	NS	ND		0.005
cis-1,2-Dichloroethene	230	560	0.2	ND		0.005
cis-1,3-Dichloropropene	2	7	0.005	ND		0.005
Dibromochloromethane	3	8	0.005	ND	Ш	0.005
Dichlorodifluoromethane	490	230000	25	ND		0.005
Ethylbenzene	7800	110000	8	ND		0.001
m&p-Xylenes	12000	170000	12	ND	Ш	0.002
Methyl Acetate	78000	NS	14	ND	$oxed{oxed}$	0.005
Methylene chloride	34	97	0.007	ND	L.	0.005
Methyl-t-butyl ether	110	320	0.2	ND		0.001
o-Xylene	12000	170000	12	ND		0.001
Styrene	90	260	2	ND	<u> </u>	0.005
t-Butyl Alcohol	1400	11000	0.2	ND	Щ	0.025
Tetrachloroethene	2	5	0.005	ND	lacksquare	0.005
Toluene	6300	91000	4	ND	<u> </u>	0.001
trans-1,2-Dichloroethene	300	720	0.4	ND		0.005

Table 7: Supplemental Site Investigation summary of Analytical Results Building B Drywell (AOC-6) Camden Laboratories

City of Camden, Camden County, New Jersey Project Number: 070235805

Sample ID		NJDEP SRS		SI	3-5-E	DUP
Lab Sample No.			Default Impact to	AC4	12354	4-001
Sampling Date	Residential	Non-Residential	Ground Water	1/	23/2	009
Matrix	Direct Contact	Direct Contact	Soil Screening		Soi	
Sample Depth			Levels	10	0.0-1	0.5'
				Result	Flg	RDL
trans-1,3-Dichloropropene	2	7	0.005	ND	_	0.005
Trichloroethene	7	20	0.007	ND		0.005
Trichlorofluoromethane	23000	340000	22	ND		0.005
Vinyl chloride	0.7	2	0.005	ND		0.005
Xylenes (Total)	12,000	170,000	12	ND		0.001
Base Neutrals (mg/kg)						A UP (PA)
:TotalSemiVolatileTic	NS	NS	NS	54	J	NA
1,1'-Biphenyl	3100	34000	90	ND		0.069
1,2,4-Trichlorobenzene	73	820	0.4	ND		0.069
1,2-Diphenylhydrazine	0.7	2	0.7	ND		0.069
2,4,5-Trichlorophenol	6100	68000	44	ND		0.069
2,4,6-Trichlorophenol	19	74	0.2	ND		0.069
2.4-Dichlorophenol	180	2100	0.2	ND		0.069
2,4-Dimethylphenol	1200	14000	0.7	ND		0.069
2,4-Dinitrophenol	120	1400	0.3	ND		0.34
2,4-Dinitrotoluene	0.7	3	NS	ND		0.069
2,6-Dinitrotoluene	0.7	3	NS	ND		0.069
2-Chloronaphthalene	NS	NS	NS	ND		0.069
2-Chlorophenol	310	2200	0.5	ND		0.069
2-Methylnaphthalene	230	2400	5	ND		0.069
2-Methylphenol	310	3400	NS	ND		0.069
2-Nitroaniline	39	23000	NS	ND		0.069
2-Nitrophenol	NS	NS	NS	ND		0.069
3&4-Methylphenol	31	340	NS	ND		0.069
3,3'-Dichlorobenzidine	1	4	0.2	ND		0.069
3-Nitroaniline	NS	NS	NS	ND		0.069
4,6-Dinitro-2-methylphenol	6	68	0.3	ND		0.34
4-Bromophenyl-phenylether	NS	NS	NS	ND		0.069
4-Chloro-3-methylphenol	NS	NS	NS	ND		0.069
4-Chloroaniline	NS	NS	NS	ND		0.069
4-Chlorophenyl-phenylether	NS	NS	NS	ND		0.069
4-Nitroaniline	NS	NS	NS	ND		0.069
4-Nitrophenol	NS	NS	NS	ND		0.069
Acenaphthene	3400	37000	74	ND		0.069
Acenaphthylene	NS	300000	NS	ND		0.069
Acetophenone	2	5	2	ND		0.069
Anthracene	17000	30000	1500	ND		0.069
Atrazine	210	2400	0.2	ND		0.069
Benzaldehyde	6100	68000	NS	ND		0.069
Benzidine	0.7	0.7	0.7	ND		0.34
Benzo[a]anthracene	0.6	2	0.5	ND		0.069
Benzo[a]pyrene	0.2	0.2	0.2	ND		0.069
Benzo[b]fluoranthene	0.6	2	2	ND		0.069
Benzo[g,h,i]perylene	380000	30000	NS	ND		0.069
Benzo[k]fluoranthene	6	23	16	ND	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	0.069
bis(2-Chloroethoxy)methane	NS	NS	NS	ND		0.069
bis(2-Chloroethyl)ether	0.4	22	0.2	ND	<u> </u>	0.069

Table 7: Supplemental Site Investigation summary of Analytical Results Building B Drywell (AOC-6) Camden Laboratories

City of Camden, Camden County, New Jersey Project Number: 070235805

Sample ID		NJDEP SRS	<u> </u>	SE	3-5-D	UP
Lab Sample No.			Default Impact to	AC4	2354	-001
Sampling Date	Residential	Non-Residential	Ground Water	1/:	23/20	009
Matrix	Direct Contact	Direct Contact	Soil Screening		Soil	
Sample Depth	İ		Levels	10).0-1	0.5'
				Result	Flg	RDL
bis(2-Chloroisopropyl)ether	23	67	3	ND		0.069
bis(2-Ethylhexyl)phthalate	35	140	790	ND		0.069
Butylbenzylphthalate	1200	14000	150	ND		0.069
Caprolactam	31000	340000	8	ND		0.069
Carbazole	24	96	NS	ND		0.069
Chrysene	62	230	52	ND		0.069
Dibenzo[a,h]anthracene	0.2	0.2	0.5	ND		0.069
Dibenzofuran	NS	NS	NS	ND		0.069
Diethylphthalate	49000	550000	57	ND		0.069
Dimethylphthalate	NS	NS	NS	ND		0.069
Di-n-butylphthalate	6100	68000	620	ND		0.069
Di-n-octylphthalate	2400	27000	3300	ND		0.069
Fluoranthene	2300	24000	840	ND		0.069
Fluorene	2300	24000	110	ND		0.069
Hexachlorobenzene	0.3	1	0.2	ND		0.069
Hexachlorobutadiene	6	25	0.6	ND		0.069
Hexachlorocyclopentadiene	45	110	210	ND		0.069
Hexachloroethane	35	140	0.2	ND		0.069
Indeno[1,2,3-cd]pyrene	0.6	2	5	ND		0.069
Isophorone	510	2000	0.2	ND		0.069
Naphthalene	6	17	16	ND		0.069
Nitrobenzene	31	340	0.2	ND		0.069
N-Nitrosodimethylamine	0.7	0.7	0.7	ND		0.069
N-Nitroso-di-n-propylamine	0.2	0.3	0.2	ND		0.069
N-Nitrosodiphenylamine	99	390	0.2	ND		0.069
Pentachlorophenol	3	10	0.3	ND		0.69
Phenanthrene	NS	300000	NS	ND		0.069
Phenol	18000	210000	5	ND		0.069
Pyrene	1700	18000	550	ND		0.069
Metals (mg/kg)	TANK STREET, S	据据是"经验"			Tan Mari	Months William
Mercury	23	65	0.1	ND		0.086
Antimony	31	450	6	ND		2.1
Arsenic	19	19	19	ND		2.1
Barium	16000	59000	1300	ND		10
Beryllium	16	140	0.5	ND		0.62
Cadmium	78	78	1	ND		0.62
Chromium	NS	NS	NS	ND		5.2
Copper	3100	45000	7300	ND		5.2
Lead	400	800	59	7.6		5.2
Nickel	1600	23000	31	ND		5.2
Selenium	390	5700	7	ND		1.9
Silver	390	5700	1	ND		1.5
Thallium	5	79	3	ND		1.2
Zinc	23000	110000	600	ND		10

Table 7: Supplemental Site Investigation summary of Analytical Results Building B Drywell (AOC-6)

Camden Laboratories

City of Camden, Camden County, New Jersey Project Number: 070235805

Sample ID		NJDEP SRS		SB-	5-DUP
Lab Sample No.			Default Impact to	AC42	354-001
Sampling Date	Residential	Non-Residential	Ground Water	1/2:	3/2009
Matrix	Direct Contact	Direct Contact	Soil Screening		Soil
Sample Depth			Levels	10.0	0-10.5
			Secretaria de la composición del composición de la composición del composición de la composición de la composición de la composición del composición de la composición de la composición de la composición de la composición de la composición del composición del composición del composición del composición del composición del composición del composición del composición del composición del com	Result F	lg RDL
PCBs (mg/kg)			verse verse traffic	CALLED N	
Aroclor (Total)	0.2	1	0.2	ND	0.026
Aroclor-1016	0.2	1	NS	ND	0.026
Aroclor-1221	0.2	1	NS	ND	0.026
Aroclor-1232	0.2	1	NS	ND	0.026
Aroclor-1242	0.2	1	NS	ND	0.026
Aroclor-1248	0.2	1	NS	ND	0.026
Aroclor-1254	0.2	1	NS	ND	0.026
Aroclor-1260	0.2	1	NS	ND	0.026
Aroclor-1262	NS	NS	NS	ND	0.026
Aroclor-1268	NS	NS	NS	ND	0.026
Pesticides (mg/kg)					
Aldrin	0.04	0.2	0.1	ND	0.0052
Alpha-BHC	0.1	0.5	0.002	ND	0.001
beta-BHC	0.4	2	0.002	ND	0.001
Chlordane	0.2	1	0.03	ND	0.01
delta-BHC	NS	NS	NS	ND	0.0052
Dieldrin	0.04	0.2	0.003	ND	0.001
Endosulfan I	470	6800	2	ND	0.0052
Endosulfan II	470	6800	2	ND	0.0052
Endosulfan Sulfate	470	6800	1	ND	0.0052
Endrin	23	340	0.6	ND	0.0052
Endrin Aldehyde	NS	NS	NS	ND	0.0052
Endrin Ketone	NS	NS	NS	ND	0.0052
gamma-BHC	0.4	2	0.002	ND	0.001
Heptachlor	0.1	0.7	0.3	ND	0.0052
Heptachlor Epoxide	0.07	0.3	0.009	ND	0.0052
Methoxychlor	390	5700	100	ND	0.0052
p,p'-DDD	3	13	3	ND	0.0026
p,p'-DDE	2	9	12	ND	0.0026
p,p'-DDT	2	8	7	ND	0.0026
Toxaphene	0.6	3	0.2	ND	0.026
Other Parameters (mg/kg)		国际运动器 等。	Practice Control		
Cyanide	1600	23000	13	ND	0.26
Total Phenolics	NS	NS	. 5	ND	1.3

NJDEP SRS - New Jersey Department of Environmental Protection

Soil Remediation Standards

RDL - Reporting Detection Limit

NS - No Standard

ND - Not detected at the indicated concentration

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration is given an approximate value

Table 8: Supplemental Site Investigation Summary of Analytical Results

Potential Mercury Spill (AOC-14) Camden Laboratories

1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19

		NJDEP SRS		M-1-B		¥-1-C		M-1-D		M-2-A		M-2-B	
Lab Sample No.			Default Impact to	AC42354-002		AC42354-003		AC42354-004	Ė	AC42354-005		AC42354-006	
Sampling Date Res	sidential Direct	Residential Direct Non-Residential	Ground Water	1/23/2009		1/23/2009		1/23/2009		1/23/2009		1/23/2009	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil		Soil		Soil	
Sample Depth	•		Levels	15.5-16.0"		18.0-18.5'		20.5-21.0'		11.5-12.0'		19.5-20.0'	
	TO 100 100 100 100 100 100 100 100 100 10			Result	RDL	Result	RDL	Result	TOY	Result	RDL	Result R	짆
Mercury (mg/kg)	23	65	0.1	0.95	0.095	QN	0.099	11	0.4	0.84	0.089	82	7
% Solids	SN	SN	SN	88		84		84		94		84	٦

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards

RDL - Reporting Detection Limit

NS - No Standard ND - Not detected at the indicated concentration

Bold values indicate exceedances in Residential Direct Contact and/or

Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water Soil Screening Levels

Table 8: Supplemental Site Investigation Summary of Analytical Results Potential Mercury Spill (AOC-14)

Camden Laboratories

1667 Davis Street
City of Camden, Camden County, New Jersey
NJDEP Case Number: 08-07-01-1547-19

Sample ID		NJDEP SRS		M-4-A		M-4-B	-	M-5-A		M-5-B	
Lab Sample No.			Default Impact to	AC42354-007		AC42354-008		AC42354-009		AC42354-010	
Sampling Date	Residential Direct	Non-Residential	Ground Water	1/23/2009		1/23/2009		1/23/2009		1/23/2009	
Matrix	Contact	Direct Contact	Soil Screening	Soil		Soil		Soil		Soil	
Sample Depth			Levels	15.5-16.0'		18.5-19.0'		6.0-6.5		19.5-20.0'	
				Result	RDL	Result	ROL	Result	RDL	Result	RDL
Mercury (mg/kg)	23	65	0.1	1.1	0.088	QN	0.1	34	0.86	QN	0.1
% Solids	SN	SN	SN	98		83		65		83	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards

RDL - Reporting Detection Limit

NS - No Standard ND - Not detected at the indicated concentration Bold values indicate exceedances in Residential Direct Contact and/or

Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water

Soil Screening Levels

Table 9: Supplemental Site Investigation Summary of Analytical Results

Potential Mercury Spill (AOC-14) Camden Laboratories

City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19 1667 Davis Street

Sample ID		NJDEP SRS		M-2B-DUP		M-2C		M-2D		M-2E		M-3B	
Lab Sample No.			1 7	AC42470-001		AC42470-002		AC42470-003		AC42470-004		AC42470-029	
Sampling Date	Residential	Non-Residential	Craum Impact to	1/29/2009		1/29/2009		1/29/2009		1/29/2009		1/29/2009	
Matrix	Direct Contact	Direct Contact Direct Contact	٠.	Soil		Soil		Soil		Soil		Soil	
Sample Depth			2	19.5-20.0'		14.0-14.5		18.0-18.5		22.5-23.0'		14.0-14.5	
				Result :	RDL	Result	RDL	Result	RDL	Result	ROL	Result	RDL
Mercury (mg/kg)	23	65	0.1	1.4	0.1	2.4	0.085	81	1.8	QN	0.1	1.6	0.086
% Solids	SN	SN	SN	82		86		95		81		26	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards
RDL - Reporting Detection Limit
NS - No Standard

ND - Not detected at the indicated concentration

Bold values indicate exceedances in Residential Direct Contact and/or

Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water

Soil Screening Levels

Table 9: Supplemental Site Investigation Summary of Analytical Results

Potential Mercury Spill (AOC-14) Camden Laboratories

1667 Davis Street City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19

Sample ID		NJDEP SRS		M-3D		M-6A		M-6B	П	M-6D		M-7B	
Lab Sample No.			1 7	AC42470-031		AC42470-005		AC42470-006		AC42470-008		AC42470-011	
Sampling Date	Residential	Residential Non-Residential	Default Impact to	1/29/2009		1/29/2009		1/29/2009		1/29/2009		1/29/2009	
Matrix	Direct Contact	Direct Contact Direct Contact	Serponing Loyale	Soil		Soil		Soil		Soil		Soil	
Sample Depth			- Concelling Levels	19.5-20.0'		14.0-14.5'		18.0-18.5		22.5-23.0'		18.0-18.5	
		30000000000000000000000000000000000000	SHEET CATALOGUE	Result	RDL	Result	RDL	Result	RDL	Result	RDL	Result	RDL
Mercury (mg/kg)	23	65	0.1	QN	0.1	0.13	0.085	36	1	16	0.49	8.5	0.39
% Solids	SN	SN	SN	82		86		82		98		85	

NJDEP SRS - New Jersey Department of Environmental Protection Soil Remediation Standards
RDL - Reporting Detection Limit
NS - No Standard
ND - Not detected at the indicated concentration
Bold values indicate exceedances in Residential Direct Contact and/or

Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water Soil Screening Levels

Table 9: Supplemental Site Investigation Summary of Analytical Results Potential Mercury Spill (AOC-14)

Camden Laboratories 1667 Davis Street

City of Camden, Camden County, New Jersey NJDEP Case Number: 08-07-01-1547-19

ple No. Residential Direct Contact Non-Residential Direct Contact Non-Residential Ground Water Soil Screening Levels AC42470-012 Incidence Jepth Direct Contact Contact Screening Levels Soil Screening Levels Incidence Incidence Mag/kg) 23 65 0.1 19 0.98	Sample ID		NJDEP SRS		M-7C		M-9A		M-9B	
Residential Non-Residential Default Impact to 1/29/2009 Solid So	Lab Sample No.			- t to co thd.			AC42470-020		AC42470-021	
Direct Contact Direct Contact Screening Levels Soil Screening Levels 19.5-20.0°	Sampling Date	Residential	Non-Residential	Creund Water Soil	"		1/29/2009		1/29/2009	
) 23 65 0.1 19 0.98	Matrix	Direct Contact	Direct Contact	Screening I evels			Soil		Soil	
23 65 0.1 19 0.98	Sample Depth			Sipan Billiopino	19.5-20.0'		5.0-5.5		14.0-14.5'	
23 65 0.1 19					Fig Fig.	RDL	Result	RDL	Result	RDL
41.1	Mercury (mg/kg)	23	99	0.1	19	0.98	QN	0.09	1.6	0.09
SN	% Solids	SN	SN	SN	85		93		93	

NJDEP SRS - New Jersey Department of Environmental Protection

Soil Remediation Standards

RDL - Reporting Detection Limit

NS - No Standard

ND - Not detected at the indicated concentration

Bold values indicate exceedances in Residential Direct Contact and/or

Non-Residential Direct Contact NJDEP SRS

Italic values indicate exceedances in Default Impact to Ground Water Soil Screening Levels

Appendix A Soil Boring Logs

PROJECT NAM	CMX		PROJEC	CT NU	JMBER			DATE/	TIME ST	ARTED		DATE/T	IME COMPL	ETE	GROUN	ID ELEVATION (FT. I	//SL)	TOTAL DEP	TH (ft)	
Camden Lab	oratories		70235						12/1	1/08			12/11/08 r surveyed co	3	<u> </u>			<u> </u>	4'	
	Street Camden, NJ	N	DRILLIN	G ME	THOO			M-1					IG CONTRA							
BOKING LOOK	ion (orecon)	Ť	Direct	Pus	h Geo	_	е					Enviro	probe					1		
		•	BORING ORILLIN			(in)			2" NA			DRILLE Brian	RNAME			INSPECTOR Mary Ann Gilm	ore	DRILLING E		
			SAMPL			PE			2"			†	R WEIGHT	(lbs)			ER DROP	•	NA	190
					ABA	NDON	MENT				G	ROUND	NATER OBS	SERVATIO	NS (dept	h in ft bgs)	Observ			NA
			METHO				Back			Oepth			Date/Time				Seasor	nal High WT		NA
			MATER: QUANT				Soil NA			Depth Depth			Oate/Time			···	+			
		₽Z		<u>ا</u>		Т			_	nples			MER	CURY VA				POR METER IN		NC
		Sample Interv	Depti	dwaf	Graphic Log	Ę	.e.	s per	_	Recovered (feet)	RQD	Time	REAC Bkg	DINGS (ng Sample		MANUF/MO	OEL	LAMP (eV)	SOURCE	
INTERVAL	DESCRIPTION	Samp	(ft bgs) je 8) je	Grap	Stratum	Samp No.	Blows per 6 inches	Driven (feet)	Reco (feet)	NGID	' IIII E	5,0	Jampie	Space			٠	L	
	48" Recovery		- 0	-		\top							500.0			751.0				
	0-8" medium orange silty sand			-		1										561.0		**		
			-													561.0				
	8-28" purple silty sand, non-native	- 11	- 1	-						:						542.0				
						l										004.0				
			-	1												861.0				
			- 2	-								ļ				849.0 Colle	cted.sa	mple M-1 a	18-24" 1	ogs
																	ercury a	analysis at 1	10:50	
	28-48" medium orange silty sand		-	1		ĺ	1		ļ			l				750.0				
	20-40 Mosium orango oney ourio		- 3	-												736.0				
														1		L				
			-	1	1	İ										1		mple M1-A analysis at '		bgs
			- 4	I 	.	.		ļ								700.0 101 141				
													Ì			End	of boring	g @ 4.0'		
		ĺ	-	-		İ														
			- 5																	
						1					1									
		-	-	-							•									
			- 6	1				ļ		ļ		ļ								
		-			İ								1							
	:		-	-		1									1	1				
			- 7	-																
		Ì	`	1		1							1	1						
			-	-	i															
			- 8	1	ļ															
			•	Ī						da									1.1.1.1.1.1.1	
			-	-			1													
			١.				İ													
		ŀ	- 9	Ī							ŀ									
			-	-		1						ĺ		ŀ						
						1							İ							
			- 10 I	i		1					l									
																•				
				_								ļ								
			-	-						i										

\\s09svr01\n\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental SI boring logs\(soil boring logs.xis\)M-1

	CMX					L	OG (OF S	SOIL	_ BC	ORII	NG N	1-2						
PRDJECT NAM Camden La			PRDJEC 702358		MBER			DATE/		TARTED	,	DATE/T	TME CDMPL 12/11/08		GRDUN	ID ELEVATION (FT. M	(SL) T	DTAL DEPTH (ft) 4'
PRDJECT LDC								BORIN M-2			Descrip	ion and/o	r surveyed co		, if availab	la)			
BDRING LDCA		N	DRILLING			_		141 2					NG CONTRA	CTDR					
		Ī	Direct I				e		2"				Probe			INSPECTOR	0	RILLING EQUI	PMENT
			DRILLING			,			NA			Brian				Mary Ann Gilmo	ore T	rack-mount	
1			SAMPLE	R DI					2"				R WEIGHT				R DROP (in		
1			METHD	,	ABA	NDD	Back	Fill	···.	Depth		RDUND	Date/Time	ERVATIO	NS (dept	h in ft bgs)	Dbserved Seasonal I		NA NA
			MATERIA				Spil			Depth			Date/Time						
		To the state of th	OUANTI	TY			NA			Depth			Date/Time			l usna	UDVIVADDE		DI LA TION
		Interva		water	Log			b		nples	Τ			CURY VA DINGS (ng		MANUF./MDI		AMP (eV) SD	
	DECORIGE	Sample	Depth	1 7 1	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	ROD	Time	Bkg	Sample	I	Lumex			
0-4'	DESCRIPTION 36" Recovery	Ö	(ft bgs) (히	ō	l lin	ΰŽ	80 9	ਰੋਲ	2 8	-		500.0	├	Space	REMARKS 601.0			
	0-8" organic matter-grass		0.			. .			ļ		ļ		1 300.0	ļ		301.0			
				$\ \ $									1			561.0			
	8-28" Strong brown silty sand		- 1 -													542.0			
													1						
				1												608.0			
			- 2 -	.								l				612.0 Collec	ted samo	ole M-2.at.18	8-24" bas
			_			1						[1	-	alysis at 11:	-
			•	-									i			604.0			
	12-36" orange silty sand		- 3 -											İ		602.0			
						1								1	1				
				-		1							İ						
		<u> </u>	- 4			L				ļ		<u> </u>							
						İ						•				End o	f boring @	⊉ 4.0'	
				1								İ							
			- 5	-		-						į							
												1		ł		•			
				1								ļ							
			- 6	I 		ļ		ļ		ļ		ļ		 	<u>.</u>				
					l					1			ł	1	1				
			- 7	-										1					
								1											
				1															
			- 8	1		ļ		ļ	ļ					.					and at atomic to secure of a super-
				11															
			- 9	-															
											1								
									ľ										
1			l - 10	ļ.,,		ļ]	ļ		ļ		ļ		ļ	 				
1]					
				╢															
			 - 11												1				
				Ī				L	L		L		<u></u>		L				
\\s09svr01\n\pro	oject\2007\0702358\05\02_Survey_and_Workpap	ers\Supple	mental Si	borin	a loas\fs	oil bo	ring logs	xisIM-2	•	•									

•••	CMX					L	OG (OF S	SOIL	. BC	RII	NG N	1-3						
PROJECT NAM Camden Lat			PROJEC 702358		MBER			OATE/	ПМЕ ST 12/1	ARTED	ı	OATE/T	ME COMPLI 12/11/08		GROUN	O ELEVATION (FT. N	/ISL)	TOTAL OEPTH	(ft) 4'
PROJECT LOC								BORIN M-3	G LOCA	TION (C	Descript	ion and/o	r surveyed co	ordinates,	if availabl	e)			
BORING LOCA		N I	ORILLING			1-	_	0	_				G CONTRAC	CTOR					
			Direct I BORING				e		2"			Enviro	R NAME			INSPECTOR		DRILLING EQU	IPMENT
			DRILLING						NA			Brian				Mary Ann Gilmo		Track-moun	nted Dingo
			SAMPLE	R DI					2 ⁿ	_		<u> </u>	R WEIGHT (R DROP		NA
			METHOD		ABA	NOON	MENT Back	Fill		Oepth	G	ROUND	VATER OBS	ERVATIO	NS (dept	n in ft bgs)	Observ	red WT nal High WT	NA NA
			MATERIA				Soil			Depth			Data/Tima			•			
			QUANTII	Υ		_	NA			Oepth			Oate/Time						
		Interv		vater	Log		_	a		nples		Г		CURY VAI DINGS (ng		MANUF,/MOO		POR METER INF	ORMATION
		Semple	Depth (ft bgs)	- Sund	Graphic Log	Stratum	Semple No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample	Head	Lumex			
	DESCRIPTION	တိ	(ft bgs)	ō	5	₽.	នីខ	<u>10</u> 6	2 %	% €			500.0	ļ	Space	REMARKS 541,0			
0-4'	48" Recovery 0-8" organic matter-grass		- 0 -								ļ		0,000			541,0			
	strong brown silty sand			11												561.0			
1			_							ŀ		1			1	542.0			
			- 1 -								-				1	542.0			
				$\ \ $												540.0			
			_	П												E76 0 College	nt o d o o o	mala 86 2 at 1	19 94" ban
		18	- 2 -					ļ								576.0 Collect		analysis at 11	-
				.						ŀ				ļ		518.0		•	
	8-48" orange silty sand		- 3 -													521.0			
			- 3 -											l		321.0			
l				. []										ļ		541.0			
1				I												538.0			
			4	ı		T											of boring	g @ 4.0'	
		į.		.									ļ	1			-		
			_	1										1		1			
ł			- 5	1															
ļ				$\cdot \ $!					ŀ					
ł			- 6	1				1											
ł			- 0	Ī								Ì							
<u> </u>				.							ļ								
ì			- 7	1		1								İ					
			- '	Ī				ĺ											
				$\cdot \; $															
			۰	l															
		İ	- 8	ı								***********							***************************************
				$\cdot \ $										}					
													ľ	l					
			- 9	ī										1					
				.										1					
				I		ļ								ļ	ļ				
			- 10 	ī		1								1	1				
												Ī		1					
			,				1												
			- 11	-		 							topopal terraneroe		ļ <u>.</u>			artini tanonarina kan kan kan karenari an ay	e any faorithm to a state of the state of th
\\s09svr01\n\pro	ecti2007\0702358\05\02_Survey_and_Workpape	ers\Supple	nental SI	borin	g logsVs	oil bor	ing logs	xls]M-3	and the	a area	11111111	Factorian I		1					

•••	CMX					L	OG (OF S	SOIL	BC	RII	NG IV	1-4					·	
PROJECT NAM Camden Lab			PROJEC 702358		MBER			DATE/I	TIME ST 12/1	ARTED		DATE/T	ME COMPL 12/11/08		GROUN	D ELEVATION (FT. N	(SL)	TOTAL DEPTH	(ft) 4*
PROJECT LOCA								BORING M-4			Descript	ion end/o	r surveyed co		if availabl	ie)			
BORING LOCAT		N A	DRILLING					.71 7		_			IG CONTRA	CTOR					
		 	Direct I			_	3	•	2"			Enviro DRILLE	·			INSPECTOR		DRILLING EQUI	PMENT
			DRILLING			,			NA			Brian				Mary Ann Gilm		Track-moun	ted Dingo
			SAMPLE	R DI					2"			-	R WEIGHT				R DROP (
			METHOL		ABAI		MENT Backf	in		Depth	G	ROUND	NATER OBS	SERVATIO	NS (depti	h in ft bgs)	Diserve	d WT al High WT	NA NA
			MATERIA	_			Soil			Depth			Date/Time				- Casona		
			QUANTI	Υ.			NΑ			Depth			Date/Time						
		nterva		rater	Log			h	San	nples			4	CURY VAF DINGS (ng		MERC MANUF./MOI		LAMP (eV) SO	
Į.		Sample interve	Depth (ft bgs	ound	Graphic I	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head	Lumex			
	DESCRIPTION	Š	(ft bgs) [ဇ်	5	ş	S S	Bic	58	28	<u> </u>		500.0	-	Space	REMARKS 570.0			
0-4'	32" Recovery 0-8" organic matter-grass		- 0 -			ļ							300.0			370.0			. 40. 4 . 40. 45. 45. 45. 46. 47. 47. 47. 47.
	strong brown silty sand			$\ \ $										1		561.0			
			_									1				542.0			
			- 1 -													J42.0			
	:			-												519.0			
			,		ļ											513.0 Collec	ded cam	nnie M 4 st 1	8 24" bae
			- 2 -	1														nalysis at 11:	
1	8-32" orange silty sand			-										1		519.0	•	•	
1		П	•													512.0			
i			- 3 -													512.0			
				-												ļ			
				1									1						
			- 4-	<u> </u>		Г										End o	of boning	@ 4.0	
				-													_		
}			_	İ															
			- 5	i															
				-															
									İ										
			- 6	ī		1		1		Ì				1					
				-															
			7	l						1			l						
			- 7	ī															
				-															
			n	l	l	1		<u> </u>				l							
			- 8	Ī	I		**,***	Ī]	1	1	I						
				-[
			^	1															
			- 9	ī															
				-									1		-				
				l					}		Ì			1					
		j	- 10	ī							1	İ		1	1				
				-															
				1															
			- 11	Ē		 			ļ	ļ	<u> </u>								Total College
\\s09svr01\n\nrni	ect\2007\0702358\05\02_Survey_and_Workpa	pers\Suppler	nental Si	borin	g logs\is	oil bo	ing loas	xis]M-4	12000000	10.000	1			1	4				

**	CMX					L	OG					NG S							
PROJECT NAM Camden La	boratories		PROJEC 70235		JMBER				12/1	TARTED 11/08			IME COMPLI 12/11/08	3		IO ELEVATION (FT. I	VISL)	TOTAL DEPTH	(ft) 4'
PROJECT LOC 1667 Davis	ATION Street Camden, NJ							BORIN S-1	G LOC/	ATION (I	Descript	ion and/o	r survayed co	ordinates,	if availabl	le)			
BORING LOCA	TION (sketch)		DRILLIN Direct			prob	e						G CONTRAC	CTOR					
		ı	BORING						2°			_	R NAME			INSPECTOR		DRILLING EOU	IPMENT
			ORILLIN SAMPLE						<u>NA</u> 2"			Brian	R WEIGHT (The\		Mary Ann Gilm	OFE ER DRDP	Track-moun	ted Dingo A
			SAMPLE	K U		_	MENT			Т	G	_	WATER OBS		_			vad WT	NA NA
			METHO	D			Back			Dapth			Date/Time				Season	nal High WT	NA
			MATERI QUANTI	_		_	Soil			Oapth Depth			Oate/Time Oate/Time				+		
		Interva	QOANTI	 			Ľ		Sar	npies				ANIC VAP	OR	ORG	ANIC VAP	POR METER INFO	RMATION
		ole Inte	Depth	ndwate	Graphic Log	Ę	e e	s per	_	vered	ROD	Tima	REA Bkg	DINGS (pp		MANUF./MO MiniRae	DEL	LAMP (eV) Si	US ENV
INTERVAL	DESCRIPTION	Sample	(ft bgs		Grap	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recov (feet)	100	Tuna	DAG	Gample	Space	-		10.0	03 2.14
0-4'	36" Recovery		- 0	-												4.5			
	0-3" asphalt 3-20" orange medium sand		- 1 - 2	-		. 0												imple S-1 at 6 TPH-DRO ar	
	20-36" orange silty sand		- 3 -													4.6			
			- 5													End c	f boring	g @ 4.0'	
			- 7 - 8	-					0.000										
			- 9 - 9	-							: :								
	ject\2007\0702358\05\02_Survey_and_Workpap		- 10 - 11																

maon I ah			70235		JMBER					TARTEO		J	TME COMPLE 12/11/08		0.100/1	D ELEVATION (FT. M	, [OTAL OEPTH	4'
OJECT LOCA	oratories		70235	805							Descript	l tion and/o	r surveyed co		if availabl	e)	1_		-
67 Davis S	treet Camden, NJ	N	ORILLI	IC M	THOO			S-2				IOPILI IN	G CONTRAC	TOR					 ,
RING LOCATI	ON (sketch)	Ť			h Geo		e					Enviro		,, oit					
			BORING	3 OLA	METER	(in)			2"			ORILLE	R NAME			INSPECTOR		RILLING EQUI	
			ORILLI	IG FL	UID				NA			Brian				Mary Ann Gilmo		rack-moun	
			SAMPL	ERO	AM./TY	PE			2"				R WEIGHT (R OROP (in		
					ABA	NDO	MENT			_		ROUNO	WATER OBS	ERVATIO	NS (depti	in ft bgs)	Observed		NA NA
			METHO				Back			Depth			Oate/Time			····	Seasonal I	High WT	NA_
			MATER				Soi NA			Depth			Oate/Time Oate/Time			÷.	 		
		w w	QUANT	II Y		_	INA		Sar	Oapth nples				ANIC VAP	OR	ORGA	NIC VAPOR	METER INFO	RMATION
		Inter		vater	ŝ		\vdash	a .		T -		T		DINGS (pp		MANUF/MOD		AMP (eV) SC	
		Sample	Dept		Graphic Log	Stratum	Sample No.	MS P	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head	MiniRae		10.6	USEN
	DESCRIPTION	Sar	(ft bg	s) စိ	ű	å	S S	9 . 5 .	Éĕ	ag ag		<u> </u>			Space	REMARKS			
	36" Recovery	- 11	- 0	-			1			İ					1	4.1			
ľ	0-6" asphalt	11					1		1							FC4.0 0-11		d- 0 0 -1 0	401
ľ		11	-	1			ŀ	ĺ	İ	1								ole S-2 at 6- PH-DRO an	_
ļ			- 1	_	l		1				1				•	542.0)+10 a 11	TI-DINO all	alysis at s.
	6-18" orange medium sand				l		1			1		1							
	• · · · · · · · · · · · · · · · · · · ·	18	-	-				l								4.8			
		1						l			1					ł			
			- 2	-	ļ		ļ				ļ			ļ		4.2			
ŀ					1					1						1			
	8-36" orange silty sand		-	-		İ							ł			4.0			
ŀ			- 3			İ	ŀ			1	1		l						
			- 3	1	l	1				ł									
			l <u>-</u>	-									i .						
1				1									l	1					
			4	÷	┡	┼	┢	!	 		<u> </u>			ļ		ļ			
					l											End of	f boring @	2) 4.0'	
1			-	-		1													
			_ ا	I		1		i	1	İ	1		1						
			- 5	ī		1		ì	1										
			_	_				1	1							1			
								ł	1	1	ļ								
			- 6			.								ļ					
l					l		I						ļ .						
		:	-	-	1		I						1		1				
1			_	l	l					1			i						
			- 7	ī	İ					1			1			1			
l l			ŀ		l	l	ŀ			1			1		ŀ				
l			-	1	1			l								1			
ľ			- 8	1				ļ			<u> </u>								
				1	l		l	ŀ			1		1						
			-	-			1		1										
İ							1												
Į			- 9	-			1			1									
ŀ				İ			1												
			-	-			1			1									
			١ ,,	ı			Ī												
1			- 10 I	1		1	Ĭ	1		1		1	Production Contrates					, te at e _e t a te . t a	
			_			1				1		1							
				1			l		İ			1							

	CMX					L	og	OF	SOI	L B	ORI	NG S	S-3						
PROJECT NAM			PROJEC 70235					OATE/		TARTEC)	OATE/T	TME COMPLE 12/11/08		GROUN	IO ELEVATION (FT. M	ISL) T	OTAL DEPTH	(ft) 4'
PROJECT LOC	ATION		, 0200	JJJ				BORIN	G LOC	ATION (Descrip	ion and/o	or surveyed co	ordinates,	if availabl	le)		+	-
1667 Davis BORING LOCA	Street Camden, NJ	N	ÖRILLIN	G ME	тноо			5-3					NG CONTRAC						•
	,,	Ť	Direct			prob	е					Enviro	probe						
ļ		J	BORING			(in)			2"			-	RNAME			INSPECTOR		RILLING EOL	
l			ORILLIN						NA			Brian				Mary Ann Gilmo		rack-mour	
			SAMPLE	ER OL			MENT		2"				WATER OBS		NC /doub		R OROP (in		NA NA
			METHO	0	ABA	NOOF	Back	fill		Oepth		ROUNO	Oate/Time	ERVAIIO	vas (debu	n in it ogs)	Seasonal		NA NA
			MATERI				Soil			Oepth	-		Oate/Time				-		
			OUANTI				NA			Oepth			Oate/Time						
ł		erva		ter	₽				Sar	nples		,		ANIC VAP				METER INFO	
		Sampla interva	Depth	Jewa J	Graphic Log	Ę	e e	s per	_	vered	ROD	Time	Bkg	Sample		MANUF./MOD MiniRae	DEL L	AMP (eV) S 10.6	US ENV
INTERVAL	DESCRIPTION	Samp	(ft bgs		Grap	Stat	Sample No.	Blows per 6 inches	Driven (faet)	Recov (feet)	""		Jag	Compic	Space			10.0	30 211
0-4'	36" Recovery		- 0	-												4.2	-		
	0-6* asphalt	11						ļ		ļ					ļ				
			-	-			1											ole S-3 at 6	
		11	- 1	ŀ			1									542.0)+10 & TI	PH-DRO ar	nalysis at 9:20
	6-20" orange medium sand		- 1	1			1					ł				342.0			
	o zo orango moziom szina		-	-			ĺ									5.0			
							ĺ												
	20-30" orange silty sand		- 2	-												4.6			
				ļ												.			
			-	-		-					İ					4.1			
Ì	:		- 3	_								ł			ļ				
ł								}]			1				
1	1		-	-]											
1	1			1											1	ļ			
			-4	1					<u> </u>		1		1			End of	f boring @	7) A O'	
			_	-1			1					ł				Lingo	, pointy 6	y 4.0	
							1												
1			- 5	-								ŀ							
										ŀ						ŀ			
			-	-					ŀ		l								
		ŀ	- 6			ļ									ļ				
				1						ľ	ĺ								
			-	-								1							
			_	l						ľ		1				ŀ			
1	1		- 7	ī															
			_	_								ł			1	1			
1						-				ŧ					ł				
			- 8								ļ								
										1	1		l						
			-	-	l	1				1			I						
			- 9																
			- 3	ī															
1				-		1				1			1						
							l												
			10			ļ			ļ	ļ	ł						*************		*************************
1															1				
			-	-						1									
			- 11									1							
L_						L							<u></u>						
\ls09svr01\n\pro	ject\2007\0702358\05\02_Survey_and_Workpap	ers\Suppler	nental SI	borin	g logs(s	oil bor	ring logs	xds S-3											

PROJECT NAM Camden Lai			PROJEC 702358					DATE/	TIME S	ARTE)		TME COM 12/11/0		GROUN	ID ELEVATION (FT. M	(SL)	TOTAL DEPT	TH (ft) 12'	
PROJECT LOC	ATION		702000	300					IG LOC		Descrip			d coordinal	les, if avai	iiabie)				
1667 Davis BORING LOCA	Street Camden, NJ	N	DRILLING	G ME	THDD			TAN	N 1-1	_		DRILLIN	IG CONT	RACTOR						
	• •	1	Direct I				е						probe			Т				
		•	BORING			in)			2"			1	RNAME			INSPECTOR		DRILLING EC		
			DRILLING						NA 2"			Brian	R WEIGH	IT (1)-1		Mary Ann Gilmt	R DRDP (Track-mou	NA	ngo
			SAMPLE	K DL			MENT			г	C					oth in ft bgs)	Observe			NA
			METHOD		ABAI	ADOI	Back	 Till		Depth	Gr	CONTON	Date/Tin		ONS (de)	pararic bys)	1	al High WT		NA NA
			MATERIA				Spil		-	Depth			Date/Tin			······································	1			
			QUANTI	ΤΥ			NA			Depth			Date/Tin	ne						
		terva		ter	Đ,					nples			-8	GANIC VA				OR METER IN		
		el ri	Deoth	ndwa	Graphic Log	Ę	Semple No.	2 a	_	Recovered (feet)	RQD	Time	Bkg	ADINGS (MANUF/MOD MiniRae	DEL	LAMP (eV) 10.6	SOURCE	IS ENV
INTERVAL	DESCRIPTION	Sample	Depth (ft bgs	Ground Ground	Grap	Stratum	Semi No.	Blowe 6 inch	Driven (feet)	Reco (feet)	1	Tanc	المراس المراس	Jumple	Space			10.0		S LIV
0-4'	48" Recovery		- 0 -	-									i			0.0				
	0-6" organic matter-grass			+					ļ	1										
	6-48" medium orange silty sand			11	Ì							j				0.0				
	1 1		- 1 -	.]												0.0				
																0.0				
			- 2 -													.0.0				
			-																	
																0.0				
			- 3 -								ļ					0.0				
																0.0				
4-8'	48" Recovery		- 4	· 												0.0				
	48-96" SAA			-						İ						0.0				
			- 5													0.0				
				$\ \ $:								0.0				
			- 6	-			ļ				ļ	ļ			ļ	0.0				
																0.0				
			- 7	 -												0.0				
				$\ $			ĺ									0.0				
			- 8											,		0.0				
8-12'	48" Recovery																			
	96-144" SAA															0.0				
			- 9	ij												0.0				
				$\ $												0.0				
			- 10				,				ļ					0.0				*** * ** ** *******
			- 11							<u>.</u>						0.0 Collected samp for VO+10 & TF				iS
				$\ \ $												End of	f boring	@ 12.0'		

PROJECT NAM Camden La			702358		MBER			DATE/	TIME ST 12/1	ARTED			ME COM 12/11/0		GROUN	D ELEVATION (FT. M	ISL)	TOTAL DEPTI	1(ft) 12'
PROJECT LOC	ATION								G LOCA		Descript			coordina	tes, if ava	liabie)		.	-
	Street Camden, NJ	N	ORILLIN	3 ME	THOD			TAN	\ 1-2			ORILLIN	G CONTI	RACTOR					
	,	1	Direct	Pusi	n Geop	orobe	9					Enviro				<u> </u>			
			BORING	OIAN	ETER (in)			2"		-	DRILLE	RNAME			INSPECTOR		ORILLING EQ	
			ORILLIN						NA			Brian				Mary Ann Gilmo		Track-mou	
			SAMPLE	R Di	_				2"		_		R WEIGH				R DROP		NA
					ABA		MENT Backt	EII		L	GR	OUNDW	ī		ONS (dep	oth in ft bgs)	Observe		NA NA
			METHO:				Soil			Depth Depth			Date/Tim				Season	al High WT	INF
			QUANTI				NA			Depth			Date/Tim				t		
		Ş			_	П			Sar	nples				GANIC VA	POR	ORGA	NIC VAP	OR METER INF	ORMATION
		i i i	Depth (ft bgs	wate	Graphic Log	ا ا		s per		ned.				ADINGS (MANUF/MOD	EL	,	SOURCE
	OF ORDINATION I	Ę	Depth	ğ	ap High	Stratum	ample .	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample				10.6	USE
NTERVAL -4'	DESCRIPTION 148" Pagetyon	Ű	- 0) ⁽⁵	<u>o</u>	Ø	σz	20 v	0.8	# E		<u> </u>			Space	REMARKS 0,0			
7	48" Recovery 0-6" organic matter-grass		l .													J			
	6-48" medium orange silty sand			. 												0.0			
				П															
			- 1 -	ŀI												0.0			
				Н												1			
				¹ I												0.0			
			- 2	Ш								•				0.0			
																0.0.			
			. .	.				İ								0.0			
				11							ŀ					1			
		ļ	- 3 -	-												0.0			
				Ш															
				11							l					0.0			
			- 4	<u> </u>					l		l					0.0			
⊢8 ′	48" Recovery		Ì	1															
	48-96" tan orange fine sand	11		1												0.0			
				1															
			- 5	: I							İ					0.0			
				Н												1			
		l i	-	11												0.0			
			- 6	1												0.0			
				1												0.0			
																0.0			
									İ	İ			l						
			- 7	<u>, </u>											1	0.0			
		Į.														0.0			
			· ·				!									0.0			
			- 8	<u>'</u>				İ								0.0			
-12'	48" Recovery								1										
	96-144" SAA													1		0.0			
			l _	Į												l			
			- 9	;						1						0.0			
			_					1								0,0			
													l		l	3.0			
			10	<u>'</u>						ļ					ļ	0.0	,,		
			1					•		1				1					
	†		ļ	 									ľ	ŀ		0.0			
			ļ .					l	l	l			1	Ī		Collected samp	le TAN	K1-2 at 11.5	-12" bgs

\s09svr01\n\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental Si boring logs\(soil boring logs.xis|tank1-2

End of boring @ 12.0

RDJECT NAM Camden Lak			PRDJE0					DATE/	TIME ST	ARTED)		ME COM 12/11/0		GROUN	ID ELEVATION (FT. M	SL) TOTAL DEP	TH (ft) 12'
ROJECT LDC/	ATIDN		170200	000					G LOCA		Descript			d coordinat	es, if ava	iable)		
ORING LOCAT	Street Camden, NJ	N	DRILLIN	G ME	THOD			TAN	(1-3			DRILLIN	G CDNT	RACTOR				
	, ,	1	Direct				е					Enviro						
		•	BDRING			in)		-	2" NA			DRILLE Brian	RNAME			INSPECTOR Mary Ann Gilmo	DRILLING EG	QUIPMENT unted Dingo
			DRILLIN			E			2"				R WEIGH	-(lbs)		<u> </u>	R DROP (in)	NA
							MENT			Г	GR				DNS (de	oth in fl bgs)	Observed WT	NA
			METHO	<u> </u>			Back	fill	201	Depth			Date/Tin	ne			Seasonal High WT	NA
			MATERI				Soil	_		Depth			Date/Tin					
		120	QUANTI	ΤΥ	<u> </u>	_	NA		San	Depth nples			Date/Tin	ne GANIC VA	POR	ORGA	NIC VAPOR METER IN	FORMATION
		inte		water	Bo 7	_		۳ ۾						ADINGS (MANUF/MOD		SDURCE
		ample	Depth (ft bgs	ound	Graphic I	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	1		10.6	USEN
	DESCRIPTION	Ö	ft bgs) ဗီ	9	ű	ΰž	Ē Ģ	ರ€	₩ E			<u> </u>	 	Space	REMARKS 0.0		
	48" Recovery 0-6" organic matter-grass		- 0										ļ			0.0		
	6-48" medium orange silty sand			-									1		1	0.0		
					l								l		1			
			- 1	1												0.0		
			_		1								į			0.0		
														ŀ				
			- 2	-	ļ		ļ					ļ		· 		0.0		
																0.0		
																0.0		
			- 3	-												0.0		
		į	l				l							-				
			•	1												0.0		
			- 4	<u>.</u>				ļ								0.0		
-8'	48" Recovery						1											
	48-96" SAA		-	-										ļ		0.0		
			- 5	 -			1							l		0.0		
		'												ļ		0.0		
			-	-			l									0.0		
		- 11						İ										
			- 6											1		0.0		
			 	-												0.0		
			- 7	-												0.0		
			. .								:			1		0.0		
														}				
			- 8										ł			0.0		
	48" Recovery																	
	96-144" tan orange fine sand		l '										ŀ			0.0		
			- 9	-						1			l		İ	0.0		
			-	1				Ì								0.0		
			- 10	I T		ļ								ļ		0.0		
			-	-			ł									0.0		
				П										1	!		ie TANK1-3 at 11.	
			11	il										1		ITDY VU+10 & TE	PH-DRO analysis a	at 10;30
			 . ,	.												End of	boring @ 12,0'	
						1		l	l .	1	1			I	1	1	J 😅	

***	CMX				LO	G	OF S	SOII	L BO	ORIN	IG 1	ΓΑΝΙ	K 1-4	,					
PROJECT NAM Camden Lai			PROJEC 702358		JMBER			İ	12/1	1/08			12/11/0	28		D ELEVATION (FT. M	ISL)	TOTAL DEPTH (ft) 12'
PROJECT LOC								BORIN TAN		ATION (Descript			d coordina		iiable)			
BORING LOCA	TION (sketch)	N	DRILLIN Direct			orob	е						NG CONT Oprobe	RACTOR					
!		1	BORING	DIA	METER (2"			DRILLE	R NAME			INSPECTOR		DRILLING EQUIP	
			DRILLING		_	E			NA 2"			Brian HAMME	ER WEIG	HT (lbs)		Mary Ann Gilmo	R DROP	Track-mount	
						_	MENT				GR	_			iONS (de	oth in ft bgs)	Observ		NA
			METHO! MATERIA	_			Backf Soil			Depth Depth			Date/Tit				Season	al High WT	NA
			QUANTI				NA			Depth			Date/Tit						
		nterva		ater	Log		-	<u> </u>	r—	nples_	1		4	GANIC V		ORGA MANUF/MOD		OR METER INFO	RMATION
		alde	Depth (ft bgs	onud	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head	MiniRae		10.6	US ENV
0-4'	DESCRIPTION 48" Recovery	ő	(ft bgs) (5	Ğ	ξ,	ΰž	6 5	ದ ಕ	₩ €			╁	1	Space	REMARKS 0.0			
	0-8" organic matter-grass						*********			ļ			l		·				
Ì	8-48" medium orange silty sand		-	-						ŀ			i			0.0			
			- 1	-			ŀ									0.0			
																0.0			
														'					
			- 2	-		i										0.0			
			-	-												0.0			
]		į	- 3 -	-							Ì					0.0			
		Н	-	1												0.0			
			- 4	-			ļ									0.0			
4-8'	48" Recovery 48-96" SAA			_												0.0			
Ì		Ш	_																
			- 5	Ī					İ							0.0			
				-										1		0.0			
			- 6	<u> </u>		ļ										0.0			
																0.0			
			-													0.0			
			- 7	i												0.0			
		ĺ	-	-												0.0			
			- 8	ļ												0.0			
8-12'	48" Recovery		ů	Ī												0.0			
	96-144" tan orange fine sand		-	-												0.0			
			- 9	- -			İ									0.0			
															}	0.0			
			-												1	0.0			
			- 10	ĭ				ļ			ļ		1		·	0.0			
			- - 11	-		:										0.0 Collected samp for VO+10 & Ti			
			-	-												End o	f boring	g @ 12.0'	
			- 12	1					<u> </u>	<u> </u>									
\\s09svr01\n\pro	oject\2007\0702358\05\02_Survey_and_Workpapers	\Supple	mental Si	borir	ng logs\(s	oil bo	ning logs	.xis]tank	1-4		_	_			_				

RDJECT NAM			PRDJE0					DATE	TIME \$1	TARTED			TME CDM 12/11/0		GROUN	O ELEVATION (FT. M	ISĹ)	TDTAL DEP	TH (ft)
ROJECT LOC	ATION		[/0235	603					G LOC		Descript			d coordina	l tes, if ava	dable)			12
	Street Camden, NJ TION (sketch)	N	DRILLIN	G ME	THOD			TAN	K 2-1		-	DRILLIN	IG CONT	RACTOR					
	,	1	Direct	Pus	h Geb		е					1	probe						
		•	BDRING			(in)			2" NA			DRILLE Brian	RNAME			INSPECTOR Mary Ann Gilmo	200	DRILLING E	DUIPMENT unted Dingo
			DRILLIN			E			2"			_	R WEIGH	HT (ibs)			R DRDP	• • • • • • • • • • • • • • • • • • • •	NA DINGO
			C) 411. 21				MENT			Ι	GF					oth in ft bgs)	Observe		NA
			METHO	0			Back	fill		Depth			Date/Tin		, ,		1	al High WT	NA
			MATERI	AL			Soil	_		Depth			Date/Tin	пе					
		rs.	DUANTI	ΤΥ Τ	_	1	NA		Car	Depth		-	Dete/Tin						
		Interv		vater	و	1		T =	T .	nples		Г	-1	GANIC VA		MANUF./MOD			SOURCE
		Sample	Depth		Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RDD	Time	Bkg	Sample		MiniRee		10.6	USEN
	DESCRIPTION	Sa	_) <u>ğ</u>	ő	क्र	SS	8 6	غَ مَ	8 8	ļ		ļ	ļ	Space	REMARKS			
-4 '	24" Recovery 0-8" organic matter-grass	11	- 0	-		ļ										0.0			
	8-24" medium orange silty sand			_					İ		ĺ				•	0.0			
		- 11												1					
			- 1	-		1								1		0.0			
													1			0.0			
			ľ	1									1			3.0			
			- 2	-	ļ					ļ			.	ļ	ļ	0.0			
									İ										
			-	-					:							0.0			
			- 3								:					0.0			
						1										5.5			
	1] -	-			1									0.0			
				ŀ					ļ							0.0			
-8'	24" Recovery		- 4	ī					1				i	1		0.0			
J	48-72" SAA		-	-												0.0			
		- 14					1								l				
			- 5	ī									1			0.0			
			_						i				l			0.0			
		ļ	_										l		}				
			- 6	-											}	0.0			
													ł		1				
			-	1		ļ										0.0			
			- 7	-			Ì									0.0			
														1					
			-	-												0.0			
			- 8	ı		ŀ				l						0.0			
-12'	36" Recovery			Ī					1							0.0			
	96-132" tan orange fine sand		-	-												0.0			
													1						
			- 9	-				1						1		0.0			
			l ₋	-		-							1	1		0.0			
			ļ					1											
			- 10		ļ	ļ	**********	ļ		ļ			ļ			0.0			
																0.0			
			•	1		1										Collected samp			
			L 11	ī		ļ					1					for VO+10 & TF	PH-DRC) analysis	at 9:40
			-	-												End of	f boring	@ 12.0'	
	1	- 1	i .	1	ı	1	1	í	1	1	1	1	1	1	1	1			

•••	CMX				LO	G	OF S	SOII	L BO	ORII	NG '	TAN	IK	2-2						
PROJECT NAM Camden Lai			PROJEC 702358		JMBER		ĺ	OATE/	TIME S'	TARTEC)	OATE		E COM		GROUN	O ELEVATION (FT. M	SL)	TOTAL OF	TH (ft)
PROJECT LOC											Oescrip	tion and				tes, if eva	ilebie)			
BORING LOCA		N	ORILLIN			_	-	17 44							RACTOR					
		Ī	Direct BORING				e		2"			Envi	_	NAME			INSPECTOR		ORILLING E	OUIPMENT
			ORILLIN	_					NA		-	Brian					Mary Ann Gilmo	ore	i	ounted Dingo
			SAMPLE	R O	AM./TYP	E			2"					WEIGH			NA HAMME	_	-	NA
			METHO		ABAI	1001	MENT Back	50		Oepth	GF	ROUNO	$\overline{}$	TER OB:	_	IONS (de	oth in ft bgs)	Observe	ed WT sal High WT	NA NA
			MATERIA				Soil			Oepth	-		$\overline{}$	Date/Tim				Season	arright set	
			QUANTI	ſΥ			NA			Oepth			Ţ	Date/Tim						
Ī		interva		ater	- Bo			Γ <u>.</u>	_	nples	Г	т	4		ADINGS (ORGA MANUF./MOC		OR METER (I LAMP (eV)	SOURCE
Ì		Sample	Depth	ornd	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovera (feet)	RQO	Time		Bkg	Semple	Heed	MiniRee		10.6	US ENV
INTERVAL 0-4'	DESCRIPTION 48" Recovery	ő	(ft bgs) ŏ	5	ts.	S Z	18 18 18	2 8	5 8	-	-	+			Space	REMARKS 0.0			
0-4	0-6" organic matter-grass		0 .	Ì					ļ		ļ									
ļ	6-48" medium orange silty sand	П	-	-									I				0.0			
			- 1 -										۱				0.0			
				-													0.0			
			- 2 -						ļ								0.0			
				-									İ				0.0			
			- 3	-									I				0.0			
			-										ı				0.0			
4-8'	48" Recovery		- 4								ļ					ļ	0.0			
	48-96" SAA												İ				0.0			
			- 5										ı				0.0			
													ı				0.0			
			- 6	<u>. </u>									1				0.0			
:			- '														0.0			
			- 7	-													0.0			
			آ													1	0.0			
8-12'	24" Recovery		- 8													i	0.0			
			- 9										۱				Collected samp			
96-120"	96-120" tan orange silty sand																		g @ 10.0°	ut 10,00
-			10	1		l,					ļ		.							eterte transico de como accomo a secono de sec
			<u>.</u> .									[
			- 11 	il																
			-																	
llengewattele	ect/2007/0702358\05\02_Survey_and_Workpapers\S	iupale	- 12 mental Si	 herin	a love, i.e.	nii bo-	ing less	vigitant	2-2	1	<u> </u>	<u> </u>	1			<u> </u>				

ROJECT NAM Camden La			PROJEC 70235					DATE/		ARTED	ı		IME COM 12/11/0		GROUN	ID ELEVATION (FT.	MSL)	TOTAL DEPT	H (ft) 12'
ROJECT LOC	ATION							BORIN	G LOCA		Descript			l coordinat	es, if ava	ilabie)		•	
	Street Camden, NJ	N	DRILLIN	G M	ETHOD			I I MINI	\ Z-J			DRILLIN	IG CONTI	RACTOR					
		1	Direct	Pus	sh Geo		е					Enviro				1		ı	
		•	BORING			(in)			2"			4	RNAME			INSPECTOR		ORILLING EQ	
			ORILLIN SAMPLE						NA 2"			Brian	R WEIGH	(T (lbe)		Mary Ann Gilm	Ore ER DROF	•	inted Dingo NA
			SAMPLE	RU	_		NMENT			_	CE				ONS /do	pth in ft bgs)		ved WT	NA
			METHO	<u> </u>	ABA	NUUI	Back	fill		Depth	GR	OUNDV	Date/Tim		ONS (de	pus in it ogsj	╅	nal High WT	NA
			MATERI				Soi			Oepth			Date/Tim				1		
			QUANTI				NA			Oepth			Date/Tim	ie			1		
		ένα		5		Т			Sar	nples			4	GANIC VA				POR METER INF	
		le Int	Domin	ındwater	la C	E	e.	ia s	_	ered				ADINGS (MANUF/MC	DEL		SOURCE
NTERVAL	DESCRIPTION	Sampl	Depth (ft bgs	Į į	Graphic Log	Stratum	Sample No.	Blows per 6 Inches	Driven (feet)	Recovered (feet)	ROD	Time	Bkg	Sample	Head Space			10,6	US EN
4'	48" Recovery	- 1"	- 0 ·	-	۳	50	w Z	- 11 6	125	<u>κ</u> ε	-	-			Space	0.0			
•	0-6" organic matter-grass		້ໍ					ļ			ļ			ļ					.,,.,.,.,.,.,.,.
	6-48" medium orange silty sand		.	-		1		1						1		0.0			
			I					1							1				
			- 1	-				1				1				0.0			
			I					1				}			1				
			l '	1				1	1							0.0			
			- 2	_			L				l	<u> </u>	I		1	0.0			
			•				Ī	I]	Ī	[·	Ī	1					
	1]	-								1			l	0.0			
			I												l				
			- 3	-								1				0.0			
		ì						1											
			l	1												0.0			
			- 4	ļ		l	ļ									0.0			
·8'	48" Recovery		•	1				-											
	48-96" SAA		-	-			l	1								0.0			
							l												
		- 1	- 5	-			1	ŀ								0.0			
		- 1	l_					ļ								0.0			
			l '	1				Ì		1						3.0			
			- 6				.					ļ			ļ	0.0			
				1				1							1	1			
			[- ·	-											1	0.0			
			_																
			- ⁷	7												0.0			
			l <u>. </u>												ļ	0.0			
			·													15.5			
			- 8													0.0			
-12'	48" Recovery		I																
	96-144" tan orangв silty sand		- ·	-				1							l	0.0			
			۱	1	l							1		1					
			- 9	Ī	ŀ			1								0.0			
			١	_	1			1					ļ			0.0			
			Ī		l					1									
			10		ļ			ļ					ļ			0.0			
			l- ·	-	ļ							1	l		}	0.0			
			,,	l	ì					1	1		l		}	Collected sam			_
			- 11 	ī	l		ŀ					1	1			for VO+10 & T	PH-DR	(∪ analysis a	t 14:00
			l		l								1		1	Fnd /	of boring	g @ 12.0°	
	1													1	i			ელე,∪	

PROJECT NAM Camden Lat			70235					DATE		TARTED)	DATE/T	1ME COM 12/11/0		GROUN	ID ELEVATION (FT. N	MSL.)	TOTAL DEPTI	H (ft) 12'
ROJECT LOCA	ATION		1. 02.00					BOR			Descript	ion and/o	r surveyed		tes, if ava	llable)			
	Street Camden, NJ TION (sketch)	Ņ	DRILLIN	G M	ETHOD			J I Al	ır. 2-4				IG CONTI	RACTOR					
		t	Direct				be						probe			I		I	
			BORING			(in)						DRILLE Brian	RNAME			INSPECTOR Mary Ann Gilme		DRILLING EQ	
			DRILLIN SAMPLE			PF.			2"			-	R WEIGH	IT (lbs)			ER DROF		nted Dingo NA
			Or use: Ec				NMEN	т	<u> </u>	Т	GR	_			_	pth in ft bgs)		ved WT	NA
			METHO	D			Bac			Depth			Date/Tim					nal High WT	NA
			MATERI	AL			S	il		Depth			Date/Tim	ne					
		-	QUANTI	TΥ	_	_	N	٩		Depth		_	Date/Tim						
		Interva		Ě	8	ł	\vdash	Τ.		mples	_	_	-	GANIC VA ADINGS (ORGA MANUF,/MOI		LAMP (eV)	ORMATION SOURCE
			Depth	, <u>ફ</u>	Graphic Log	1	욽	E 1	[] E _	Recovered (feet)	RQD	Time	Bkg	Sample			DCL.	10.6	US EN
NTERVAL	DESCRIPTION	Sample	Depth (ft bgs) [Grag	al test	Sample	1 m	Driven (feet)	Rec					Space				
	48" Recovery		- 0	-[Τ	Π									0.0			
	0-8" organic matter-grass			1	1	1	1			1						0.0			
	8-48" medium orange silty sand		l	-												0.0			
			- 1	-	1											0.0			
						1	Ī				1		1						
			-	-		1	Ī		1				1			0.0			
			- 2		1	1	Ī						}		1	0.0			
				-	·····	1							1	1	1				
			-	-	ŀ	1		1					ŀ		ł	0.0			
								1					ĺ						
			- 3	-	l	1		1		1			ļ		1	0.0			
					ŀ	l		1			1		l			0.0			
								1	1	1						0.0			
			- 4							.			ļ			0.0			
-8'	48" Recovery					1		1							1				
	48-96" SAA		-	-									•			0.0			
		- 11	- 5	1		1			1				ł			0.0			
				1											Ì				
			-	-		1		1								0.0			
						1						-	1						
			- 6	 I		1				1			1		ļ	0.0			
			l	_			Ī			1			1			0.0			
					l														
		į	- 7	-;			Ī					1	Í			0.0			
													1						
			-	-			Ī									0.0			
			- 8	-	l											0.0			
12'	48" Recovery		•				Ī				1		1						
	96-144" tan orange silty sand		-	-					ł				ł			0.0			
			- 9	1	1		Ī				1		l			0.0			
			- 9	Ī												0.0			
			ļ	-	1						1		1			0.0			
			ŀ				Ī				1	ļ	1						
			- 10	ī		1					ļ			1		0.0			
			l <u> </u>	_		1	Ī						1			0.0			
						1	1						1			Collected samp	ole TAN	VK2-4 at 11.5	5-12" bgs
			- 11	-			1									for VO+10 & Ti			
					Ī		1		1	1		ŀ	I					-	
																		g @ 12.0'	

RDJECT NAM amden Lai			PROJEC 702358		MBER			DATE/	TIME ST 12/1	ARTED	_		IME COM 12/11/0		GROUN	D ELEVATION (FT. M	ISL) TO	TAL DEPTH	(ft) 12'
ROJECT LOC			1. 22000					BORIN	G LOCA		Descript		r surveyed		tes, if avai	ilable)			<u>-</u>
	TION (sketch)	Ņ	ORILLIN	3 ME	THOO			1 AIN	(3-1	_			IĞ CONT	RACTOR					
		1	Direct				e		Oli			-	probe			In:	T _{oo}		
		•	BORING			in)			2" NA			Brian	RNAME			INSPECTOR Mary Ann Gilmo		RILLING EQU	nted Dingo
			SAMPLE			E			2"			_	R WEIGH	fT (ibs)			R DROP (in)		NA
					ABAI	NOON	MENT				GR	OUNDW	ATER OB	SERVAT	IONS (dep	oth in ft bgs)	Dbserved W	л	NA
			метнос)			Back	Fill		Depth			Date/Tim	18			Seasonal H	igh WT	NA
			MATERI				Soil			Depth			Date/Tim				ļ		
		gg.	QUANTI				NA		San	Oepth nplbs			Date/Tim	ie GANIC V	NDOB.	DRGA	NIC VAPDR	METER INE	OPMATION
		Sample Interva	Depth (ft bgs	vater	Log	1		a			Г	T		ADINGS (MANUF/MOO		MP (eV) S	
		aple	Depth	ş	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head	MiniRae		10.6	US EN
_	DESCRIPTION	Š) ်	5	ਲ	s s	8 2	<u> </u>	8. €	<u> </u>				Space				
4'	48" Recovery		- 0 -													0.0			***************************************
	0-2" organic matter-grass 2-12" medium orange silty sand	11	. .	╢			[0.0			
	12-48" med brown orange silty sand	Ш		П			1												
			- 1 -	۱I											1	0.0			
				$\ \ $							-				}	0.0			
			-			ļ										0.0			
			- 2			1	,]							0.0			
																ļ			
				-					1							0.0			
			- 3				l	İ	ŀ			ļ				0.0			
	1	į	- 3					1	1						•	0.5			
			-	┦				ŀ	1				1	-		0.0			
									l	1			i						
01	10% D	Г	- 4	 I				ļ	1					1		0.0			
-8'	48" Recovery 48-96" SAA	1	l .	$\ \ $										1		0.0			
	1000	11				1													
			- 5	-			1			ľ				l		0.0			
		П					İ						ļ			0.0			
		П	-										l			0.0			
			- 6			ļ				ļ		ļ	ļ			0.0			
		H										1	l	1					
			-	1								-	1			0.0			
			_ 7]	1	1	1	0.0			
			Ī '	ĺ												-			
		i	-	-										1		0.0			
										ļ			İ						
402	ASII Danassan	Г	- 8	- I							}			1		0.0			
-12'	48" Recovery 96-144" SAA	1	l	.												0.0			
	3.01													1					
			- 9	-					ŀ					1		0.0			
						1		1								0.0			
			-				1						1	1		0.0			
			10	I Service		ļ	ļ	ļ	.			ļ				0.0		**.**.**.**.**.**.	
							1						1						
			-	-												0.0 Collected samp			
			- 11	ī			1									for VO+10 & TI	rh-DRO a	ınalysis at	13:00
			-	-												End o	f boring @	12.0	
	ì			1	l	1			1	1	1			1	1	1			

ROJECT NAM Camden Lat			70235			ER			DATE/		TARTED			IME COM 12/11/0		GROUN	D ELEVATION (FT. M	ISL)	TOTAL DEPT	H (ft) 12'
ROJECT LOC	ATION		1,0200						BORIN	G LOC		Descript			i coordinat	es, if ava	ilable)		L	
	Street Camden, NJ TION (sketch)	N	DRÍLLIN	G M	ETH	OD T	-		TAN	3-2			ORILLIN	IG CONTI	RACTOR					
raito Lour	11011 (sheldly	Ť	Direct				rob	е					Enviro							
		ı	BORING	OLA	MET	ER (i	n)			2"			1	RNAME			INSPECTOR		ORILLING EC	QUIPMENT
			DRILLIN							NA			Brian				Mary Ann Gilmo		•	unted Dingo
			SAMPL	RO						2"				R WEIGH				R OROP	• •	NA
			ļ			ABAN	DON	IMENT			-	GR	OUNDW			ONS (de	oth in ft bgs)	Observe		NA NA
			METHO MATER					Back Soil			Oepth			Oate/Tim				Season	al High WT	NA
			QUANT					NA			Oepth Oepth			Oate/Tin				1		
		e >	GOART	T	Т					Sar	nples			_	GANIC VA	POR	ORGA	NIC VAP	OR METER IN	FORMATION
		İnte		Mate		l le			ĕ "			Γ		4	ADINGS (MANUF./MOO		LAMP (eV)	
		Sample	Depti	1		Graphic Log	Ѕтаtит	Sample No.	Tches	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample		MiniRae		10.6	USEN
	DESCRIPTION	ŝ) j	L	ő	&	S S	9 B	5 £	88		<u> </u>		ļ	Space	REMARKS			
4'	48" Recovery		- 0	-	l								l	I	1	l	0,0			
	0-3" grass and roots		1	-	Ī				,,	·	· · · · · · · · · · · · · · · · · · ·	1			1	Ī				
	3-12" strong brown silty sand 12-48" med brown orange silty sand		l -	-	ı						l						0.0			
	12-40 med brown orange sitty sand		- 1	_	l												0.0			
			l '	1	ı											l	3.5			
			-	-													0.0			
				1																
			- 2	-	ļ				ļ	ļ		}	ļ			ļ	0.0			
					l							1								
			-	-	ı					ļ							0.0			
					l	1			1											
			- 3	-	l							l		1		1	0.0			
					l							İ		1			0.0			
		ì	-	1	ı									•			0.0			
			- 4	- I								ļ					0.0			
.8'	48" Recovery		l .	1	ı															
	48-96" SAA	1.	1-	-	1					İ							0.0			
		11			1															
		П	- 5	-	1					İ							0.0			
		П			1					ł										
			-	-						1	i						0.0			
			_	l	1			ŀ						1		1				
			- 6	Ī	1			·····	İ			1	·····	i	f	l	0.0			
			_	_	ı					Ì				1			0.0			
					ı											1				
			- 7	-	1				1								0.0			
				1	1				İ											
			-	-	1	ļ				1							0.0			
				1	1															
		f	- 8	-	1					!		,					0.0			
12'	48" Recovery		1			- 1			1											
	96-144" SAA		-	-	1												0.0			
	1	$\ \ $	- 9	 -													0.0			
			, a	1					1					ł						
			-	-	1			1									0.0			
					1			Ī	l	1				l						
			- 10		·	,,				ļ							0.0		** *******************************	
					1					1										
			-	-	1					1							0.0			
				l	1					1							Collected samp			
			- 11	ī	1												for VO+10 & TF	'H-DRC) analysis a	ıt 13:10
						-								Į.	ĺ			f horin-	@ 12.0'	
																		DIDILLA	SU IZ.U	

ROJECT NAM amden La			PROJE 70235					DATE/		ARTED			ME CDM 12/11/0		GRDUN	ID ELEVATION (FT. I	visl) T	DTAL DEPTH	(ft) 12'
ROJECT LOC								BORIN TAN	G LOCA		Descript	on end/o	r surveyed	d coordinat	es, if ava	ilable)			
	TION (sketch)	N.	DRILLIN			-								RACTOR					
		1			sh Geo		e	 -	2"			Enviro				Tuone or no	T _a	2011010 5011	
		•	BORING DRILLIN			(m)			NA NA			DRILLE Brian	K NAME			INSPECTOR Mary Ann Gilm		ORILLING EQU Track-moun	
			SAMPL			PE .			2"				R WEIGH	-IT (lbs)			ER OROP (in		A
						_	IMENT			Т	GR					oth in ft bgs)	Observed		NA
			метно	0			Back	Fill		Depth			Dete/Tin		•	<u> </u>	Seesonel		NA
			MATER	IAL			Soil			Depth			Oete/Tin	ne					
			QUANT	ΙΤΥ			NA			Depth			Dete/Tin	ne					·
		terva		車	B	1		,		nples	r		4	GANIC VA				METER INFO	
		ele F	Depti	1	문	Ę	용	s Per	=	verec	RQD	Time	Bkg	ADINGS (MANUF/MO MiniRae	DEL L	AMP (eV) St	OURCE US EN
NTERVAL	DESCRIPTION	Sam	Depti	s) [8	Graphic Log	Stratum	Sample No.	Blows per 6 Inches	Driven (feet)	Recovered (feet)		''		0	Space				
4'	48" Recovery	Ĩ	- 0	- 	Ť		T	Ť					<u> </u>			0.0			
	0-2" grass and roots			-					ļ										
	2-16" strong brown silty sand		-	-								1	1			0.0			
								1		1						0.0			
	16 40" mod hourn amaga silb, sond		- 1	-		1										0.0			
	16-48" med brown orange silty sand		.			1					1		ł			0.0			
						1										1			
			- 2	-		ļ					ļ			ļ		0.0			
		Ш				1		1							}				
		li	-	-	ļ	1				}					Ì	0.0			
			_		İ	İ									ļ				
			- 3	-												0.0			
			_	_	1											0.0			
				1	Į.					1									
			- 4	-		ļ					ļ					0.0			
·8'	48" Recovery	П				İ										ļ.			
	48-96" SAA	Н	-	-	ŀ	1										0.0			
		П	- 5	I									İ						
		П	- 3	ī	l					1						0.0			
		Н	-		l											0.0			
	1				1				İ										
			- 6			ļ	ļ	ļ	ļ	ļ						0.0			
			-	-												0.0			
			_ 7	l					1							0.0			
			Γ΄	Ī												3.0			
			 	-					1							0.0			
							ŀ												
	1		- 8	-,		1								1		0.0			
-12'	48" Recovery								İ							0.0			
	96-144" SAA		-	-									ĺ			0.0			
			- 9	-i		1										0.0			
			Ī	1									1						
			-	-		1							l			0.0			
				I	1								l						
			- 10	ī		1	l						·····			0.0			
	1		l		ł											0.0			
						1	l									Collected samp	nie TANK'	3_3 at 11 5	12" hae
			l - 11	I -		1	ŀ	İ								for VO+10 & T			
			l '''	1													, 5,,0		. 5.25
			-	-		1	ı		!							End o	f boring @	2 0 12.0'	
	i .		1	- 1	ı	1	I .	ı	ı							1			

PROJECT NAM			PROJEC					0	ATE/I	TIME ST		-				GROUN	IO ELEVATION (FT. M	ISL)	TOTAL OEP		_
Camden Lat PROJECT LOC			70235	805				В	ORIN	G LOC/	1/08 TION (Descript		12/11/0 or surveyed		tes, if ava	fable)		L	12'	
	Street Camden, NJ	R.I	ORILLIN	G 1/5	THOO			Т	TANK	3-4				NG CONTI							
BORING LOCA	TON (sketch)	Ť	Direct				be							probe			· · · · · · · · · · · · · · · · · · ·		,		
		ı	BORING			(in)				2*			1	RNAME			INSPECTOR		ORILLING E		
			ORILLIN			DF.				NA 2"			Brian	R WEIGH	-(T /lbs)		Mary Ann Gilmo		•	unted Ding NA	go
			SAWIFEE		_	_	ONME	NT	_		Ι'''	GF			• •		pth in ft bgs)	Observ			NA
			метно	0				ckfill			Depth			Oate/Tim				_	nal High WT		NA
			MATERI					ioil			Oepth			Oate/Tin				! —			
		ø	QUANTI	TΥ		Т		IA		Sar	Oepth			Oate/Tin	ne GANIC VA	PUB	ORGA	NIC VAP	OR METER IN	FORMATION	
		inter		water	Log	١.	<u>. </u>	Т	. e		_	T			AOINGS (ppm)	MANUF/MOC		LAMP (eV)		<u>` </u>
INTERNAL	DECORPTION	ample	Depth (ft bgs		Graphic Log	a ter	Sample	اه	ows p	Driven (feet)	Recovered (feet)	RQO	Time	Bkg	Sample	1	MiniRae	_	10.6	US	ENV
0-4'	DESCRIPTION 48" Recovery	Ű	- 0) <u>o</u>	0	+"	9 0	2 1	9	ے ک	≈ €	╁		 	╁──	Space	REMARKS 0.0				
0-7	0-3" organic matter-grass													!							*******************
			-	-				ı							}	İ	0.0				
	3-10" strong brown silty sand 10-48" med brown orange silty sand				l												0.0				
	I TO THE DIOWN Grange Sitty Saild		ļ '													1	0.0				
			ļ- ·	-	1												0.0				
			- 2		1							Ì					0.0				
		H	- 2	<u> </u>		1	1	····									. 0.0.				
				-													0.0				
		į	,													i					
			- 3	1			1	ı									0.0				
				-				ŧ									0.0				
							İ	Ì													
4-8'	48" Recovery	Г	1 4	ī		1		· · · ·						1			0.0				
	48-96" SAA		. .	-			1	l									0.0				
	ľ	П	_	ŀ			1														
		П	- 5	ī			1	}									0.0				
				-								1					0.0				
				l			1	ĺ													
		П	- 6	Ī		1									ļ		0.0				
			 - .	-													0.0				
			_	1	1						İ				1						
			7	ī				-									0.0				
				-													0.0				
			_	1				1													
8-12'	48" Recovery	Г	- 8	Ī]			0.0				
- · -	96-144" SAA		ļ	-	ĺ												0.0				
			_																		
			- 9	Ī				-									0.0				
			[- ·	-[1		0.0				
			4.0	l		-															
			- 10	Ī			Ī				İ						0.0				,,,
			- 11	- 													0.0 Collected sample for VO+10 & TP	PH-DR	O analysis a		i
				-	1						l			1			End of	boring	g @ 12.0'		

PROJECT NA	ME aboratories		PROJEC 70235					DATE/		TARTED)	DATE/T	TME COM 01/23		GROUN	O ELEVATION (FT.	MSL)	TOTAL DEP	TH (ft) 16'	,
ROJECT LO								eorin SB-5	G LOC		Descrip	tion and/		ed coordinates	, if avails	ible)				
	CATION (sketch)	N A	ORILLIN Direct			nrot							NG CONT	RACTOR						
		I	BORING						2"				R NAME			INSPECTOR		DRILLING E	OUIPME	NT
			ORILLIN						NA			Brien				Tom Cunningh		Truck-mo		Geoprob
			SAMPLE	R D					2"	_			RWEIG				ER DROP		NA	***
			METHO		ABA	NDON	MENT Backt	511		Depth	G	ROUND	Date/Tim	DBSERVATION	NS (depth	in ft bgs)	Observ	red WT na! High WT		NA NA
			MATERIA				Soil			Depth			Date/Tim							
		-	OUANTI	īΥ		,	NA			Depth			Date/Tim			,				
		nterv		rater	Log			<u> </u>	Sar	nples		r —		RGANIC VAP EADINGS (pp		MANUF./MO		OR METER IN LAMP (eV)	SOURC	
		Sample (Depth		Grephic Log	Stretum	Semple No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	ROD	Time	Okg	Sample	Head	MiniRae		10.8		US Env
	L DESCRIPTION	Sar	(ft bgs) စိ	ő	ğ	δź	9 6	ΞĒ	5 €	ļ	_	<u> </u>	0.00	Space	REMARKS				
)-4'	36" Recovery 0-4" Asphalt		- 0	1		ļ		.		ļ	ļ	ļ		00,00						
	4-36" brown clayey silt little fine		- ·	-								ŀ		0.00						
	to medium sand													0.00						
			-1 -											0.00						
				-										0.00						
			- 2											0.00						
						1								0.00	1					
				-		1					ŀ			0.00						
			 - 3				ŀ							0.00	ì					
				1										0.00						
			-	-		l														
			١,		1	l								İ						
-8'	48' recovery		- "	Ī				*** ** **												
_	48-68" SAA			-										0.10						
			_	ļ						1				0.10						
			- 5	Ī		l								0.10						
		- 11		-		1	ł							0.00						
	68-96" tan fine to medium sand			Į		1														
	trace silt		- 6	ì		1				·····	Ì			0,00						
				-			l						ŀ	0.00						
			١.	1										2.50						
			- 7	ī	l	1		l						2.50						
				-		1	ł							2.30						
				1		l								0.50						
-12'	48" Recovery		- 8	Ī						1			processor and a	0.50		Section of the section of				
	96-144" SAA			-	1						ŀ			2.30						
				1								:								
			- 9	ī	l							ŀ		0.50						
			ļ	-										0.60						
												1								
			- 10	î		.		ļ			····			1,30		Collected sam			20-126	" bgs
			l. ,				1						1	4.40		for PP+40 ana	ııysıs at	9:34		
			ا								ŀ		1	-,,0						
			- 11	-										2.00						
			l . .	.										1.50						
										l			1	ł						
	1		- 12								1			2.00	4					

PROJECT NAM Camden Lal			PROJECT 702358		MBER			1	01/2	TARTE(23/09		1	ME CON 01/23	/09		ND ELEVATION (FT. &	ASL)	TOTAL DEP	TH (ft) 16'
PROJECT LOC								BORIN SR-5	DUP	ATION	Descrip	tion and/	or survey	ed coordina	es, If avai	lable)			
ORING LOCA		. N	ORILLING					00-0	501	_	_	DRILLIN	IG CONT	RACTOR					
		Ī	Direct F BORING	_			0		2"			_	Probe			INSPECTOR		DRILLING E	OUTSMENT
		_	ORILLING			iii)			NA.			Brian	N IV-WIE			Tom Cunningh	am	1	unted Geoprobe
			SAMPLE			E			2"	-			R WEIG	-∏ (lbs)			R DROP	_	NA
					ABAN	1DO	MENT				G	ROUND	NATER C	BSERVATI	ONS (dep	th in ft bgs)	Observ	red WT	NA
			METHOD				Back			Depth			Dete/Tin				Season	nal High WT	NA NA
			MATERIA				Soi			Depth			Date/Tin				-		
		.	OUANTIT	Y TT		_	NA		Sar	Depth nples			Date/Tin	ne RGANIC V	non n	OPCA	NIC VAD	OD NETER II	FORMATION
		Inter		water	3		┢	\$ <u>"</u>		<u> </u>	Τ			EADINGS (MANUF./MOD			SOURCE
		Sample	Depth	ound	Graptic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)		RQD	Time	Bkg	Sample				10.8	US Env
INTERVAL	DESCRIPTION	ŝ	(ft bgs)	Ď	Ö	g,	ΰž	E G	రెక్	2, €	-	-		-	Spac	REMARKS			
12-16'	48" Recovery		l <u> </u>											0.30					
	144-192" SAA			П			l												
			- 13	.		l		İ				ĺ		0.40					
			l	П										0.10	1				
		i i		П								į		"	ł				
			- 14											0.20				nas es es essenti	
			l	П		1				ŀ				0.40					
														0.70					
		į	- 15	:						ŀ				0.30					
]	П									1	0.30		İ			
			-									:		0.00					
•			16	: 1		┢		 		\vdash	-		 	 	+	<u> </u>			
			l_	П												End o	f boring	g @ 16.0°	
				$\ \ $			l						1	ŀ					
			- 17	:															
			l	╽╽					ľ							1			
			-	$\ \ $				ŀ											
			- 18											· · · · · · · · · · · · · · · · · · ·	·-				
				П											i	İ			
											1			İ	1				
			- 19	:		l													
			Ι .										1	-		1			
			- 20	- 1											.				
				П			l												
				╽┃				1											
			ı - 21	<u> </u>				1				[
				} 			1												
			l - 22	1				i				1							
	I							1	I	ı	i	1		1	1	l			

			00117				ī			τ —	_		Т.	71 •	1		
			0811S								ľ		Ī	- ا۲			
			24850										-	-			
i			43320										Ī	11 -			
			0≯16£										-	-			
			01001								ļ		!	01 -			
		i	0 + 8⊊Z										-	-			
			Z4342											6 -			
														Ŭ		1410	
			>20,000											-		24" Recovery 36-144" SAA	
			33810										Ī	8 -			
			>20'000							:			-	-			
			32160										;	۷ -			
			36240										-	-			
			>20'000					ļ						9 -			
			0 7 Z57										-	-			
			000'09<											g -	pues t	50-96" tan fine to mediun race silt	
			>20'000													AAS "03-84 bnss muibem o	1
	;															ls' recovery	
			>20,000										ī	Þ -			
			39008											-			
			>20,000								ŀ		-	ε -			
			>20'000										-	-			
			. 27600										-	z -			
			ZÞ00Þ										-	-			
			32160										.	ι -			
			1663Z										$\ \ _{-}$	_	ore fine to	-48" brown clayey silt tra nedium sand	1
														0 -		l8" Recovery -7" Topsoil	
	REMARKS	Space	18052	\vdash	-	 	€ ₽	(f D)	6 B	S S	Str	On.	စ္ခ (gg y)	Sa	DESCRIPTION	
70000 (100 00 0	хөшлү	bseH	ekime2	Bkg	əmiT	доя	at)	ž ģ	Blows per 6 inches	mple	at m	Graphic Log	oundwater	Depti	nple !		
IIC VAPOR METER INFORMATION LAMP (4V) SOURCE	NADRO GOM. FUNAM		RCURY VAPO ADINGS (ng/n		 	l	Səjd	msc T		Ц	ĺ	٦	ater		nterv		
				DateOTim			Depth	٦		ΑN	_		_	TNAUO	<u> </u>		
"			8	miT\etsQ			Depth	Г		lio2	_		JA	RETAM			
AN TW rtgiH tanossa2				miTNatsQ			Depth		11	Backfi			a	OHTEM			
AM TW bevreadO		ruqeb) Si	иопауяза							TNEM							
AN (ni) GORD 8			(sql) T	y weigh				ıZ			3	qYTI.M/					
	Tom Cunningha			74	Brian			AN			1			ספינייי	_		
DRILLING EOUIPMENT	INSPECTOR	L			ONIVO DRILLER			ıZ		8		h Geop AETER (1		
			ROTOA	в соитя							_			סאוררוא	N		BORING LOCATI
	(ex	lelisve li ,	atenibroco b	IL SUIVBY BE	ohns no)escubp	I) NOIT	nb ∃rocv	M-1Dr							тои treet Camden, NJ	ROJECT LOCAT
21.			60	01/23/			60/8	2/10					208	70235		ratories	Camden Labor
SL) TOTAL DEPTH (ft)	D ELEVATION (FT. M	GROUNG	31376	WE COWE	m∃TAG	L	03TSA	TR SMI	T\3TA0			WBEB	I IN TO	PROJE			PROJECT NAME
				100											_		\

PROJECT NAM Camden La			PROJI 7023			ER			DATE		TARTE)	DATE/		1/23/0		GROUN	D ELEVATION (FT. M	ISL)	TOTAL DEF	РТΗ (ft) 21'	
PROJECT LOC			1 020	5500	<u>. </u>				BORII M-1	IG LOC		(Descrip	tion and			i coordinates,	if eveile	bie)		I.	- 21	
BORING LOCA		N	DRILL						IIV-1L	Jup						ACTOR				-		
		I	Direct BORIN					е		2"			Enviro					INSPECTOR		DRILLING E	OUIPMENT	r
			DRILL							NA			Brian					Tom Cunningha	am	Truck-mo		
			SAMP	LER I	DIAM.	/TYP	E			2"			HAMME	R W	VEIGHT	(ibs)		NA HAMME	R OROP	(in)	NA	
						ABAN		MENT					ROUND	_		SERVATION	S (depth	in ft bgs)	Observ			NA
			METH					Back			Depth			+-	te/Time				Seasor	al High WT		NA
			MATE					Soi NA			Depth			+	te/Time				╢			
		Se Se	QUAN	T.		_		INA		Sa	mples			Dat		RCURY VAPO	OR	ORGA	NIC VAP	OR METER II	NFORMATIO	ON
		inter			wate	Graphic Log	_		S Per		T E	ī		L	REA	OINGS (ng/n		MANUF./MOD		LAMP (eV)		
		Sample	Dep			aphic	Stratum	Sample No.	Blows pe 6 inches	Driven (feet)	Recove (feet)	ROD	Time	F	Bkg	Sample	Head	Lumex			<u> </u>	
INTERVAL 12-14	DESCRIPTION 24" Recovery	S S	(ft bo	js) (5	ő	ű	ΰž	1 to 1	_ 5 €	1 2 8	+	<u> </u>	╀			Space	REMARKS				
	144-168" SAA		- 13 -	-																		
14-16'	24" Recovery 168-192" SAA	П	- 14	1	1	•••••					1	1		1		43350						
	100-192 SAA	11	_	_							1					43330		Ì				
				-	ı											24850						
			- 15	i -									l			04400						
			l_												ĺ	21180		Collected samp for Mercury and			92" bgs	
						ı					İ				1	12875		10. (, 0,0 0			
16-18'	24" recovery 192-216" SAA		i 16	-																		
18-21'	36" recovery		- 17	, <u> </u>											: :			Collected samp	la M1	C at 216-2	722" has	
	228-252" SAA		- 18									.,						for Mercury ana				
		- 14											ļ					-				
			-	1	ł							1			ŀ	>50,000		wet at 19.0°				
		11	i - 19	ι է	1	l					i					>50,000		We(a(19.0				
			Ī	ľ		ŀ				ł						>50,000						
			-	-	ı					1												
			 - 20	L	١				L					l		>50,000						
			-	-												9971 2460		Collected samp	lysis a	t 14:08	162" bgs	
			- 21 -	-														End of boring @	21.0			
			ľ	- 1					1	1	1			•				Ī				

PROJECT NAM Camden La			PROJEC 70235		MBER			DATE	TIME ST 01/2	TARTED 23/09)	DATE/T	1ME CON 01/23/		GROUN	D ELEVATION (FT.	MSL)	TOTAL DEPTI	1 (ft) 20'
PROJECT LOC								eorin M-2 (G LOC		Descrip	tion and/	or survey	ed coordinat	es, if avai	lable)			
BORING LOCA		N ♠	DRILLIN Direct			prot	oe						NG CONT	RACTOR					
			BORING						2"			_	R NAME			INSPECTOR		DRILLING EO	UIPMENT
			DRILLIN			_			NA			Brian				Tom Cunning		 	nted Geoprob
			SAMPLE	R DI	_		MENT		2"		G	•	R WEIGH	eservatio			ER DROP		NA NA
			METHO	·	- 707	11001	Back	ill		Depth		COUNTRY	Date/Tin		no (dopi	ir iir ii bga)	1	al High WT	NA NA
			MATERIA				Soil			Depth			Date/Tin				1		
		88	OUANTI	īΥ I.		_	NA T		Sar	Depth			Date/Tin	ne ERCURY VA	POR	ORG	ANIC VAP	OR METER INF	ORMATION
		e Inter	1	twate	607 o	۽	_	ž g		ge.	Π	Τ	RE	ADINGS (ng	/m3)	MANUF./MC			SOURCE
INTERVAL	DESCRIPTION	Sample	F		Graphic	Stratur	Sample No.	Blows pe 6 inches	Driven (feet)	Recove (feet)	ROD	Time	Bkg	Sample	Head Space	Lumex REMARKS		<u>l </u>	
0-4'	24" Recovery	- I	- 0 -	1	_ ّ	, w	<u> </u>	<u> </u>	22	- 2	1	 	\vdash	36240	Space				·
	0-12" Topsoil 12-24" brown clayey silt trace fine					1					ļ			1182					
	to medium sand																		
			- 1 -	1										2585					
	1			.									l	2585					
		į.											l						
			- 2 -			ŀ					ļ		1						
		ł		1									l						
			- 3 -										l						
							l				1								
											ĺ			l					
			- 4											895					
4-8'	36' recovery 48-60" SAA												l	1753	İ				
	60-72" tan fine to medium sand	Ш											l	1733					
	trace silt	Ш	- 5	-									l	2920					
				.\							ŀ			3887					
													l		ł				
			- 6	1										6630	····				
		į	١	- 1									l	4839					
		ĺ	-	l									l	15710		•			
		Г	- 7	ī			l						İ	15710	ļ				
				1								i							
			- 8	 -				ļ											
8-12'	48" Recovery													9474					
	96-144" SAA			11			l		ļ		ļ			9152					
			- 9	-										!					
														3521					
														6000	ļ				
			- 10	1		ļ													
			l			1								7924					
							1					İ		9728					
	}		- 11	-			1							15100					
:		}												'3''03		Collected sam			4" bgs
1			- 12	1		1			l	1	1	1	Į.	1	1	for Mercury at	nalysis e	t 16:34	

PROJECT NAM Camden Le	boratories		PROJECT NI 70235805	JMBER				01/2	TARTEC 23/09			01/2	OMPLET 23/09			O ELEVATION (FT. M	SL)	TOTAL OEP	ГН (ft) 20'	
PROJECT LOC 1667 Davis	ATION Street Cemden, NJ						BORIN M-2 [G LOCA	ATION (Oescrip	tion end/	or surv	eyed cod	ordinate	s, if avail	able)				
BORING LOCA		N	DRILLING MI		ncoh					_	ORILLII Enviro		NTRACT	OR						_
		I	BORING OIA			e		2"	-	_	DRILLE					INSPECTOR		ORILLING E	DUIPMENT	
			DRILLING FL					NA			Brien					Tom Cunningha	ım	Truck-mo	unted Geoprobi	В
			SAMPLER DI		_			2"					IGHT (Ib	_		NA HAMME!			NA	
			METHOD	ABA		MENT Back	en en			Ģ	ROUNOV	Oate/		IOITAVI	NS (depti	in ft bgs)	Observe		NA NA	
			MATERIAL			Soil			Oepth Oepth			Oate/					Season	al High WT	. NA	
			OUANTITY			NA			Depth			Date/								_
		lerva	ja j	Б				San	nples	_	,		MERCU						FORMATION	
		Sample inter	Dapth S	Graphic Log	Ę	뿚	Blows per 6 inches	_ <u>.</u>	verec	ROO	Time	Bk	READING	GS (ng/ mple	m3) Head	MANUF./MOO	EL	LAMP (eV)	SOURCE	
INTERVAL	DESCRIPTION	Sam	(ft bgs) o	Grap	Stratum	San No.	Blow Fire	Driven (feet)	Recover (feet)				<u> </u>		Space	REMARKS		•		_
12-16'	36" Recovery												15	5100						
	144-192" SAA								1				43	3350						
			- 13 -				ł													
										ŀ		l	24	1850						
1							1						21	180						
			- 14				ļ													
					'		1						12	2875						
						ı	Ì		1			l								
			- 15 - I																	
						1														
16-20'	48" recovery		 - 16 -					ļ				.								
10-20	192-240" SAA	[]							ļ			ı								
												l	İ							
			· 17 -									l								
		1	[]										15	5100						
												l	١.	371						
			- 18 -				ļ							3/ 1						
		į li											10	670						
			-									l	6	149		wst at 18.5'				
			19 -																	
													6	261		Collected samp	io M O	B at 224.2	IO" bee	
		ľ										ı	4	654		for Mercury ana			in. pgs	
			20 -										-			End of boring @			er et a l'annouve	
								İ	ŀ											
						l														
			- 21 - I																	
								1												
											1	ľ								
			- 22 - 										-							
		1																		

ROJECT NAM Bmden La	ME Iboratories		PROJEC 70235		MBER			DATE/	TIME S 01/2	TARTEC 23/09)	DATE/T	IME COM 01/23/		GROUN	DELEVATION (FT.	MSL)	TOTAL DEP	тн (nt) 19'	•
ROJECT LOC								BORIN M-4 I	IG LOC		Descrip	tion end/		d coordinates	, if evalle	ble)				
	ATION (sketch)	N •	DRILLIN										oprobe	RACTOR						
		I	BORING				56		2"			_	R NAME			INSPECTOR		DRILLING E	OUIPME	NT
			DRILLIN			•			NA			Brian				Tom Cunning	nam	Truck-mo		Geopro
			SAMPLE	R Di					2"				R WEIGH				ER DROF		NA	
			METHO	n	ABA	NDO	NMENT Backi	iii		Depth	G	ROUND	Date/Tim	BSERVATION	4S (depth	in ft bgs)	_	red WT nal High WT		NA NA
			MATERI				Soil	_		Oepth			Date/Tim				00.00		•	,
		-	OUANTI	TΥ			NA			Depth			Date/Tim							
		Interv		/ater	69			<u> </u>		nples		Ι	4	ERCURY VAP ADINGS (ng/		MANUF./MC		OR METER IN LAMP (eV)	SOURC	
		Sample	Depth	1 5	Grephic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)	RQD	Time	Bkg	Sample	Head	Lumex		10.6		US ENV
	DESCRIPTION	S	(ft bgs) စိ	Ď	š	8 2	8 9	E &	8 8	<u> </u>			1365	Space	REMARKS				
4'	36" Recovery 0-12" topsoil		- 0 -	- -										1291						
			- 1	-										875						
			-	-										910		:				
	12-36" brown clayey silt trace fine to medium sand		- 2	- -										920						
			- 3	-										1512						
			-	-																
8'	36' recovery 48-60" SAA		- 4	<u>.</u>				.					30 mm -	802 992						
	60-84" tan fine to medium sand		- 5											1850						
	trace silt		-	-								:		994						
			- 6					• • • • • •						921						
			- - 7 -											999						
-12'	48" Recovery		- 8	1										3263						
	96-144" SAA		- - 9											3416 4552						
				$\left \cdot \right $:						3561						
			- 10	 			ļ	ļ ļ						2278						
			_	$\ \ $										2291						
			- 11	ī			ļ							3188						
			-	- I		ı	ı]				4891						

PROJECT NAM Camden La	boratories		PROJECT NO 70235805				DATE		7ARTEC 23/09		DATE/T	ME CON 01/23		GROUN	D ELEVATION (FT. M	ISL)	TOTAL DEP	TH (ft) 19'
	ATION Street Camden, NJ						BORIN M-4 [G LOCA	ATION (Descrip	tion end/	or survey	ed coordinates	, if availe	ble)			
BORING LOCA	TION (sketch)	N A	DRILLING ME Direct Pus		nroh			•				G CONT	RACTOR					
		I	BORING DIA		_			2"			_	R NAME			INSPECTOR		DRILLING E	OUIPMENT
			DRILLING FL					NA			Brian				Tom Cunningha			unted Geoprobe
			SAMPLER DI			_		2"				R WEIGI			NA HAMME	•	`	NA NA
			METHOD	ABA		MENT Backf	111		Depth	G	ROUND	Date/Tir	BSERVATION	VS (depth	In ft bgs)	Observ	ed WT nat High WT	NA NA
			MATERIAL			Soil			Depth			Dete/Tir				- Coulde	and I light 661	
		_	QUANTITY			NA			Depth			Date/Tir	ne					
		Iterva	ater	Log				San	nples				ERCURY VAP EADINGS (ng/		ORGAI MANUF./MOD		OR METER IN LAMP (eV)	FORMATION SOURCE
		Sample It	Depth ∫	뷾	tr.	Sample No.	Blows per 6 inches	e e	<u> </u>	ROD	Time	Bkg	Sample	Head	Lumex		10.6	US ENV
	DESCRIPTION	San	(ft bgs) වී	Gra	Stra	San	B 5	Oriven (feet)	Recov (feet)					Space	REMARKS			
12-16' 16-19'	48" Recovery 144-192" SAA 36" recovery 144-228" SAA		- 13 - - 14 - - 15 - - 16 -										6132 20862 23310 9021 13400 32379 >50,000 >50,000		Collected samp for Mercury and			92" bgs
			- '/ - 										>50,000					
			- 18 - - 19 -										>50,000 		Collected samp for Mercury and wet at 18.5' End of boring @	ilysis B	st 14:54	28" bgs
			- 20 -							:								

				>20,000					ŀ						•			
				04004										-	11 -			
				0970S										-				
				.000,03<											01 -			
				000,03<														
				000,03<										H	6 -			
		:												П	0)A/D ++1 co	
				33910					!						•		96-144" SAA 48" Recovery	8-15.
		t comment of the second		09666										li	8 -			
		:		42720						!					· -			
				0∠69€										l	۷ -			
8z:qL	iysis at	for Mercury ana		>50,000										-				
•		Collected sampl		>20,000										ŀ	9 -			
				000,03<										-			ille earli	
				>50,000											g -		bnse muibem of enit nst "86-03 tis esett	
				>20'000										-			AA2 "03-84	
				166	****		*******								b -		48° recovery	·8-t
				96£														
			•	992			'								£ -			
				169														
									ļ					Ш				
				925		l									· Z -			
				395										Ш			bnss muibem of	
				300											٠ ١ -		12-48" brown clayey silt trace fine	
				SOI							ļ	ļ			-		liosqoT "S1-0	
			anni de	00Z				- T		0.7	7	١	<u> </u>		· 0 -		48 Весолегу	0-t.
1		КЕМАRKS Lumex	Space	Sample	Вкв	əmiT	воо	leet)	Driven (feet)	Blows per 6 inches	Sample No.	Stratum	Graphic Log	Jour L	diqeQ agd fi)	ample	DESCRIPTION	IAVORTINI
LAMP (eV) SOURCE		NANUTAM	(£n	nluga (ngh	/ЭН	<u> </u>	<u> </u>	red.	L	s B	L.,		c Log	water	_	e Interva		
METER INFORMATION	HC AVEO	NASQO	80	RCURY VAPO	Date/Time		-	ples	<u></u>		ΑN	_		Ц	OUANTI.	¥a.		
					DateCTim	-		ngepth			lio2				NATERI			
AN TW regitt t					Date/Time	1		Oepth		j.	Backfi			-	METHO			
	Observe			NOITAVABLE							TNBW					l		
		HAMMER		(ipe)	MEIGH		_		,:Z			3			SAMPLE			
рягиме волимемт Тruck-mounted Geoprobe		изрестоя Тот Cunningha			JW-A-1	ORILLER Brian			ΑN			lu			BORING	١.		
DRILLING FOUIPMENT	L	ROTOHOSNI	<u> </u>			Pariving Barren			٦.,		a							
				яотэч	ятиоэ э	DRILLING							HOD	G WE	DRILLIN	Ň		BORING LOCA
		(0)	delieve ti	,eotenibroco t	t entveye	o/pue uo	nduose(I) NOIT	YOOT 9	M-5 Boring								PROJECT LOC
TOTAL DEPTH (ft)	/70	ELEVATION (FT. M:		60	01\S3\C			60/9	2/10	ЛЭТАО			Изан	902	70235i			маи тозгояч Сатфеп Lal
(#/ HId3C MIOI	ı (s	W TENANTIANE IE	הם אי וייידי	1 373 (7400 3W	טעגבעני		anta/	40 3M	713TAC			436/	1	J31 V00	<u></u>		

TOG OF SOIL BORING M-5

	aboratories		PROJEC 70235		MBER				01/2	7ARTEC 23/09		DATE/T	01/2	3/09	İ	D ELEVATION (FT. N	(SL)	TOTAL DEP	TH (ft) 20'	
ROJECT LO 667 Davi:	cation s Street Camden, NJ							BORIN M-5	G LOC	ATION (Descrip	tion and/	or surve	yed coordinates	s, if availe	ble)				
RING LOC	ATION (sketch)	N •	DRILLIN Direct			nroh	e						iG CON	TRACTOR						
			BORING			_			2"			DRILLE	•			INSPECTOR		DRILLING E	OUIPMEN	 -
			DRILLIN	_					NA			Brian				Tom Cunningha		Truck-mo		
			SAMPLE	R DI	AM./TYP	E			2"				R WEIG	GHT (lbs)		NA HAMME	R DROP	(in)	NA	
					ABAN		MENT				G	ROUND	1	OBSERVATIO	NS (depth	in ft bgs)	Observe			NA
			METHO				Backt			Depth			Date/Ti				Season	al High WT		NA
			MATERIA				Soil			Depth			Date/Ti				├			
		[\$	OUANTI	I.			NA		San	Depth nples			Dete/Ti	MERCURY VAF	POR	ORGA	NIC VAPO	OR METER IN	FORMATI	ION
		Inter		water	Fog.			₩	_	·	Γ			READINGS (ng		MANUF./MOD				
		8d E	Depth	orno	Graphic L	Stratum	Sample No.	Blows per 6 Inches	Driven (feet)	Recovered (feet)	ROD	Time	Bkg	Semple	Head	Lumex			1	
	DESCRIPTION	Sa	(ft bgs) ច័	Ö	ές	őź	8 8	8	కి కి	_		<u> </u>		Space	REMARKS		·		
-16'	48" Recovery 144-192" SAA			1									i	34140						
	144-192 370		- 13	- 1										20960						
														32362						
			- 14	<u> </u>										10170						
														5713		i				
			- 15											>50,000						
														>50,000						
-20'	48" Recovery 192-240" SAA		- 16											>50,000						
	192-240 SAA			Ī				:						17700						
														Ì						
			- 17 	ī										1293						
			- '					1						2787						
		l	- 18	Ī				ļ						911						
			-	М										1609		wet at 18.5'				
			- 19	i										1727		:				
			-											1705		Collected samp for Mercury and	alysis a	t 15:56	•	
			20	ī												End of boring (@ 20.0'			
			-																	
			- 21 	-																
			-	-										1						
	į.			1 1				1		1										

	PROJECT NAM Camden La			PROJEC 07023	T NUI	MBER			OATE/		TARTEO			IME COM 01/29/0		GROUN	O ELEVATION (FT. N	ISL)	TOTAL OEF	TH (ft) 25	
STRESCOCK-TON INSERTING Price Cheek Geograph Price Cheek Geogr	PROJECT LOC	ATION		525					BORIN			Descript				ates, if av	ailable)				
Page Section Content Sec			N				_		<u> </u>		-	-			RACTOR						
Part No.			1					e		3"							INSPECTOR		ORILLING	OHPMENT	-
Security Security			_											RIVANC			1	ore	1		
## HOLD BUT HER CONTROL OF THE CONTR							E						НАММЕ	R WEIGH	·IT (lbs)		•		•		
MITERIAL DESCRIPTION SUPPLIED Supplied						ABAI	NOON					GR	OUNDW			ONS (dep	th in ft bgs)	Observe	ed WT		
Company Comp				_														Season	al High WT		NA
NTERVAL DESCRIPTION The content of the content o							30		onite		1			_				1			
1-10			evie	20/01/11	اء	-	Γ			Şar	_					APOR	MERC	URY VAP	OR METER I	NFORMATI	ON
1-10			le Int	Donth	dwat	ol ol	E	eja Ide	2 s	_	/ere		T		T			DEL	LAMP (eV)	SOURCE	
1-10	INTERVAL	DESCRIPTION	Запр			Grapt	Stratu	Samp No.	Blowe	Driver (feet)	Reco d (fee	ROU	ııme	l oxy	Sample				i .		
107 0.0 0.120° saa 0.0	0-5'				П				_						0,0						
0-19' 80'' Recovery 120-19'' tan-crange fine sand 10		0-42" orange-brown silty sand					ļ														
42-48° orange sity sand												ŧ			0.0						
42-48° orange sity sand		ľ		- 1 -											0.0	ł	1				
42.48" crange sity sand				,												1					
42-48" orange silly send									İ			İ			0.0						
42-48" orange silly send												.									
42-48" orange sity sand - 3 -															0.3						
42-48" crange sity sand					$\ \ $									1	0.0	1					
42-48" crange sity sand				_	П									i							
60* Recovery 60-120* saa				- 3 -	11		1				ŀ				0.0						
60*Racovery 60-120* saa		42-48" orange silty sand			$\ \ $										0.0						
60° Recovery 60° 120° sea					П																
60-120" saa				- 4			ļ				ļ		10 14		0.0						
60-120" saa]					i														
60-120" saa									l					:							
0.15' 80'' Recovery 10	5-10'	60" Recovery		- 5	-						5.0				0.4						
0-15' 80' Recovery 10		60-120" saa			Н																
0-15' 80" Recovery 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											1				0.0						
0-15" 60" Recovery 10				- 6											0.0						
0-15" 60" Recovery 10					li																
0-15' 60" Recovery 10 0.0 0.0 0.0 120-180" tan-orange fine sand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					11				ĺ						0,0						
0-15' 60" Recovery 10 0.0 0.0 0.0 120-180" tan-orange fine sand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				- 7											١٠٠						
0-15' 80' Recovery 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				•											0.0						
0-15' 60" Recovery 10					П				l						0.0						
0-15' 60" Recovery 10				_	Н						ľ			1							
0-15' 60" Recovery 10 0.0				- 8	1								471.40	* *****	0.0						
0-15' 60" Recovery 10 0.															0.0						
0-15' 60" Recovery 10 0.					Н			1			1										
0-15' 60" Recovery 120-180" tan-orange fine sand				- 9	11										0.0						
0-15' 60" Recovery 120-180" tan-orange fine sand					П										00						
120-180" tan-orange fine sand					Ħ									ŀ	0.5						
0.0 0.0	10-15'			- 10	-						-5:0				0.0						
- 12		120-180" tan-orange fine sand								İ											
0.0 - 12 0.0 0.0 0.0 0.0 0.4 0.4 0.7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35					11										0,0						
0.0 - 12 0.0 0.0 0.0 0.0 0.4 0.4 0.7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35				- 11	<u>'</u>										0.0						
- 12					П																
0.0 0.4 0.4 0.4 0.7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35					Н										0.0						
0.0 0.4 0.4 0.4 0.7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35				- 12	1	Marine and services									-0.0						
- 13 - 0.4 0.4 0.4 - 14 - 0.7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35					H											"					
0,4 0,4 - 14 - 0,7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35															0.0	1					
0,4 0,4 - 14 - 0,7 Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35				- 13 -	!										04	1					
- 14					ΙI																
Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35															0,4	1					
Collected sample M-2C at 168-174" bgs for mercury analysis at 8:35				- 14 -					l						0.7.						
0.3 mercury analysis at 8:35					П															74" bgs f	or
			ł												0.3						
				- 15 -	1										1.1		}				

•••	<u>CMX</u>					LC	G C					IG M			I a a a a a a a a a a a a a a a a a a a				771140
PROJECT NAM Camden La		i	PROJEC 07023					OATE	TIME S' 01/2	TARTEC 29/09)		01/29		GROUN	O ELEVATION (FT. M	ISL)	TOTAL DE	25
PROJECT LOC	ATION Street, Camden, NJ							BORIN	NG LOC	ATION (Oescrip	tion and/	or surve	ed coordin	ates, if av	ailable)		_	
BORING LOCA		N	ORILLIN			_								TRACTOR					
		1	Direct I	_			e					Enviro	•			T		T	
		•	BORING			in)			3" NA			ORILLE	RNAM	=		INSPECTOR Mary Ann Gilmo	ore.		EQUIPMENT Ounted Geoprobe
			SAMPLE			F			3"			+	R WEI	SHT (lbs)		NA HAMME			NA
							MENT			Γ	GF				ONS (dep	th in ft bgs)	_	ved WT	NA
			METHO	,			Back	fill		Depth			Date/T	ime			Seaso	nal High WT	NA
			MATERIA	AL.		S	oil/Bet	onite		Depth			Oate/T	lme					
			QUANTI	ſΥ			NA			Depth			Oate/T			 	<u> </u>		
		le s		ater	80	1	<u> </u>	Ι	_	mples	т—	1	4	ERCURY V EADINGS (1		MANUF./MOD			INFORMATION SOURCE
		용	Depth	NDU7	Graphic Log	Ę	e e	S Se Se	۳.	e še	RQO	Time	Bkg			Jerome	<u>/LL</u>		1
INTERVAL	DESCRIPTION	Sample	Depth (ft bgs) g	Grap	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovered (feet)			ľ		Space	REMARKS			<u> </u>
15-20'	60" Recovery			T						5.0					1				
	180-240" saa			.			ł		Ī	ĺ	ŀ		1	0.0	1				
	1		40]]				
			- 16	Ī		1		1					1	0.0					
				.									l	0.0		1			
	1					ŀ									1	1			
			- 17			ļ								0.0					
	1		١	.			ļ		1	ļ			l	8.7					
						ļ	l			,			l						
	1	1	- 18	-										14.5		Collected samp			222" bgs for
				L	1	1		İ	1	,			ŀ			mercury analys		:40	
			· ·	Μ	1	1				ì			l	9.2		wet @ 18.5' bg	S		
			- 19	! -									1	5.2					
		Į.																	
				.		1		1					1	3.4		Collected samp	ie M-2	2B-dup at 2	234-240" bgs for
			-00	1	İ	1					-		1	١.,		mercury analys	is at 8	3:30	
20-25'	60" Recovery 240-288" saa		20	Ī				1		5.0		1		1:1		1			
	240-200 344				ļ		1				l	-	ŀ	0.5					
				1					İ	1	1	1	I	١					
			- 21	-										0.4					
						l				1	1		ŀ	0.0					
									1	1	1				1	•			
			- 22	-		ļ				ļ				0.0					
]			1					1	1		l	İ					
	}			-			l		ì	İ	1		l	0.0					
					1					1	1		Į.		ŀ	Collected samp			276" bgs for
			- 23	i									1	0.0		mercury analys	is at 8	:45	
													1	0.0					
			l .	1	Į	1				1			1	0.0					
	288-300" grey silty clay		- 24	1	ļ	ļ								0,0					
]					1									
		<u> </u>	- ·	-	1						1		I	0.0					
			~-	l	1					1	1		I			Fad at 2			
	i .		- 25	-		1	1	1	1	1	1	1	1	0.0	1	End of Boring			

\\\s09svr01\n\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental SI boring logs\(\)Mercury Boring logs 1-29-09.xls\(\)M-2

OJECT NA			PROJEC	T NU	MBER			OATE	TIME ST	ARTEO			ME COM		GROUN	D ELEVATION (FT.)	MSL) TOTAL OEPTI	H (ft) 25
OJECT LO			070200	500-				BORIN			escript		r surveye		ates, if av	ailable)		
	ATION (sketch)	N	ORILLING										IG CONTR	RACTOR				
		Ī	Direct I BORING		_		В		3"			Enviro	R NAME			INSPECTOR	ORILLING EQ	UIPMENT
		ı	ORILLING						NA			NA				Mary Ann Gilm	1	nted Geoprob
			SAMPLE	R DIA					3"		_		R WEIGH					NA
			METHOO		ABAN		MENT Backf	iti		Oepth	GR		Oate/Tim		ONS (dep	th in ft bgs)	Observed WT Seasonal High WT	NA NA
			MATERIA				il/Beto			Oepth			Oate/Tim				Geastrial right W1	
		-	QUANTIT	ſΥ		_	NA			Oepth			Date/Tim					
		nterv		ater	8			<u> </u>		nples				CURY VA		MERC MANUF./MO	CURY VAPOR METER INI	
		Sample	Depth		Graphic Log	Stratum	Sampla No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	RQD	Time	Bkg	Sample	Head	Jerome		
TERVAI	L DESCRIPTION	S.	(ft bgs)) ဇ်	ō	셠	S S	9 19	돌	_	<u> </u>			0.0	Space	REMARKS		
ř	48" Recovery 0-12" strong brown silty loam		- 0 -							4.0				0.0				
	,			.										0.0				
	12.36" omga silkular			Н										0.0	l	}		
	12-36" orange silty loam		- 1 -	$\ \ $										0.0				
														0.0				
			,				l						<u> </u>	4.0				
			- 2 -						1				[1:0	[
				. 										1.0	!			
	- :			$\ \ $										ا _م ا				
	36-48" orange fine sand		- 3 -		ı									0.0				
		:	l	.	i									0.0				
			l .	$\ \ $												1		
			- 4	11				l			ļ			0.0				
													1					
			_	$\ \ $						_				_				
	60" Recovery 60-90" saa		- 5	† 						5.0				0.0				
	00-90 Saa			.										0.0				
				$\ \ $													ple M-3A at 66-72"	
			- 6	+ 1										0.0		mercury analys	sis at 10:50	
			l	.									l	0.0				
	1		1	$\ \ $														
			- 7	†										0.3				
	90-120" tan-orange fine sand		l	.∐			l					İ		0.3				
				$\ \ $						1								
			- 8	+1			,***							0.3				
			l	.∐										0.3				
				$\ \ $														
			- 9	11						1				0.3				
			l	$\ \ $			1							0.3				
				$\ \ $														
5'	60" Recovery		10	-1				ļ	ļ	-5.0			ļ	0.3				
	120-180" saa		ļ	$\ \ $					l				1	0.3				
			- 11	;										0.3				
			l	.										0.3				
			- 12		after 1 - 200 age - 200	\vdash	tion and the second							-0.3		a a chapter communication and a com-		
				. 										0.3				
			_ ا															
			- 13	i	!									0.4	1			
	1			- [0.7		1		
			- 14	Ш										1.5				
			'-														ple M-3B at 168-17	4" bgs for
														0.9		mercury analys		
			i	1 1					i									

♦	<u>CMX</u>											G M			1		I		
PROJECT NAM Camden La	bs		PROJEC 07023							29/09			IME COM 01/29/0	9		O EĽEVATIDN (FT. M	ISL) TOTA	AL OEPTH (ft) 25	
PROJECT LDC 1667 Davis	Street, Camden, NJ							BDRIN	IG LOCA	ATION (I	Descrip	tion and/	or surveye	ed coordin	ates, if av	allable)			
BORING LOCA	TION (sketch)	N	ORILLIN Direct			nroh	٥						NG CONT	RACTOR					
			BDRING						3"			_	R NAME			INSPECTOR	ORIL	LING EQUIPMENT	
			ORILLIN	G FL	UID				NA			NA				Mary Ann Gilmo	ore Trac	ck-mounted Geo	oprobe
			SAMPLE	R O	AM./TYF	E			3"	,			R WEIG				R DROP (in)	NA	
			WET 101		ABA		Back	riei			GF	OUNDW	Oate/Tin		ONS (dep	th in ft bgs)	Observed WT		NA NA
			METHO:				il/Bet			Oepth Oepth			Date/Tin				Seasonal High	1 W I	<u> </u>
			QUANTI				NA			Oepth			Date/Tin						
		Na BVa		100					San	npies			MEI	RCURY V	APOR			ETER INFORMATIO	N
		te in	Donth	dwater	ol Si	E	ē	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	١_	rere	RQD	Time	REA Bkg	Sample		MANUF./MOC Jerome	EL LAM	P (eV) \$OURCE	
INTERVAL	. DESCRIPTION	Sample	Depth (ft bgs	1 7	Graphic Log	Stratum	Sample No.	Blows	Driven (feet)	Recovere d (feet)	ROD	IIme	БКД	Sample	Space	REMARKS			
15-20'	60" Recovery		\ <u>U</u>	/ -	<u> </u>	۳				5.0		<u> </u>	1						
	180-240" saa			-	ŀ									0.4					
				1		H				ĺ				١.,					
			- 16	ī				i						0,4					
				-										0.4	ŀ				
			47	1										١.,					
			- 17	ī		H			1	1				0.4					
				-		H	ľ							0.4		ľ			
									1	1				١		.			
			- 18	ī		İ		1				ļ · · · ·		0.9		Collected samp mercury analysi		216-222" ags 10	ſ
			. .	-17	1	H		1	1	1		:		1.0		wet @ 18.5' bg:			
					l	1		Ì	1					١.,					
			- 19	ī	1	H								2.6					
			l							1				2.6		Collected samp	le M-3D at 2	234-240" bas fo	ır
				ľ	i			1		1						mercury analysi			•
20-25'	60" Recovery		20	-						5.0				0.0					
	240-288" saa		l											0.0					
				l]			l	l									
			- 21	-				ł						1.0					
			١											1.0					
	·	H							1					''-					
		l	- 22	<u>.</u>		ļ								1.7					
						1			1	1				1					
				-				1	1	1				1.0	1				
			- 23	ı		1			1	1				00		Collected samp		270-276" bgs fo	г
			- 23	1										0.0		mercury analysi	isati1:30		
				- :		i I		ĺ	1	ł			į	0.0					
		ا			l	H			1	l									
	288-300" grey silty clay		- 24	-	l				ļ					0,0					
				-										0.0		Collected samp		294-300" bgs fo	r
			- 25	ł							l			0.0		End of Boring	15 at 11:00		

\\s09svr01\r\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental SI boring logs\\Mercury Boring logs 1-29-09 xis\M-3

PROJECT NA Camden L			PRDJEC 070235	า พบเ 804	Maer			DATE/	TIME \$1 01/2	TARTED 29/09			ME CDMI 01/29/0		GROUN	DELEVATION (FT. M	SL) TOTAL DEF	РТН (ft) 25
ROJECT LO			10					BORIN			Descrip		or surveye		ates, if av	railable)	1	
	ATION (sketch)	N ♠	DRILLING Direct I			orobe	е.	•				DRILLIN	IG CONTR	RACTOR		·		
		ı	aoring	DIAM	ETER (3"			DRILLE	R NAME			INSPECTOR		EQUIPMENT
			DRILLING						NA 3"			NA HAMME	R WEIGH	IT (lbs)		Mary Ann Gilmo	R DROP (in)	ounted Geoprobe NA
						DON	MENT				GR		ATER OB	SERVATION	ONS (dep	oth In ft bgs)	Observed WT	NA
			METHOD				Back il/Bet			Depth Depth			Date/Tim Date/Tim				Seasonal High WT	NA
		-	QUANTIT	_			NA			Depth			Date/Tim	ie		•		
		Interva		water	log	_	_	۵. ۱۵		nples e		Ι	•	CURY V DINGS (n		MERCU MANUF./MOD	IRY VAPOR METER I EL LAMP (eV)	
NTERVA	L DESCRIPTION	Sample	Depth (ft bgs)		Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	RQD	Time	Bkg	Sample	Head Space	Jerome REMARKS		
5'	30" Recovery	-	- 0 -	Ħ		· ·	<u>"-</u>		-	2.5				0.0				
	0-6" organic matter, grass, roots 6-12" strong brown silty sand		1											0.0				TO BE STORY OF THE
		Ш		П														
	12-18" ash		- 1 -	П										0.0				
	18-30" orange silty sand		-	$\ \ $										0.0				
			- 2 -					ļ		ļ		ļ		0,0				
				П														
		Γ] -	П					İ					0,0				
			- 3 -	Н					ŀ									
				П					•									
			. 4	╽╽														
				П			l											
0'	60" Recovery		- 5	$\{\ \}$						5.0				0.0				
	60-84" saa			П						i				0.0				
			١.	П			l			•								
			- 6	11										0.0				
				Н										0.0				
	84-120" tan-orange fine sand		- 7	∤ I										0.0				
				П						i				0.0				
				П					j									
			- 8	11	*** * * * * * *									0.0		· · · · · · · · · · · · · · · · · · ·		nen ni er er er er erennen er er
				П										0.0				
			- 9											0.0				
														0.0				
15'	60" Recovery		10	-						5.0				0.0				
	120-180" saa			Н			ŀ							0.0				
			- 11											0.0				
			[''	il										0.0		·		
														0.0				
			- 12	:							_			-0.0				Paris I I I I I I I I I I I I I I I I I I I
				$\ \ $										0.0				
			- 13 -											0.0				
								l						0.0				
			- 14 -											0.0		Collected sample	e M-6A at 169 1	74" has for
		,												0.0		mercury analysi		≀⊸ nAai∩i
			- 15 -	١		- [l						0,0				

ROJECT NAM			PROJE		UMBER			OATE/	TIME ST	TARTE 29/09)	OATE/	TME COM 01/29/0		GROUN	D ELEVATION (FT. M	SL) TO	TAL DEPT	H (ft) 25
ROJECT LOC			10/02	3080	14			BORIN			(Descrip	tion and/	or surveye		ates, if av	ailable)			20
	TION (sketch)	N	ORILLI										NG CONT	RACTOR					
		Ī	-	_	Sh Geo		e		3"			_	R NAME	· · · · ·		INSPECTOR	OR	ILLING EC	UIPMENT
		_	DRILLI						NA			NA				Mary Ann Gilmo			inted Geopn
			SAMPL	ER C	IAM,/TYF	Έ			3"			наммі	R WEIGH	∏ (lbs)		NA HAMME	R OROP (in)		NA
					ABA	NDON	MENT				GF	ROUNDW	ATER OB	SERVATI	ONS (dep	oth in ft bgs)	Observed W	π	NA
			METHO	0			Back			Oepti			Date/Tin				Seasonal Hi	igh WT	NA
			MATER			Sc	il/Bet	onite		Oepti			Date/Tin						
		L in	QUANT	YTT	_		NA		Sac	Oepth	_		Oate/Tin	ne RCURY V	4800	MEDO	IDY VAROR I	METED IN	FORMATION
		nter		rater	3		┢─	a	Sai			1	4	DINGS (r		MANUF./MDC		MP (eV)	
		Sample	Dept	1.2		Stratum	Sample No.	S Per	를 숲	Recovere d (feet)	RQC	Time	Bkg	Sample	7-	Jerome	_[
ITERVAL	DESCRIPTION	Sar	(ft bg	s) [5	Stra	Sar	S S	Driven (feet)	a g		<u> </u>	<u> </u>		Space	REMARKS			
-20'	60" Recovery								-	5.0					ŀ				
	180-240" saa		-	-								1		0.0	İ				
			- 16	1		ļ			.	ļ			İ	0.0					
				1				l		}			l						
		1 1	-	-		1	i	l			1		1	0.0					
			- 17	I									1	0.0					
			- 17	ï			l						l	0.0					
			-	-			İ	1					l	0.0	ł				
				-			1		ŀ				1		-	l			
			- 18	1	1							1	1	19.5		Collected samp mercury analys		1216-22	2" bgs for
			_	-k				l						3.7		wet @ 18.5' bg:			
	1			-[`	1				1										
			- 19	-	1				1	}			l	3.7					
		:			1		l		1					١.,	ŀ	Callantad annu	Ja M 60 at		100 has for
			-	1	l	1	l				1	İ		8.3		Collected samp mercury analys		1 234-24	o ags for
-25'	60" Recovery		20	-						5.0				8.3		moroury ununyo			
	240-294" saa				l		l	•								:			
			ļ-	-	l		l]			1			0.0		:			
			- 21	1	ı		l	1	İ		ı			0.0					
			l - '	1				1						"					
			-	-		l	l		İ					0.0	1				
				1		l	l												
			- 22	 I	,	f			*	 		#1117# #1 1		0.0					
					l		1	İ	İ		İ			36.5					
			-	-			1							30.5	1	Collected samp	ile M-6D at	t 270-27	'6" bas for
			- 23		l		1				Ī			18.9		mercury analys			o ago ioi
			-	1	1	1	1									, , , , , , , , , , , , , , , , , , , ,			
			-	-	1	Ι.							1	0.4					
				-	1					1			1		1				
			- 24	1	1	1								0.3	1				
	204 200" arou slav				1									0.3		Collected	io Mer -	1204 22	iΩ" hac for
	294-300" grey clay		Ī		1			1			Ī			0.3		Collected samp mercury analys		i 2 94 -30	o aga tor
	1		- 25	ı	1	1	l	1	i i	1	1	1	1	0.0	1	End of Boring			

\\s09svr01\n\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental Si boring logs\[Mercury Boring logs 1-29-09.xls]M-6

•••	CMX				L	.00	G O	F S	OIL	во	RIN	G M	-7					
PROJECT NAI			PROJECT 0702358		ER			DATE	TIME ST	ARTED			ME COM 01/29/0		GROUN	DELEVATION (FT. M	ISL) TOTAL DEPT	1H (ft) 25
PROJECT LO			070200	307				BORIN			Descript		or surveye		ates, if av	ailable)	I	
	ATION (sketch)	N	DRILLING							-			NG CONTI	RACTOR			· · · · · · · · · · · · · · · · · · ·	
•		Ī	Direct P				<u> </u>		3"				PR NAME			INSPECTOR	ORILLING E	DUIPMENT
			ORILLING						NA			NA				Mary Ann Gilmo	ore Track-mot	inted Geoprobe
			SAMPLER						3"				R WEIGH				R OROP (in)	NA NA
			METHOO		ABAN		MENT Backfi	in		Depth	GR	DUNDW	Oate/Tim		ONS (dep	th in ft bgs)	Observed WT Seasonal High WT	NA NA
			MATERIAL				l/Beto			Depth			Date/Tin					
		-	QUANTITY	′			NA		-	Depth			Date/Tim			l visto	January Con Market III	5001117011
		Sample Interv		water	<u>s</u>	ŀ		- ·	Sar	nples		\Box	-	RCURY VA DINGS (n		MANUF./MOC	URY VAPOR METER IN DEL LAMP (eV)	
INTERNAL	DESCRIPTION	ample	Depth	Ground	Graphic Log	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	ROO	Time	Bkg	Sample	l	Jerome REMARKS		
0-5'	L DESCRIPTION	σ I	(ft bgs)	9	9	°	ωz	60 69	ے ۵	4.0	╁╌		├	0.0	Space	REMARKS		
١	0-6" organic matter, grass			. .														
	6-18" ash	- 11											l	0.0				
ŀ			- 1 -			ŀ								0.0				
						I							1	_		1		
	18-48" orange fine sand					ı								0.0		1		
ł			- 2 -							ļ				0.0				
					- 1				i									
					1	١					ŀ			0.0				
			- 3 -	I		-								0.0				
						-							l	0.0				
	:					-								0.0				
			- 4 -				.**				ļ			0.0		and the test and the section of		
ł						١									1			
				H		-							1					
5-10'	60" Recovery		- 5 -			- 1				5.0				0.0				
1	60-84" saa													0.0		-		
			- 6 -	-							1		1	0.0				
											1			0.0				
1	84-120" tan-orange fine sand		- 7 -										1	0.0				
					- 1	1								0.0				
1			-8-										1.	0:0				
1			- 0 -							T				J				to a fee to be the control of th
														0.0				
			- 9 -						1				1	0,0				
1														0.0				
1		i			-		Ì						1	0.0				
10-15'	60" Recovery		- 10]				-5.0]	0.0				
	120-180" tan fine sand with]	5.5			1					
	orange sand													0,0				
			- 11 -	!									1	0.0				
														-				
1													İ	0.0				
1			- 12 -	<u>.</u>]		_		· · · · · · · · · · · · · · · · · · ·	ļ .	ļ	<u> </u>			-0.0	ļ			
														0.0				
1															i	-		
1			- 13 -											0.0				
1													1	0.0				
1			,,															
1		į	- 14 -			1			1				1	0.0		Collected same	ole M-7A at 168-17	'4" bgs for
1													•	0.0		mercury analys	is at 9:15	-6-10-
			- 15 -]	1		1	0.0				
	1			1	1													

PROJECT NA	CMX_		PROJEC	TM	IMRED			IDATE/	TIME C	TARTED		IDATE/T	IMÉ CON	PLETE	GROUN	IO ELEVATION (FT. M	ISL) TOTAL DEPTH	(ft)
Camden L	abs CATION		07023						01/2	29/09)escrip		01/29/0				, , , , , , , , , , , , , , , , , , , ,	25
667 Davis	Street, Camden, NJ ATION (sketch)	N	DRILLIN			_		<u> </u>				ORILLIN	G CONT	RACTOR				
		Ī	Direct BORING			_	e		3"			Enviro	R NAME			INSPECTOR	ORILLING EQL	UIPMENT
			ORILLIN						NA			NA				Mary Ann Gilmo	1	nted Geoprobe
			SAMPLE	R DI		_			3"				R WEIG					NA
			метно	_	ABA	100V	Back	Fill		Donth	GR	ounow	Oate/Tir		ONS (dep	oth in ft bgs)	Observed WT Seasonal High WT	NA NA
			MATERI			S	oil/Bet			Depth Depth			Oate/Tir				Seasonal riigh vv i	11/4
			QUANTI				NA			Depth			Date/Tir					
		terva		ter	8				Sar	nples		,	4	RCURY V			JRY VAPOR METER INF	
		용	Depth	mdwa	Graphic Log	Ę	뽎	A Per	٦,	overe et	RQD	Time	Bkg	Sample	_	MANUF./MOD Jerome	DEL LAMP (eV) S	SOURCE
INTERVA	DESCRIPTION	Sample	Deptr (ft bgs) စိ	Grap	Stratum	Sample No.	Blows pe 6 inches	Driven (feet)	Recover d (feet)					Space	REMARKS	, ,	
5-20'	60" Recovery 180-204" slough and orange silty sand		-	-						5.0		:		0,0				
			- 16	ī		ļ								0.0				
			-	-										0.0				
	204 240" ton fine cond		- 17	l	İ		1			l				0.0				
	204-240" tan fine sand		- 17	Ī	ŀ								1	0.0]		
		- 11	-	-	ž.									1.4		1		
		- 11	- 18	l			ļ	l				ļ		6.5	ļ	Collected same	le M-7B at 216-222	" has for
			- 10	Ī										0.5		mercury analys		- Dgc to:
			-	╌┝									l	6.5		wet @ 18.5' bgs	8	
		į.	- 19							1				6.5	İ			
		l					ļ			İ								
			-	-			İ			İ				10.6			ole M-7C at 234-240	0" bgs for
20-25'	60" Recovery		20	l	İ					5.0				10.6		mercury analys	is at 9:25	
20-25	240-294" saa		[20	Ĭ						0.0				10.0				
			-	-	ŀ									1.1				
			- 21	 -				1	ļ		ŀ			1.1				
										E								
			-	-			İ			=	ŀ			0.4				
			- 22				ļ							0.3				
			- 22	Ī	ŀ						ŀ			0.0	1			
			-	-	l				İ					1.4				
				ļ						İ						1	ole M-7D at 270-276	6" bgs for
			- 23	-	ŀ			l			ŀ			1.4	ľ	mercury analys	is at 9:30	
			i								l			0.3				
														3.3				
			24	- -		ļ			ł	ļ	ļ			0.0		·		
	204 2008 top slow												1			0-0-4-3	de 14 75 et 004 coo	78 h = -
	294-300" tan clay		-	1			l			ľ			1	0.0	1	mercury analys	ole M-7E at 294-300 is at 9:35	101 sga
	1		- 25	ı	1	1	F	ı	1	1	I	I	i .	0.0	1	End of Boring		

•••	CMX					LO	G C)FS	OIL	во	RIN	IG M	-8						
PROJECT NAM Camden La			PROJECT 070235					DATE/	TIME ST 01/2	ARTED)		ME COM 01/29/0		GROUN	D ELEVATION (FT. M	ISL) TO	OTAL DEPTH (ft	25
PROJECT LDC		I.	_, 0200					BORIN			Descrip			d coordin	ates, if av	aliable)	1		
BORING LOCA			DRILLING			arah	_						NG CONTR	RACTOR		·			
			BORING						3"			DRILLE	R NAME			INSPECTOR		RILLING EQUIP	
			DRILLING	_		_			NA			NA				Mary Ann Gilmo			d Geoprobe
		ŀ	SAMPLE	R DIA			MENT		3"	$\overline{}$	GR	•	R WEIGH			NA HAMME th in ft bgs)	R DROP (in)		NA
		Ì	METHOD)	7 407 1		Back	fill		Depth			Date/Tim		, , , , , ,		Seasonal H		NA
			MATERIA			Sc	oil/Bet		-	Depth			Date/Tim				ļ		
		_	QUANTIT	ادا			NA		Sar	Depth nples	_		Date/Tim MER	RCURY V	APOR	MERCI	URY VAPOR	METER INFOR	MATION
		Sample interve	Depth	ndwate	Graphic Log	Ę	je je	s per	_	vere	RQD	Time	REA 8kg	DINGS (n		MANUF./MOD	DEL LA	AMP (eV) SOL	IRCE
INTERVAL	. DESCRIPTION	Samp	(ft bgs)	Grou	Grapi	Stratt	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	الم	15.00	U.Q	Campic	Space	REMARKS			
0-5'	36" Recovery		- 0 -	П						3.0				0.0					
	0-12" silty loam													0.0					
							ļ												
	12-36" orange silty sand		- 1 -				İ						1	0.0					
				$\ \ $			•				1		1	0.0					
			•	 							1								
			- 2 -				Ī	[0.0					
]				╢						ļ				0.0					
			- 3 -							1			ŀ	0.0					
1		- 11	_																
													ļ	İ					
			- 4	-		ļ													
				П				ŀ					l						
1						ļ		ļ											
5-10'	48" Recovery		- 5	┨┠						4.0		2	ł	0.0	:				
	60-72" saa			Ш			1	1				-		0.0					
				H			l								ļ				
	72-84" orange fine sand		- 6	11		ļ					ļ		*	0.0					
								}		İ	l			0.0					
	94 400% ton owners fine sound		7											0.0	ļ				
	84-108" tan-orange fine sand		- /			l								0.0	1				
													ł	0.0	ļ				
1			- 8			ļ	ļ							0.0					
1			-											1					
i							1						1	0.0					
			- 9	ا إ			1	1						0.0					
						ŀ													
			•										1						
10-15'	60" Recovery		10	-		ļ	 			5.0	· ·			0.0					
	120-180" saa			.∐										0.0					
			- 11	; I				1						0.0					
							ĺ							0.0					
			40	IJ															
			- 12	Ϊl					1					-0.0	40 04-1-00-1				The state of the s
													l	0.0					
			- 13	<u>'</u>			l	1						0.0					
				$\ \ $			l							0.0					
			-	П															
			- 14			1	ļ	ļ ····	1		1	1	l	0.0		Collected samp	ie M.84 <	at 168_174" i	nas for
1													ļ	0.0		mercury analys			nga IUI
			- 15	1								-	1	0.0					
L				- 1		1					1								

ROJECT NAM			PROJEC 07023					DATE/	TIME ST	TARTEC 29/09			ME CDM 01/29/0		GROUN	DELEVATION (FT. M	SL) T	TOTAL DEPTH	i (ft) 25
ROJECT LOC	ATION		10/023	3004	+			aorin			Descrip		or surveye		ates, if av	railable)			
	Street, Camden, NJ TION (sketch)	N	DRILLIÑ	G ME	THOD			l		_		DRILLIN	IG CONT	RACTOR		-			
	, ,	↑	Direct	_			•					Enviro				1			
		•	BORING			in)			3"			-1	R NAME			INSPECTOR		DRILLING EQ	
			DRILLIN						NA 3"			NA				Mary Ann Gilmo	R DROP (ii		nted Geopr NA
			SAMPLE	R DI					<u> </u>	1		1	R WEIGH				Observed		NA NA
			METUD	_	ABA		MENT Backf	511		Domb	GH	COUNDW	Date/Tin		ON S (det	oth in ft bgs)	1	High WT	NA NA
			METHD! MATERI				il/Beto			Depth Depth			Date/Tin				Seasonai	righ w	11/2
			QUANTI				NA	J1 11 CC		Depth			Date/Tin						
		S	QUALTI	1.		П			Sar	nples			_	CURY V	APOR	MERCI	JRY VAPO	R METER INF	ORMATION
		at a		wate	8	ا ـ ا		¥ 8			Ĭ		REA	DINGS (r	g/m3)	MANUF./MOD	EL L	LAMP (eV)	SOURCE
		age E	Depth (ft bgs	ı lig	Graphic Log	Stratum	Sample No.	Blows p 6 inche	Driven (feet)	Recovere d (feet)	RQD	Time	akg	Sample	Head				
	DESCRIPTION	San	(ft bgs) ਰ	Ğ	ซี	ςς	8 9	ਠੋ€		<u>. </u>	<u> </u>			Space	REMARKS			
-20'	60" Recovery		İ	П	l					5.0									
	180-240" saa		· ·	ا [0.0					
			- 16	1						ļ	ļ	.		0.0					
				ī					l					0.0					
				-							İ			0.0					
						H								1					
			- 17	-		1					İ		1	0.0					
														0.0					
				1										0.0					
			- 18											0.0		Collected samp	le M-8B	at 216-222	2" bgs for
													ł		1	mercury analysi	is at 9:45	5	
			-	-М										0.0		wet @ 18.5' bg:	5		
		j	- 19											0.0		İ			
			- 15	ī										0.0		ł			
			l			1								1.3		Collected samp	le M-8C	at 234-240	0" has for
						ŀ								'		mercury analys			gc .c.
0-25'	60" Recovery		20	-						5.0				2.7					
	240-264" orange sand									İ					İ	ľ			
		11	l- ·	1										0.0	ļ				
		1 1	- 21	1						1			[0.0					
			l - '					1			1								
				-						1		1		0.0					
																ļ			
	264-276" tan sand		- 22	-						ł				0.0			*****		
												-		l]			
			l- ·	1								1		3.6					
				1										١		Collected samp			6" bgs for
	276-300" tan clay		- 23	ا ز										1.4		mercury analysi	ıs at 10:0	JU	
								l						0.0					
														0.0					
			- 24	1		ļļ			.	ļ	ļ			0.0					
				-										0.0		Collected samp	le M-8E	at 294-300	0" bgs for
	1			1	I				1	1	1			1	1	mercury analysi	is at 10:0	05	
	I		- 25											0.0		End of Boring			

\ls09svr01\tn\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental SI boring logs\{Mercury Boring logs 1-29-09.xis\jM-8

ROJECT NA Camden L			PROJECT 070235	NUME 804	ER		1	DATE/I		ARTED			IME COM 01/29/0		GROUN	DELEVATION (FT. N	rsl) Total Depth (ft) 25
DJECTLD							E	BORIN			escript		or surveye		ates, if av	raliable)	
	CATION (sketch)		DRILLING				1						IG CONTI	RACTOR			
			Direct I						3"			DRILLE				INSPECTOR	DRILLING EQUIPMENT
			DRILLING			1)			NA.		_	NA	K NAWE			Mary Ann Gilm	
			SAMPLE						3"				R WEIGH	IT (ibs)		•	ER DROP (in) NA
					ABAN	DONM	ENT				GR	OUNDW	ATER OB	SERVATI	ONS (dep	oth in ft bgs)	Dbserved WT
			METHOD			E	Bckfil	1		Depth			Date/Tim	ie			Seasonal High WT
			MATERIA			Soil	/Betor	nite		Depth			Date/Tim				
		-	QUANTIT	Υ	_		NA		Car	Depth			Date/Tim				
		Interv		vater	8	ŀ	Т	<u></u>		nples				CURY V DINGS (r		MANUF./MOI	URY VAPOR METER INFORMATION DEL LAMP (eV) SOURCE
		Sample	Depth (ft bgs)	ğ	Graphic Log	E age	Sample No.	Blows per 6 Inches	Driven (feet)	Recovere d (feet)	RQD	Time	Bkg	Sample	Head		
	L DESCRIPTION	Sar		ŏ	ğ	ž,	នីទី	Bis	Ę Ę				<u> </u>		Space	REMARKS	
5'	48" Recovery		- 0 -	Ш						4.0				0.0			
	0-12" silty loam			П										0.0			
			-	Н		١	- 1			1		ļ		0.0			
	12-36" orange silty loam		- 1 -	H		- [i					Ì	İ	0.0			
						- [
						İ						l		0.0	1		
			_		- 1	-			ł			İ	L				
			- 2 -		1	Ī	1					l	· · · · · · · · · · · · · · · · · · ·	0.0			
			-											0.0			
			- 3 -	Н	- 1									1.0	ł	İ	
				Н		١	- 1									1	
					1	- 1			İ					0.6			
			- 4 -											1.2			
			•														
				11		- 1								1.0			
				∤ 		- 1				l						1	
10'	48" Recovery		- 5	1		- 1				4.0				1.5		 	
	60-84" saa					- 1								1.5			ole M-9A at 60-66" bgs for
						- 1	ı		İ			İ		1.5		mercury analys	as at 10.10
			- 6											0,0	ļ		
				П					ŀ							İ	
			-	11	- 1									0.0]	
	04.400#.4== -====		_	П		ı			ļ	l							
	84-108" tan-orange fine sand		- 7	1 I		- [- 1					l		0.0			
				Ш	-	-	- 1					l		0.0			
				Н			i					ļ				:	
			- 8 -											0.0			
				П			- 1										
				H										0.0		ļ	
			- 9		ľ					1				0.0		}	
					ŀ	1	- 1							0.0			
				H		- 1											
						- 1											
)-15'	60" Recovery	1	10	- 1						-5.0				0.0			
	120-180" saa					- [l]			1	
						ı								0,0			
			- 11	<u>'</u>			1						1	0.0			
														Ì			
						ı								0.0			
			40					i					ŀ				
			- 12 -	ıl		7				ļ				0.0			
						-								0.0			
				1		-	-						1	ŀ			
			- 13 -	; I									l	0.0	ĺ		
													ŀ	0.0			
			-										l	"."			
			- 14 -									;	ļ	0.4	ļ		
					- [I		}	Collected samp	ole M-9B at 168-174" bgs fo
														0.0	1	mercury analys	is at 10:15
			- 15 -	'		- [- 1	İ						0.0	1		
	1		- 15 -				- 1							ו חח			

	CMX					LO	G C	 OF S	OIL	во	RIN	G M	 -9					
◆ *◆•															1			
PROJECT NAM Camden Lai			PROJEC 07023					DATE	TIME S1 01/2	9/09			01/29	MPLETE /09	GROUN	D ELEVATION (FT. M	SL) TOTAL DEPTH	(n) 25
PROJECT LOCA	ATIDN Street, Camden, NJ							BORIN	IG LOCA	ATION (I	Descript	tion and/o	eurve	yed coordin	nates, if av	railable)		
BORING LOCAT		N	DRILLIN Direct			orob	_					DRILLIN		TRACTOR				
		I	BORING						3"			DRILLE	-			INSPECTOR	DRILLING EDU	IPMENT
			DRILLIN	G FL	UID				NA			NA				Mary Ann Gilmo	ore Track-moun	ted Geoprobe
			SAMPLE	R DI	AM,/TYF	E			3"					GHT (lbs)				IA
					ABA	NDON	MENT	cn		<u> </u>	GR	OUNDW			IONS (dep	oth in ft bgs)	Observed WT	NA NA
			METHO! MATER!			Sc	Back oil/Bet			Depth Depth			Date/T			<u>-</u> -	Seasonal High WT	INA
ļ			QUANTI				NA			Depth			Date/T			••		
		Interva		řē	8	ĺ			Sar	nples			a	ERCURY V			JRY VAPOR METER INFO	
		8	Depth	ndwa	Graphic Log	Ę	욡	e Pe	E _	e (RDD	Time	Bkg	ADINGS (MANUF./MDD Jerome	EL LAMP (eV) SI	DURCE
INTERVAL	DESCRIPTION	Sample	Depth (ft bgs) Jo	Grap	Stratum	Sample No.	Blows 6 inch	Driven (feet)	Recovere d (fect)		"			Space	REMARKS	· · · · · · · · · · · · · · · · · · ·	
15-20'	60" Recovery									5,0							•	
	180-240" saa	H	ļ- ·	-		ĺ								0.0	1			
			- 16	l		ļ								0.0	.			
								ŀ					1					
				-					i .					0.0	-			
	i		- 17	ا -				ŀ						0.0				
						ľ						}						
				1										0.0	1			
			- 18									ļ	ļ	1.4		Collected samp	le M-9C at 216-222	" bgs for
													ŀ		1	mercury analysi	s at 10:20	
			- '	1									l	1.4		i		
		ļ	- 19	4			l		1				l	0.4	:	wet @ 19.0' bgs	3	
		ł																
	:			1					ŀ					0.0	}			
20-25'	60" Recovery		20	-						-5.0				0.0				
	240-276" saa		ĺ				:			ĺ								
		1	- '	1					1					0.0		ļ		
		1	- 21	-:										0,0	:			
		Ш												0.0				
												1		0.0				
			- 22	-		ļ								0.0				
												ł						
			l- ·	-			1					i		0.0				
İ	276-282" orange medium sand		- 23	1										0.0				
	210-202 Orange medium sand			Ī										0.0				
	282-300" tan clay		٠.	-										0.0				
				Į										1	1			
			- 24	ī		1	l	1			l			0.0	1			
		į	ļ											0.0		Collected samp	le M-9D at 294-300	" bgs for
																mercury analysi		-
llef@et/r01lnlnrn	pject\2007\0702358\05\02_Survey_and_Workpaper	elS::nn	- 25		ring loss	L.	L	ing loca	1.20 00	vietta (<u> </u>	L	0.0	<u> </u>	End of Boring	······	

ROJECT NAI			PROJECT N 07023580				DATE/		ARTEO 19/09		DATE/TI	ME COMI 01/29/0		GROUN	O ELEVATION (FT. M	ISL) T	DTAL OEPT	H (ft) 25	
OJECT LOC	CATION		10.020000	т .			BORIN			Descrip		r surveye		ates, if av	ailable)				_
	S Street, Camden, NJ ATION (sketch)	Ņ	ORILLING M				i		_			IĞ CONTR	RACTOR		_				_
		ı	Direct Pus BORING OIA			е		3"			Enviro ORILLE				INSPECTOR	lo	RILLING EQ	LIPMENT	_
		_	DRILLING FL		(111)			NA			NA				Mary Ann Gilme		rack-mou		opro
			SAMPLERO	IAM./TY	PE			3"			НАММЕ	R WEIGH	T (lbs)	•	NA HAMME	R OROP (in)	NA	
				ABA	NDON	MENT			<u> </u>	GR	MONDO			ONS (dep	th in ft bgs)	Observed '			NA
			METHOO MATERIAL			Backt oil/Bete			Oepth Oepth			Oate/Tim Oate/Tim				Seasonal	High WT		NA
			QUANTITY		- 30	NA	Jille		Oepth			Date/Tim				 			_
		erva	5	D.	Т			San	nples			l .	CURY V				METER IN		N
		Sample Interv	Depth	Graphic Log	Ę	용	s per	e .	vere	RQD	Time	REA Bkg	DINGS (n Sample		MANUF./MOC Jerome	DEL L	AMP (eV)	SOURCE	_
ITERVAL	DESCRIPTION	Sam	(ft bgs)	Grap	Stratum	Sam No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	1100	"""	DA9	Oumpie	Space	REMARKS		!		
5'	36" Recovery	T	- 0 -		T				3.0				0.0						_
	0-12" organic matter, graas, roots	- 1	1 1												and a section of the				
					İ				-				0,0						
	12-18" ash		- 1 -	1									0.0	1					
										ł			_						
	18-36" orange silty loam			1								I '	0.0]					
			- 2 -	ļ	ļ		ļ					ļ	0:0						
				1						1									
										1		l	0.0						
			- 3 -							1		l	0.0						
				l									0.0						
				l											1				
											ļ		٠						
			- 4	1	1									1				• • • • •	
											1	l	ŀ		1				
		-	_									İ							
10'	36" Recovery 60-84" saa		- 5 -			ľ			3,0			1	0.0						
	00-04 Saa		1										0.4		Collected samp	ole M-10A	ь et 66-72	" bgs for	
				1								l			mercury analys			-	
			- 6 -		-								-0.4						
		Ш						1	1				0.3						
				1					1				0.0						
	84-96" tan-orange fine sand		- 7 -	1						}	1	l	0.0						
												l	0.0						
			-									l	0.0						
			- 8 -		ļ								0.0						
												l							
			-							1		l		1					
			- 9 -									l							
				1	1		1												
												l							
-15'	60" Recovery		1 1 -		ļ	ļ	ļ		5:0		ļ ;	.	0,0						
	120-180" saa		" i] "."]									
												1	0,0]				
			11 -										0.0						
			''										ان، ا						
				1									0.0						
			- 12					i.											
			- 12	1	-			Town to the compa				**********	0.0						
													0.0		1				
			 - 13 -										0,0		1				
			- 13 - 		1								0.0	1					
						1							0.0	1					
			- 14										0,0						
			'	1		Ī							0,0	[
				1		l	l		l		:		0.0						
									į ,						Collected samp				

			_											_				
•••	CMX				L	.00	G O	F S	OIL	BOF	RING	G M-	10					
PROJECT NAM			PROJEC					OATE/	TIME ST					MPLETE	GROUN	DELEVATION (FT. M	SL) TOTAL DEF	
Camden La			070235	804	•			BORIN		9/09 TION (0	escript		01/29/ or survey	ed coordin	ates, if av	ailable)		25
1667 Davis	Street, Camden, NJ		DDU LAW		TUOD			i				I ORILLIA	IC COA	TRACTOR				
BORING LOCA	TION (sketch)		DRILLING Direct I			orob	е						probe	IRACIOR				
			BORING	DIAN	IETER (in)			3"			DRILLE	R NAME			INSPECTOR	DRILLING E	EQUIPMENT
			DRILLING						NA			NA				Mary Ann Gilmo		ounted Geoprobe
			SAMPLE	R DI					3"					HT (lbs)			R DROP (in)	NA NA
			METHOD		ABAN		MENT Back	Fili		Depth	GR	OUNDW	Date/Ti		ONS (dep	th in ft bgs)	Dbserved WT Seasonal High WT	NA NA
			MATERIA				il/Bet			Depth			Date/Ti				Seasonal riigii VV	100
			QUANTII				NA			Depth			Date/Ti					
		erva		ē	5				Sar	nples			4	RCURY V			JRY VAPOR METER I	
		ā	Depth	dwater	ile Log	E	ē	18 g	١_	ere 🚓	RQD	Time	RE Bkg	ADINGS (r Sample	_	MANUF./MOD Jerome	EL LAMP (eV)	SOURCE
INTERVAL	DESCRIPTION	Sample	(ft bgs)	1 5	Graphic I	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	RQD	Time	S Ng	Sample	Space	REMARKS	l l	
15-20'	60" Recovery			Ť						5.0					<u> </u>			
	180-240" saa			Ш				1	1					0.0				
				i														
l			- 16	1				1						0.0				
1														0.0				
				П				İ					l	0.0				
]	11	- 17	1					1	1		ļ		0.0				
ł				.			l			1				0.3	l			
								l		1			l		1	L		
			- 18	1				1						8.0	1	mercury analys	le M-10C at 216 is at 10:40	-222" bgs for
İ				\forall			1	İ		l			l	0.8		wet @ 18.5' bg:		
]								ŀ		1			l					
İ			- 19	i					1				l	0.3				
1	}		١	$\ \cdot\ $			l	1	ł	1		1		0.0				
			İ	П			İ		i									
20-25'	60" Recovery		20	1						5.0			1	0.0				
İ	240-288" saa		l	.	İ		l						1	0.4				
		11																
		11	- 21	-			l						l	0.0				
			l			1	1						l	0.3	İ			
						1							1					
			- 22			ļ			.					0.0				
İ				П				1	ŀ		ŀ							
			i	1				1			ŀ		1	0,0				
			- 23	U									1	0.0				
			- 23	ī	l					l				0.0				
				$ \cdot $										0.0				
											}		1	1				
	288-300" grey clay		- 24			ļ	l		· [· · · · · ·	ļ			I	0.0	1			
														0.0		Collected samp	le M-10D at 294	-300" bgs for
Ì			- 25	<u>'</u>									1	0.0		End of Boring		
Ns09svr01\n\pr	oject\2007\0702358\05\02_Survey_and_Wor	rkpapers\Suppl	iemental s	SI bo	ring logs	(Mer	сигу Во	ring logs	s 1-29-0	9.xls]M-1	0							

	AME		PROJECT NU 07023580				DATE		ARTED 9/09			ME COM 01/29/0		GRDUN	D ELEVATION (FT. M	SL) TOTAL	L DEPTH (ft) 20
oject Lo	OCATION		107023560	+			BDRIN			Descript		r surveye		ates, if av	ailable)	,I	
	is Street, Camden, NJ CATION (sketch)	N	ORILLING ME	THOO	_		l			-		IG CONTR	RACTOR				
		1	Direct Pus BORING DIAM		_	е		3"			Enviro ORILLEI			<u></u> -	INSPECTOR	loeu	ING EQUIPMENT
			ORILLING FL		(111)			NA.			NA	MANIE			Mary Ann Gilmo	1	k-mounted Geop
			SAMPLER OIL		PE .			3"			намме	R WEIGH	T (lbs)		NA HAMME	R DROP (In)	NA
				ABA		IMENT				GR	OUNOW	r		ONS (dep	th in ft bgs)	Observed WT	N/
			METHOO			Backt oil/Beto			Oepth			Date/Tim				Seasonal High	wr NA
			MATERIAL QUANTITY		30	NA			Oepth Depth			Oate/Tim					
		S S		6	Т			San	nples			_	CURY V	APOR			TER INFORMATION
		Sample Interv	Depth tax	Graphic Log	Ę	흥	<u>5</u> 5	_	a er	RQO	Time	REA Bkg	DINGS (n Sample		MANUF./MOO Jerome	EL LAMP	(eV) SOURCE
TERVA	AL DESCRIPTION	Sam	(ft bgs)	Grap	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	, au	Title	الم	Campic	Space	REMARKS	<u> </u>	
	48" Recovery		- 0 -						4.0				0.0				
	0-12" grass, organic matter																
					1			1					0.0				
	12-24" strong brown silty loam		- 1 -										0.0				
]		1			
						1	-						0.0		1		
	24-48" orange silty sand		- 2 -		ļ	ļ				.	ļ	.	0:0:				
															1		
												1	0.0]			
			- 3 -			1							0.0				
		į											0.0	ľ			
													0.0				
						1							0,0				
]- 4 -										0,0				
		İ															
			_								1		·				
0'	48" Recovery 60-72" orange fine sand		- 5 -						4.0				0.0				
	OU-12 Orange line sand								1			i	0.4		Collected samp	le M-11A at	60-66" bgs for
															mercury analysi		<u>-</u>
	72-108" tan sand		- 6 -		·}						· · · ·	<u> </u>	0.0				
]										0.0				
			- 7 -								ĺ	i	0,0				
											ŀ	ŀ	0.0				
													"."				
			- 8 -		ļ								0.0				
]						
													0.0				
			- 9 -	Ī									0.0				
													}				
15'	60" Recovery		ן ו 10 -		ļ]	ļ		-5.0	ļ	ļ :	.	0.0				
	120-180" saa			1								i					
			 										0.0				
			- 11 -										0.0				
												ļ	0.0				
			- 12 -										0.0				
			'-						[
				l								l	0.0	1			
			- 13 -			ĺ	l					ĺ	0.0				
			~							ĺ]		
													0.0		1		
			- 14 -·		ļ	.						.	-0.8	ļ			
												l			Collected samp	le M-11B at	168-174" bgs for
	i	i	III	l	1	ı	ı	ı	ı	1	1		0.4	ı	mercury analysi	s at 12:00	
	ŀ					1							0.7	ŀ	Intercuty analysi	0 01 12.00	

*	CMX		_			LO	G O					G M-									
PROJECT NAM Camden Lat			PROJE		JMBER 14			ĺ		9/09			01/29	/09			D ELEVATION (FT. M	SL)	TOTAL DEP	TH (ft) 20	
PROJECT LOCA	ATION Street, Camden, NJ							BORIN	IG LOC	ATION (Oescrip	tion and/	or surve	yed c	oordina	ites, if av	allable)				
BORING LOCAT		N			ETHOO	b						ORILLI Envir			CTOR						
		I			h Geo METER				3"			ORILLE	-				INSPECTOR		ORILLING E	OUIPMENT	г
			ORILLI						NΑ			NΑ					Mary Ann Gilmo	re	Track-mo	unted Ge	eoprobe
			SAMPL	ER D	IAM./TYF	E			3"			HAMME	-				NA HAMME	_		NA	
			<u> </u>		ABA	NDO	MENT			 	GR	OUNDW	_		RVATIO	ONS (dep	th in ft bgs)	Observ			NA
			METHO			0.	Back			Oepth			Date/I					Season	nal High WT		NA
			MATER			3	oil/Bet NA			Oepth Oepth			Oate/I					┢			
		Š	GOAL	T,	Ι_	Т	T		Sar	nples			_		JRY VA	POR	MERCU	JRY VAF	OR METER I	NFOR MATI	ON
		e Inte	l	. Is	ic Log			18 g		ere				_	VGS (n		MANUF./MOD	EL	LAMP (eV)	SOURCE	
INTERVAL	DESCRIPTION	Sample	(ft bg	בין מון	Graphic	Stratum	Sample No.	Blows per 6 inches	Driven (feet)	Recovere d (feet)	RQD	Time	Bkg	s	ample		Jerome REMARKS		<u> </u>		
15-20'	60" Recovery	03	(it by	3) 6	 	100	0 2	ш 6	L 5	5.0	-		\vdash	十		Opacc	I CHARLE	-			
13-20	180-240" saa			-	1				l	0.0			i		0.0	ŀ					
					1		ľ						l								
		l l	- 16	ī	ļ				·····						0.0					• • • • • • • • • • • • • • • • • • • •	
		- 1	-	-									1		0.0						
									ŀ				1				1				
			- 17	-	ŀ		l							1	0.4						
			_	_	l		1					İ			0.4						
				1	1	1	1						1								
			- 18			·	 								2.9		Collected samp			222" bgs	for
							ı		ľ				l		1.0		mercury analysi wet @ 18.5' bgs		2:05		
			-	7	1		1						l		1.0		Wel @ 10.5 Dg.	•			
			- 19	-:			l	ŀ				1	l		1.0						
					1		l			1	1		1								
			-	-	1		l		İ	ĺ					1.0		Collected samp	ie M_1	1D at 234	240" hae	for
20-25'	No Recovery		L 20	1						ļ					2.9		mercury analysi			-	
			1				ŀ						l								
1	1		-	-	1			l		1											
			- 21				l			ł											
		+		1	İ	1		i		l			ľ								
			-	-]	ı		l	İ				ŀ								
			- 22	ı	l		1		1				ŀ								
	:		- 22	ī	l	1	1	1													
	1		-	-					l	ł			l								
				ı	1																
		1	- 23	-						1											
							1					ŀ	1								
	İ		-	-			1			1	1		1								
]	l - 24	I.	.	ļ		ļ]	ļ											
		İ			l								l								
			-	-						1		1									
l	ī	1	ı		Î	1	ı	i	i i	1	ł	1	1	- 1		Į.	1				

\\\s09svr01\n\project\2007\0702358\05\02_Survey_and_Workpapers\Supplemental SI boring logs\\Mercury Boring logs 1-29-09.xis\\M-11

APPENDIX B: GEOPHYSICAL SURVEY REPORT

Woodard & Curran Attn: Robert W. Fisler 2 Executive Campus 2370 State Route 70 West, Suite 125 Cherry Hill, NJ 08002

February 23, 2018

Re: Engineering Report – Former Camden Labs Site

Dear Robert W. Fisler,

February 2018 Master Locators (ML) performed a geophysical survey at 1667 Davis Street in Camden, NJ. The purpose of the survey was to scan for and mark out all locatable utilities/anomalies and within the boundaries of the Former Camden Labs Site. The client was specifically interested in possible underground storage tanks (USTs) that were thought to be present within the scan area. A bulk of the site was inaccessible due to collapsed buildings, demolition, debris piles and vegetation overgrowth. ML focused its efforts on areas surrounding the structures/buildings and in areas where the vegetation was less and allowed access.

METHODOLOGY

ML utilized Electromagnetic (EM) and Ground Penetrating Radar (GPR) technology to perform the subsurface investigation with the following equipment.

- Profiler EMP-400 manufactured by GSSI
- A6 Tracer manufactured by Aquatronics (split box)
- RD 8000 Digital Locator manufactured by Radiodetection
- Noggin SmartCart with 250MHz GPR antenna manufactured by Sensors and Software

Profiler scans were completed throughout the scan area on the non-vegetated pathways and paved areas to depict relative conductivity. During data collection, the instrumentation must remain level and close the ground at all times; heavy vegetation and debris prevents this. The Profiler is an EM induction tool that emits user selected frequencies ranging between 1,000 Hz to 16,000 Hz. The EM fields produced by these frequencies are measured for soil conductivity. These scans were georeferenced using an internal GPS antenna. All Profiler data was saved for post processing via Surfer Pro software.

Inductive EM scans were then performed with the A6 Tracer using a 118kHz frequency. Inductive EM data was collected at 10' spacing in both the x and the y directions. The A6 Tracer scans were performed to identify any potential metallic objects within the scan area.

Electromagnetic scanning was performed to trace all conductive utilities which were visually evident within or adjacent to the scan area. This included both active and inactive methods of locating with the RD 8000 Digital Locator. Active and inductive scans were performed on various frequencies ranging from 8 KHz to 200 KHz. Passive scans were performed on a 60Hz frequency.

GPR scans were performed with a 250MHz antenna. GPR data was collected at 10' spacing in both the x and the y directions. During the scanning process, the GPR operator continuously monitored the imaging results displayed for indications of any anomalies within the soil below the ground surface. Any anomalies which were detected were investigated further to identify the target as a potential utility or unknown.

ML-100417-4580 Engineering Report 02-23-18

RESULTS

GPR/EM Investigation

Attachment 1: Digitized Print Mark Up contains the results of the EM/GPR scan for locatable utilities and unknowns. Multiple utilities and unknown linear features were observed within the boundaries of the property. A majority of the investigation was limited to accessible paved areas and sections of the property with less vegetation. ML couldn't access the buildings due to observed safety hazards.

In addition to utilities and unknown linear features, two (2) areas targets were marked out. ML field staff were informed that the section of the scan area northeast of Building 1 may contain a possible underground storage tank (UST). ML field staff observed an unknown, non-linear, metallic area target in this section of the site using the split box. *Attachment 2: Site Photos, Possible UST* depicts photos related to the unknown non-linear, metallic area target for additional reference.

ML field staff noted a second unknown non-linear, metallic area target located in close proximity to an unknown linear feature southwest of Building 5. The margins of that target were not easily defined. This area target may represent a possible UST, buried debris, buried utility structure or some other buried structure.

Profiler Investigation

Profiler data was collected over the accessible pathways and in areas of low vegetation. *Attachment 3: Profiler Conductivity Images* contains conductivity results at two (2) frequencies 15000 Hz and 10000 Hz (lower the frequency, lower the signal depth penetration). The Profiler conductivity data overlays Google aerial imagery dated 2011. 2011 was chosen for base imagery because of its clarity in comparison to recent imagery. Those areas circle in dashed, redline type are the areas highest in conductivity. Although high in conductivity, these circled areas are near surface structures, buildings and fence line/property line. A majority of the scan area covered has some level of conductivity. This overall conductivity could be due to the observed debris covering the site and/or the wet/damp conditions the data was collected in (note snow present on the ground in *Attachment 2*).

ML recommends that the site be cleared of debris and vegetation and a rescan of the property be conducted to get a less obstructed picture of the subsurface conditions at the Former Camden Labs Site.

We would like to thank you for the opportunity to assist with this project. Please feel free to contact me with any questions regarding this report and the attachments.

Sincerely,

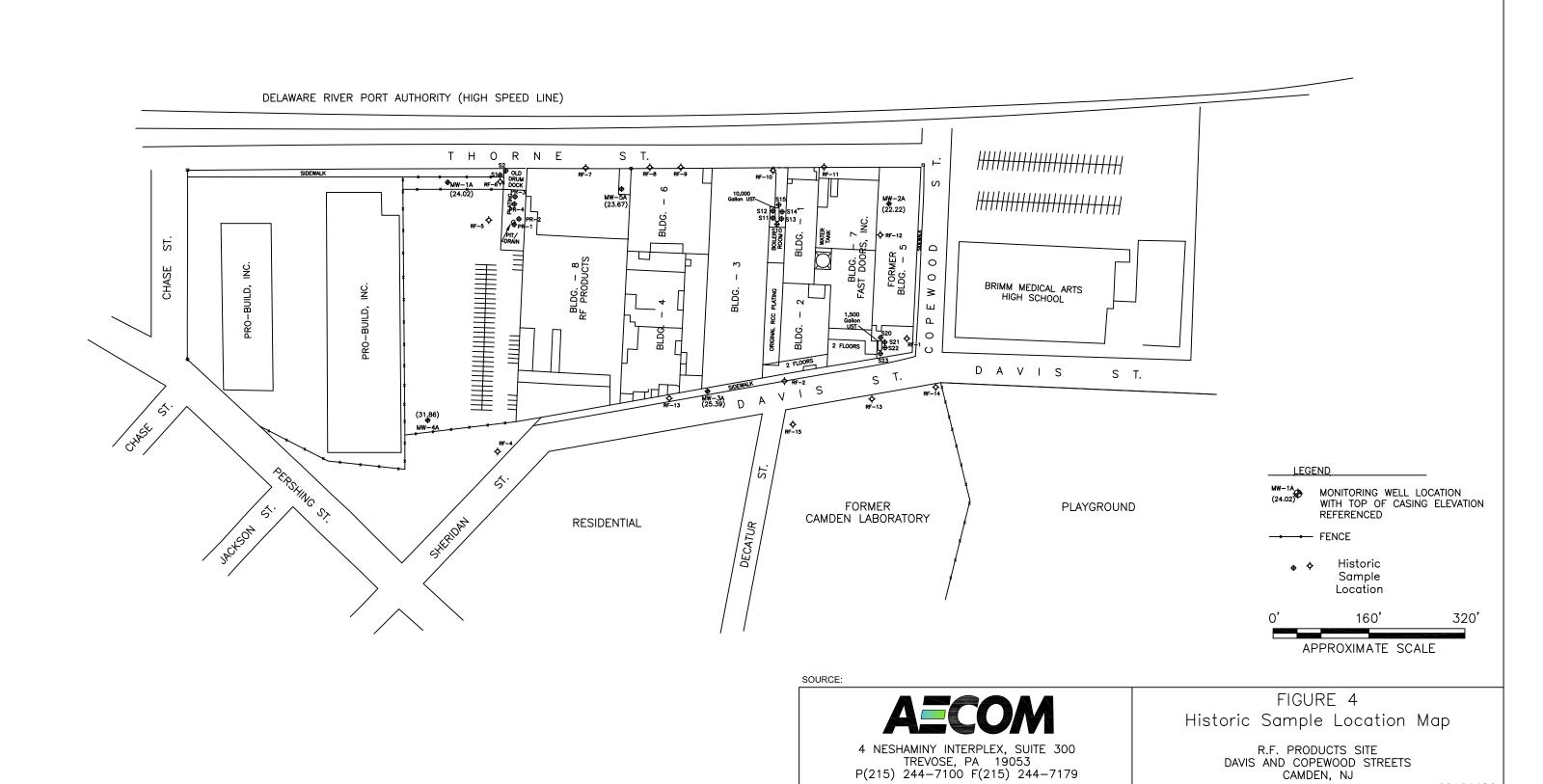
Crystal Gardener Geologist/Project Manager

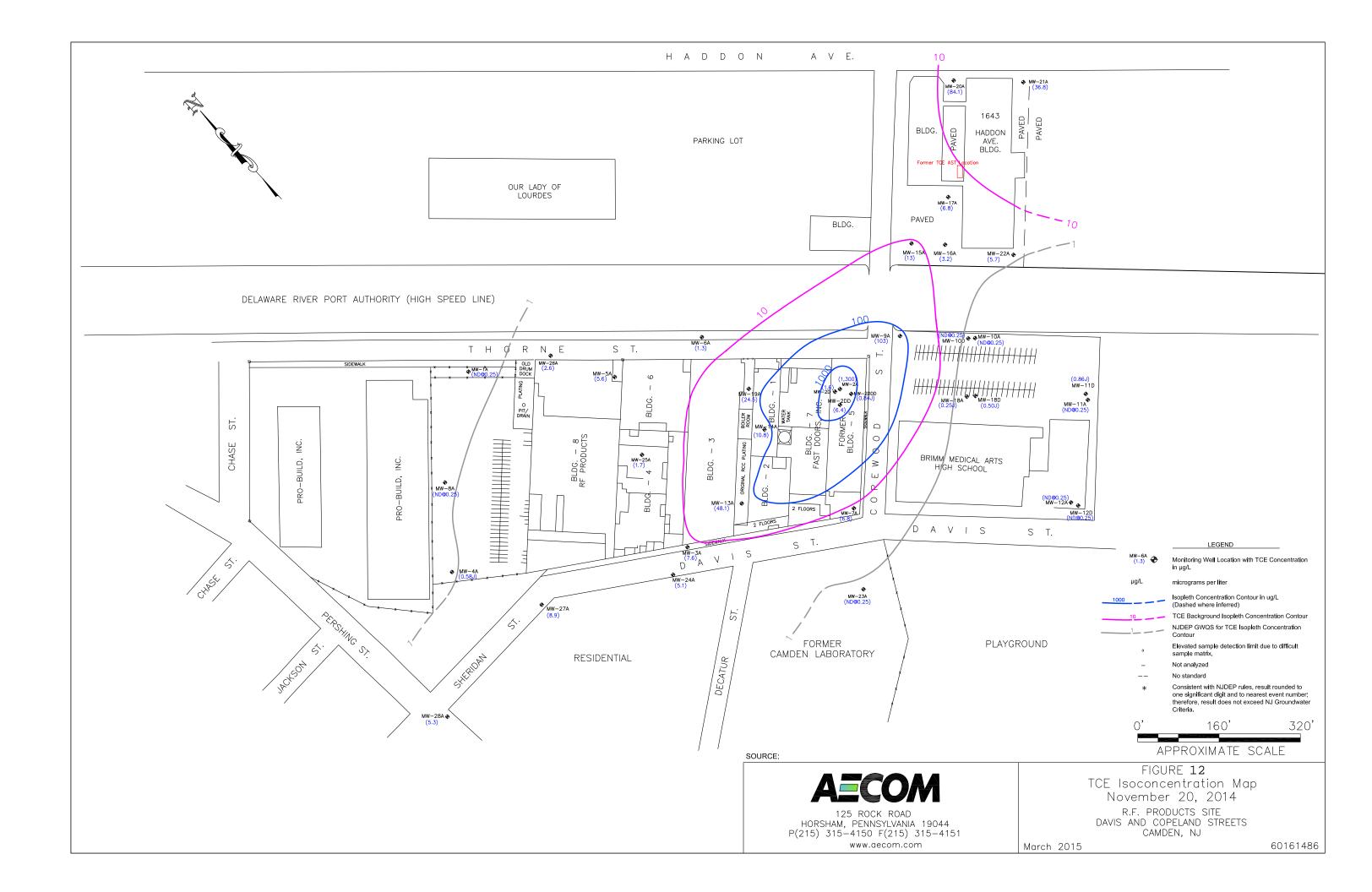
Attachment 1: Digitized Print Mark Up Attachment 2: Site Photos, Possible UST Attachment 3: Profiler Conductivity Images

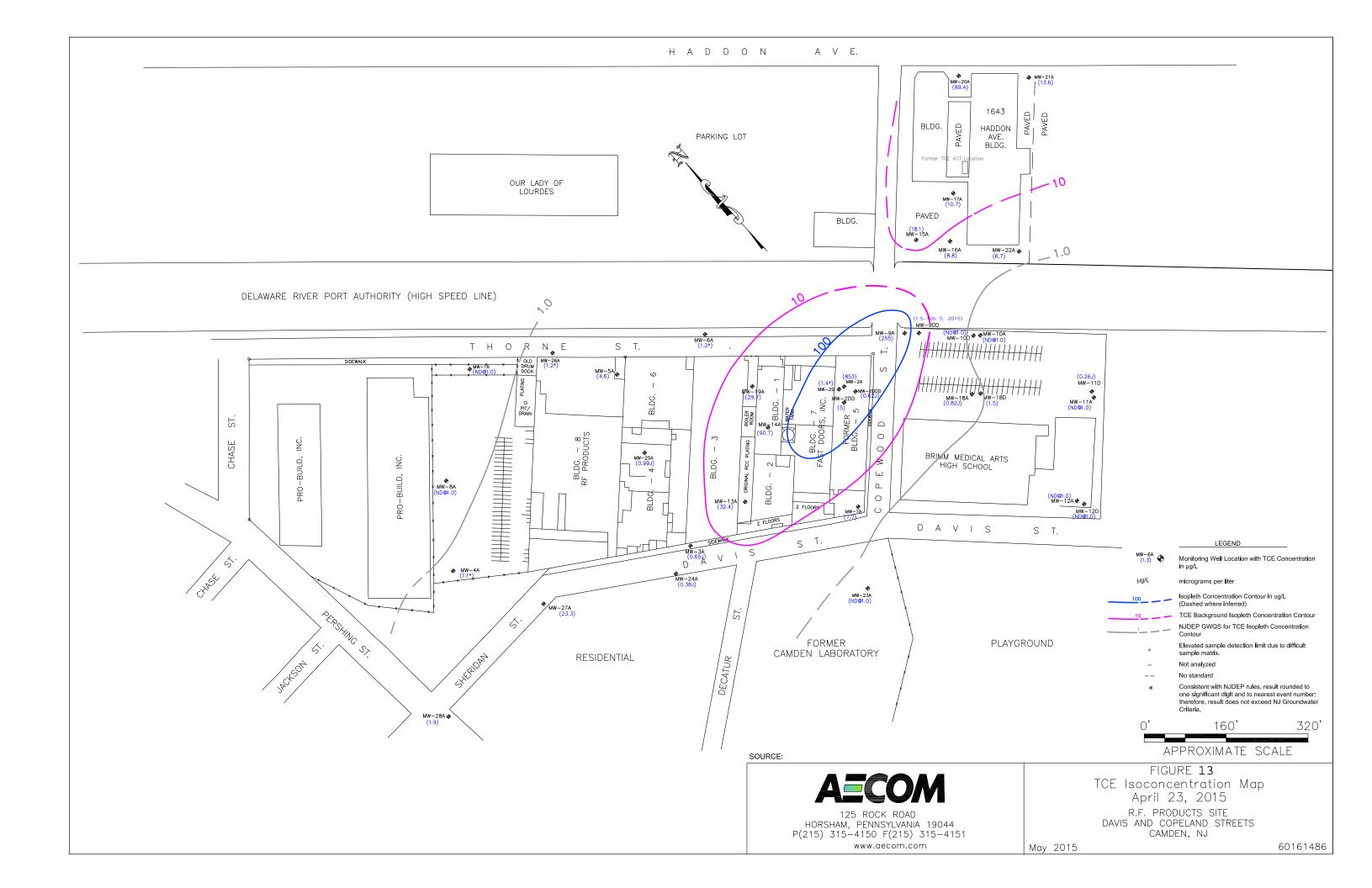
Photo 1: Direction SW, possible UST with unknown linear feature (possible UST associated piping) leading into building

Photo 2: Direction SW, unknown linear feature leading into building.

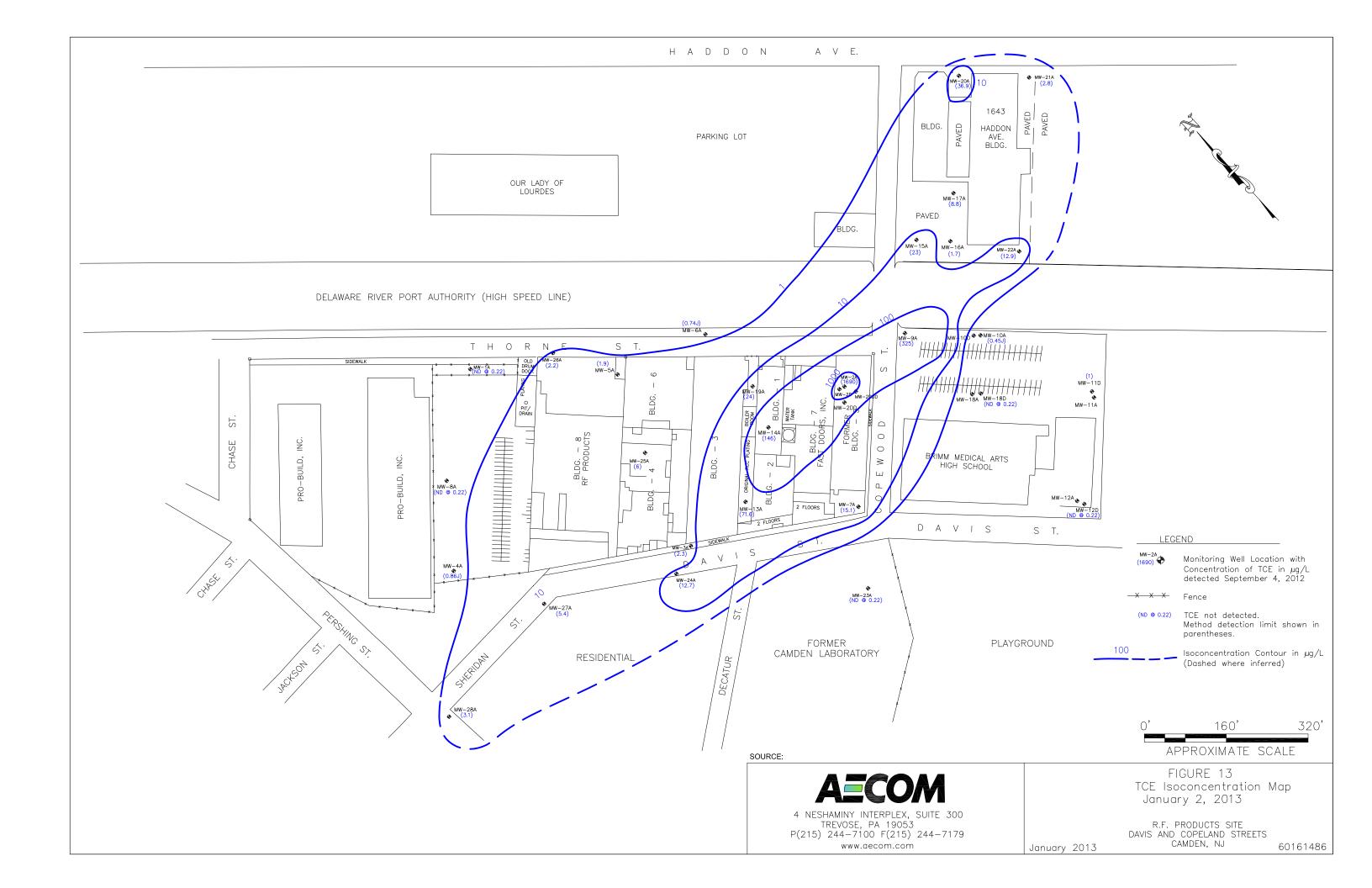
Photo 3: Direction SSE, possible UST with unknown linear feature (possible UST associated piping) leading into buildin

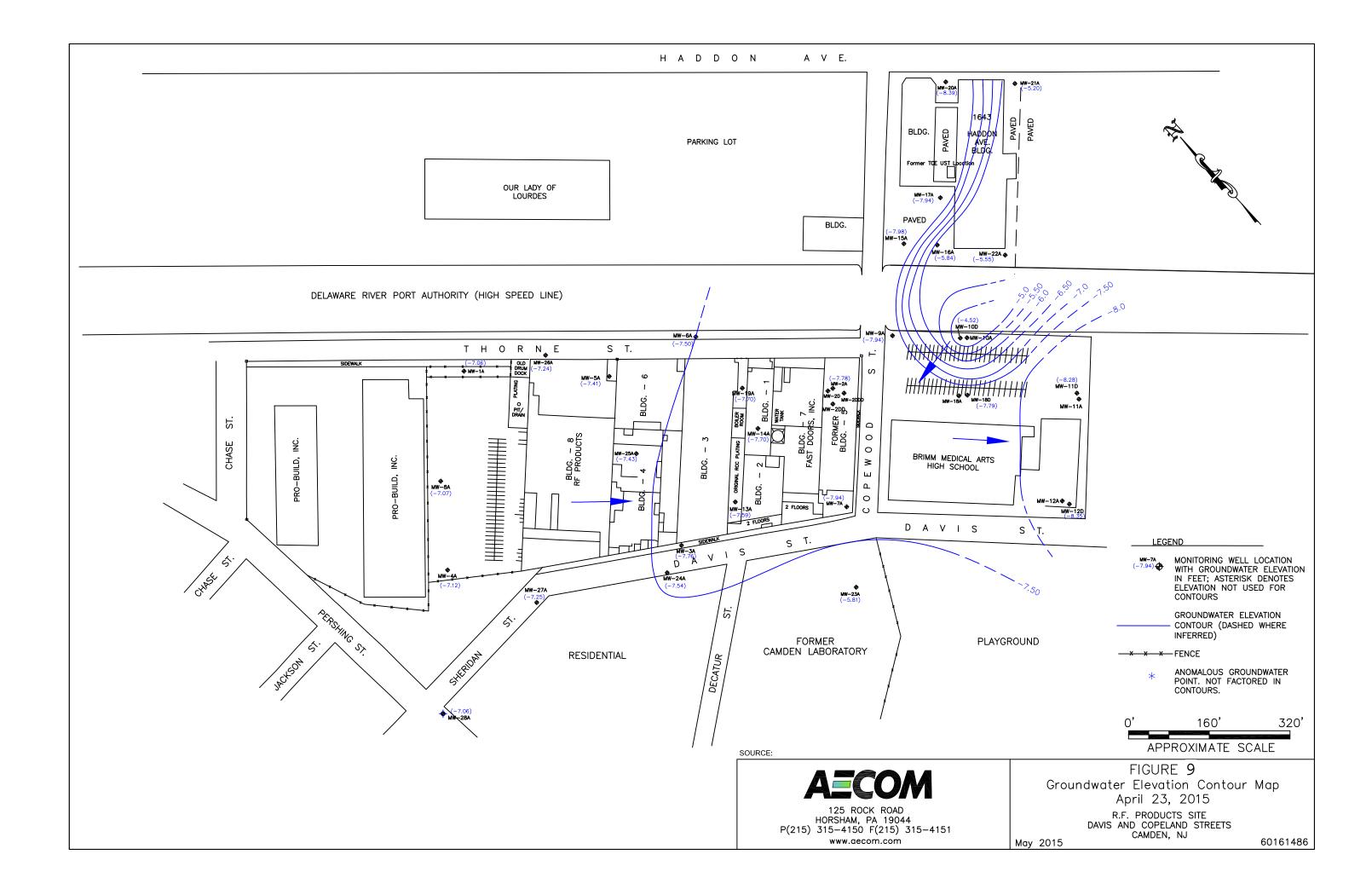

Conductivity[100InPhase[15000] 2011 Google Imagery
Areas of near-zero positive conductivity (green), areas of high positive conductivity (warm colors)


APPENDIX C: REGIONAL GROUNDWATER EVALUATION



www.aecom.com


OCTOBER 2010


60161486

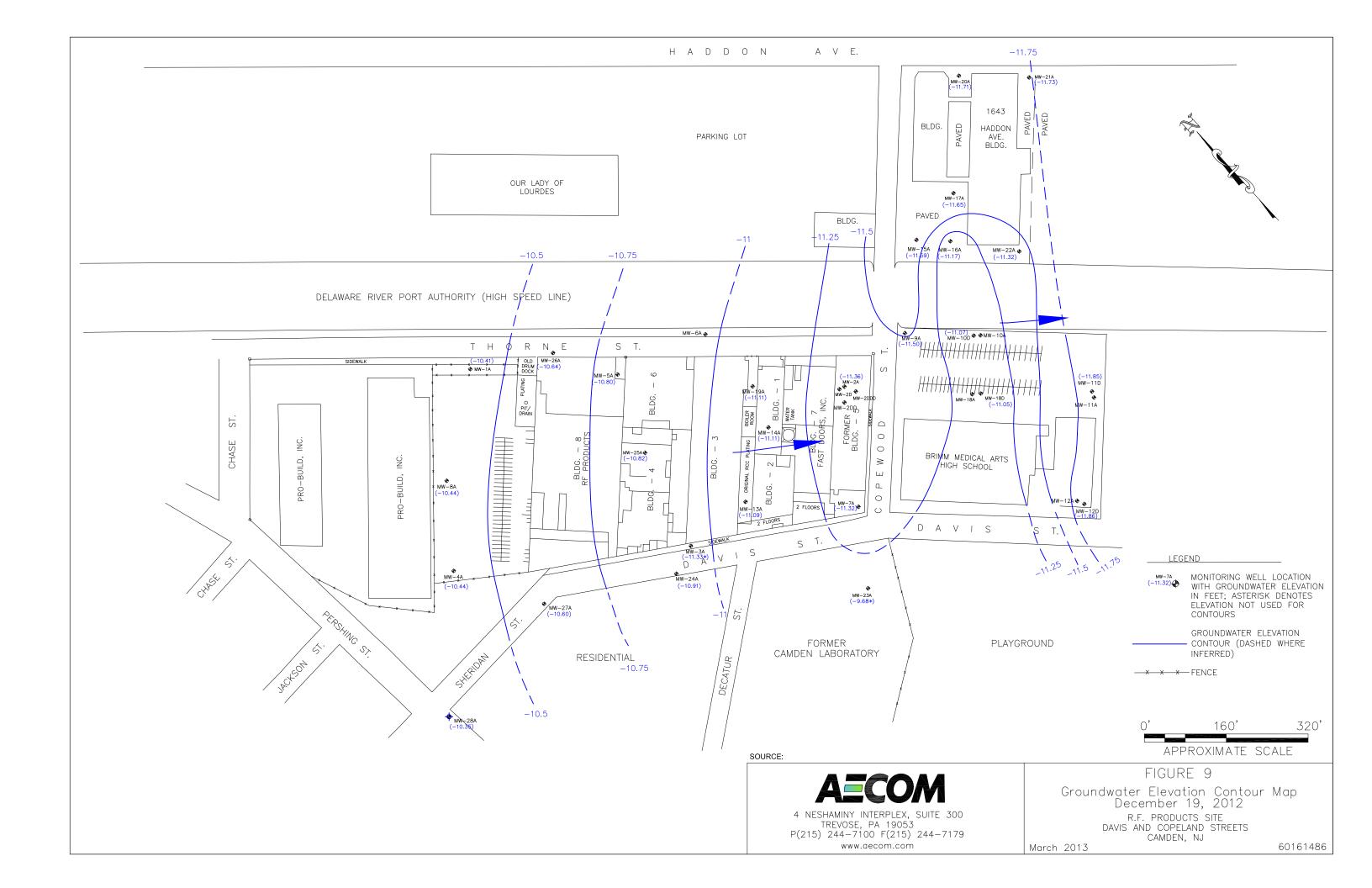


Table 4. Summary of Historic Groundwater Analytical Results RF Products Site, Camden, New Jersey.

			Carbon Tetrachloride	Methylene Chloride	Tetrachloroethene	Trichloroethene	Vinyl Chloride
		NJGWQC	1	3	1	1	1
Well ID		Sample Date	μg/L	μg/L	μg/L	μg/L	μg/L
MW-23A	Α	10/5/2011	<0.19	<0.20	<0.32	<0.21	<0.27
MW-23A	В	10/5/2011	<0.19	<0.20	<0.32	<0.21	<0.27
MW-23A		9/4/2012	<0.22	<0.70	<0.28	<0.22	<0.21
MW-23A		1/2/2013	<0.22	<0.70	<0.28	<0.22	<0.21
MW-23A		5/2/2013	<0.22	<0.70	<0.28	<0.22	<0.21
MW-23A		11/7/2013	<0.23	<0.86	<0.25	<0.50	<0.41
MW-23A		7/10/2014	<0.24	<0.81	<0.35	<0.25	<0.17
MW-23A		11/20/2014	<0.24	<0.81	<0.35	<0.25	<0.17
MW-23A		4/23/2015	<1.0	<2.0	<1.0	<1.0	<1.0
MW-23A		11/23/2015	<1.0	<1.0	<1.0	<1.0	<1.0
MW-23A		4/21/2016	<1.0	<1.0	<1.0	<1.0	<1.0
MW-23A		9/5/2017	<1.0	<1.0	<1.0	<1.0	<1.0

Ν	ote	S
---	-----	---

NJGWQC
VOCs
µg/L

Result exceeds the NJGWQC.

Not analyzed

< 0.4

Analyte detected in laboratory method blank.

D

New Jersey Groundwater Quality Criteria.

Volatile Organic Compounds
micrograms per liter
Result exceeds the NJGWQC.

Not analyzed

Analyzed
Sample results obtained from a dilution.

J Estimated Value

APPENDIX D: SUPPORTING DOCUMENTS FOR AOC-15

Table D1. Maximum Observed Soil Concentrations Following Remediation and SESOIL Input Concentrations.

Sample ID															
		AM-4	AM-15	AM-5	AM-12	AM-14	PE-1	PE-2	PE-3	PE-4	PE-5	PE-6	PE-7	PE-8	PE-9
Lab ID	SESOIL	J93728-6	J93728-15	J93728-7	J93728-13	J93728-14	AC39795-001	AC39795-002	AC39795-003	AC39795-004	AC39795-005	AC39795-006	AC39795-007	AC39795-008	
Sampling Date	Sublayer		06/20/2008	06/20/2008	06/20/2008		09/08/2008	09/08/2008	09/08/2008	09/08/2008	09/08/2008	09/08/2008	09/08/2008	09/08/2008	09/08/2008
Sample Depth (ft bgs)			1.5-2	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5	1-1.5
	0-1	8.6	-	-	-	-	-	-	-	-	-	-	-	-	-
	1-2	-	9.8	8.8	41.8	9.3	28	89	73	78	98	140	150	98	98
	2-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4-5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	5-6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6-7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead Results (mg/kg)	7-8	-	-	1	-	-	ı	-	-	-	1	-	-	1	1
Lead Results (Hig/kg)	8-9	-	-	ı	-	-	ı	-	-	-	1	1	-	-	1
	9-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10-11	-	-	-	-	-	•	-	-	-		-	-	-	-
	11-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12-13	-	-	-	-	-	ı	-	-	-	-	-	-	-	-
	13-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14-15	-	-	-	-	-	-	-	-	-	-	-	-	-	_
	15-16	-	_	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

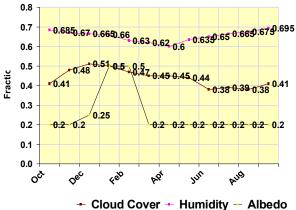
ft bgs = feet below ground surface mg/kg = milligrams per kilogram

Table D1. Maximum Observed Soil Concentrations Following Remediation and SESOIL Input Concentrations.

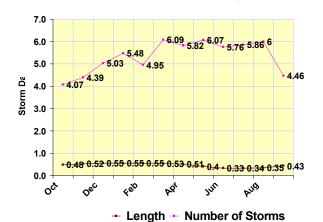
Sample ID													
		PE-10	AM-7	AM-8	AM-7A	AM-16	PE-11	PE-12	PE-13	PE-14	PE-15	AM-8A	
Lab ID	SESOIL	AC39795-010	J93728-9	J93728-11	J93728-10	J93728-16	AC39826-001	AC39826-002	AC39826-003	AC39826-004	AC39826-005	J93728-12	SESOIL
Sampling Date	Sublayer	09/08/2008	06/20/2008	06/20/2008	06/20/2008	06/20/2008	09/09/2008	09/09/2008	09/09/2008	09/09/2008	09/09/2008	06/20/2008	Sublayer
Sample Depth (ft bgs)	Depth (ft bgs)	1-1.5	2.25-2.75	2.25-2.75	2.5-3	2.5-3	2.5-3	2.5-3	2.5-3	2.5-3	2.5-3	2.75-3.25	Load (mg/kg)
	0-1	-	-	-	-	-	-	-	-	-	-	-	0
	1-2	69	-	-	-	-	-	-	-	-	-	-	150
	2-3	-	18.5	58.8	6.8	53.9	7.3	6.6	5.9 U	13	14	7.0	0
	3-4	-	-	-	-	-	-	-	-	-	-	7.0	0
	4-5	-	-	-	-	-	-	-	-	-	-	-	0
	5-6	-	-	-	-	-	-	-	-	-	-	-	0
	6-7	-	-	-	-	-	-	-	-	-	-	-	0
Lood Dooulto (mar/len)	7-8	-	-	-	-	-	-	-	-	-	-	-	0
Lead Results (mg/kg)	8-9	-	-	-	-	-	-	-	-	-	-	-	0
	9-10	-	-	-	-	-	-	-	-	-	-	-	0
	10-11	-	-	-	-	-	-	-	-	-	-	-	0
	11-12	-	-	-	-	-	-	-	-	-	-	-	0
	12-13	-	-	-	-	-	-	-	-	-	-	-	0
	13-14	-	-	-	-	-	-	-	-	-	-	-	0
,	14-15	-	-	-	-	-	-	-	-	-	-	-	0
	15-16	-	-	-	-	-	-	-	-	-	-	-	0

Notes:

ft bgs = feet below ground surface mg/kg = milligrams per kilogram


Climate Report


Location Description: CAMDEN


Climatic Input File: C:\SEV7 WIN7\CAMDEN LABS\CAMDEN.CLM

Month	Tempe	erature	Precip	itation		nspiration ate	Storms		Cloud Cover	Albedo	Humidity
Units	°С	° _F	cm	Inches	cm	Inches	# per Month	Length Days	Fraction	Fraction	Fraction
October	13.89	57.00	8.280	3.26	0.00	0.00	4.07	0.480	0.410	0.200	0.685
November	8.33	46.99	8.915	3.51	0.00	0.00	4.39	0.520	0.480	0.200	0.670
December	3.33	37.99	8.865	3.49	0.00	0.00	5.03	0.550	0.510	0.250	0.665
January	0.56	33.01	9.423	3.71	0.00	0.00	5.48	0.550	0.500	0.500	0.660
February	2.22	36.00	7.010	2.76	0.00	0.00	4.95	0.550	0.470	0.500	0.630
March	6.67	44.01	10.363	4.08	0.00	0.00	6.09	0.530	0.450	0.200	0.620
April	11.67	53.01	10.033	3.95	0.00	0.00	5.82	0.510	0.450	0.200	0.600
May	17.22	63.00	11.125	4.38	0.00	0.00	6.07	0.400	0.440	0.200	0.635
June	22.22	72.00	9.677	3.81	0.00	0.00	5.76	0.330	0.380	0.200	0.650
July	25.00	77.00	11.481	4.52	0.00	0.00	5.86	0.340	0.390	0.200	0.665
August	23.89	75.00	11.100	4.37	0.00	0.00	6.00	0.350	0.380	0.200	0.675
September	20.00	68.00	10.439	4.11	0.00	0.00	4.46	0.430	0.410	0.200	0.695
Total			116.71	45.95	0.00	0.00					

SESOIL Profile and Load Report

Layer	Number of Sub-	Thickness		Thistenasa		Thistenasa		Thistones		Carbon Coefficient Exchai		Cation Exchange Capacity	Freundlich Exponent	Phase	Liquid Phase Degradation Rate	Soil pH
No.	Layers	cm	feet	cm ²	percent	μg/g μg/mL	mEq 100 g soil	unitless	1/day	1/day	рН					
1	10	305.0	10.01	1.00E-8	0.20	900.00	0.00	1.00	0.00E+00	0.00E+00	7.00					
2	6	183.0	6.00	1.00E-8	0.20	900.00	0.00	1.00	0.00E+00	0.00E+00	7.00					
3		0.0	0.00	1.00E-8	0.00	0.00	0.00	0.00	0.00E+00	0.00E+00	0.00					
4		0.0	0.00	1.00E-8	0.00	0.00	0.00	0.00	0.00E+00	0.00E+00	0.00					

(µg/mL)

(M³atm/mol)

 $(\mu g/g)/(\mu g/mL)$

 $(\mu g/g)/(\mu g/mL)$

(g/mole)

(cm²/sec)

(cm²/sec)

(g/mol)

Water Solubility

Henry's Law

Koc Adsorp

K_d Adsorp

Air Diffusion

Water Diffusion

Molecular Weight

Valence

Chemical Parameters

0.00

0.00

0.00

0.00

0.00

207.00

900.00

1.00E+5 Moles Ligand / Moles Chemical

Koc Dedsorp

K_d Dedsorp

Neutral Hydrolysis

Acid Hydrolysis

Ligand Molecular Weight (g/mol)

Ligand Dissociation Constant

Base Hydrolysis Rate(L/mol/day)

 $(\mu g/g)/(\mu g/mL)$

 $(\mu g/g)/(\mu g/mL)$

(L/mol/day)

(L/mol/day)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Soil Parameters

Juli Faraillelei 3							
Bulk Density (g/cm ³)	1.50						
Effective Porosity (fraction)	0.30						
Soil Pore Disconnectedness	3.70						

Application Parameters

Area	cm ²	3.01E+7
	ft ²	3.23E+4
Latitude	degrees	39.9
Spill Index		1

Output File: Vadose-C:\SEV7 WIN7\S01.OUT

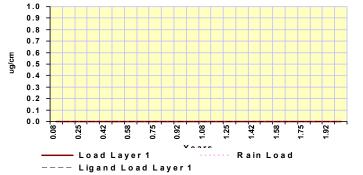
Chemical File: Lead And Compounds (Kd)

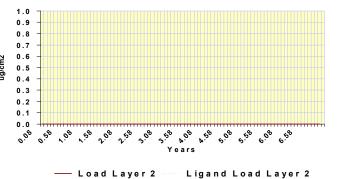
C:\SEV7 WIN7\CAMDEN LABS\LEAD AND COMPOUNDS (KD).CHM

Soil File: Sand, Perm = 1.00E-3 cm/sec C:\SEV7 WIN7\CAMDEN LABS\SAND.SOI

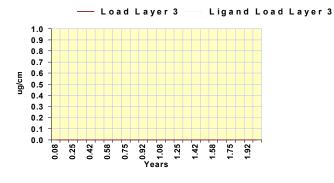
Application File: SEVIEW Default Application Parameters

1.50E+02

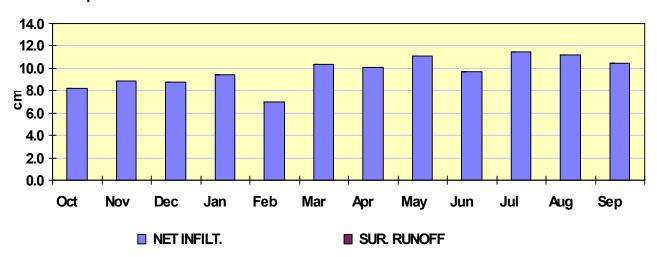

C:\SEV7 WIN7\CAMDEN LABS\LEAD - POST-EX.APL

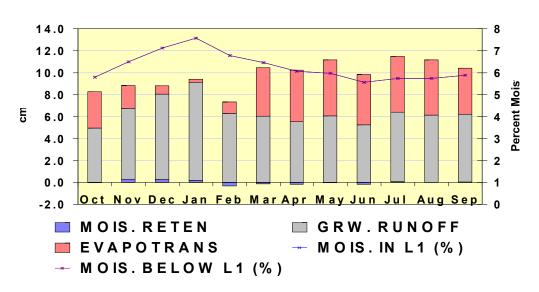

Sublayer Loads 1 2 3 4 5 6 7 8 9 10

Layer 1 (ug/g)


Layer 2 (ug/g) Layer 3 (ug/g)

Layer 4 (ug/g)




— Load Layer 4 Ligand Load Layer 4

SESOIL Hydrologic Cycle Report

Scenario Description: Vadose-1

SESOIL Output File: C:\SEV7 WIN7\S01.OUT

	Water		No	et			Soll		Ground		Soil M	Soil Moisture	
	wa Run			ration	Evapotrai	nspiration	Moisture Retention		Runoff (Recharge)		Layer 1	Below Layer 1	
Units	cm	Inches	cm	Inches	cm	Inches	cm	Inches	cm	Inches	Percent	Percent	
October	0.00	0.00	8.23	3.24	3.30	1.30	-0.04	-0.02	4.97	1.96	5.80	5.80	
November	0.00	0.00	8.85	3.48	2.11	0.83	0.28	0.11	6.46	2.54	6.49	6.49	
December	0.00	0.00	8.79	3.46	0.73	0.29	0.26	0.10	7.80	3.07	7.12	7.12	
January	0.00	0.00	9.42	3.71	0.30	0.12	0.18	0.07	8.94	3.52	7.57	7.57	
February	0.00	0.00	7.02	2.76	1.04	0.41	-0.32	-0.13	6.30	2.48	6.79	6.79	
March	0.00	0.00	10.33	4.07	4.42	1.74	-0.13	-0.05	6.05	2.38	6.46	6.46	
April	0.00	0.00	10.06	3.96	4.68	1.84	-0.16	-0.06	5.54	2.18	6.07	6.07	
Мау	0.00	0.00	11.12	4.38	5.09	2.00	-0.04	-0.02	6.06	2.39	5.98	5.98	
June	0.00	0.00	9.68	3.81	4.62	1.82	-0.17	-0.07	5.24	2.06	5.56	5.56	
July	0.00	0.00	11.50	4.53	5.12	2.02	0.07	0.03	6.30	2.48	5.74	5.74	
August	0.00	0.00	11.16	4.39	5.03	1.98	0.00	0.00	6.13	2.41	5.74	5.74	
September	0.00	0.00	10.43	4.11	4.21	1.66	0.06	0.02	6.16	2.43	5.89	5.89	
Total	0.00	0.00	116.59	45.90	40.64	16.00	0.00	0.00	75.94	29.90			

SESOIL Pollutant Cycle Report

Scenario Description: Vadose-1

SESOIL Output File: C:\SEV7 WIN7\S01.OUT

SESOIL Out	SESOIL Output File: C.13EV/									
SESOIL	Pollutant	Percent								
Process	Mass (µg)	of Total								
Volatilized	0.000E+00	0.00								
In Soil Air	0.000E+00	0.00								
Sur. Runoff	0.000E+00	0.00								
In Washld	0.000E+00	0.00								
Ads On Soil	2.062E+11	99.90								
Hydrol Soil	0.000E+00	0.00								
Degrad Soil	0.000E+00	0.00								
Pure Phase	0.000E+00	0.00								
Complexed	0.000E+00	0.00								
Immobile CEC	0.000E+00	0.00								
Hydrol CEC	0.000E+00	0.00								
In Soil Moi	8.997E+06	0.00								
Hydrol Mois	0.000E+00	0.00								
Degrad Mois	0.000E+00	0.00								
Other Trans	0.000E+00	0.00								
Other Sinks	0.000E+00	0.00								
Gwr. Runoff	0.000E+00	0.00								
Total Output	2.062E+11	99.91								
Total Input	2.064E+11									
Input - Output	1.910E+08									

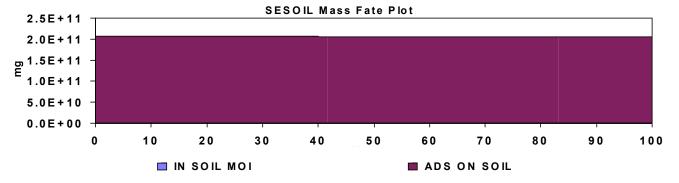
Maximum leachate concentration: 0.000E+00 mg/l

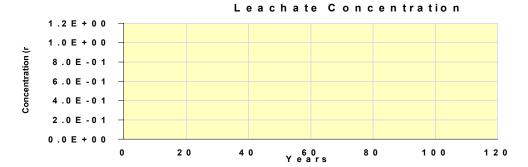
Climate File: CAMDEN

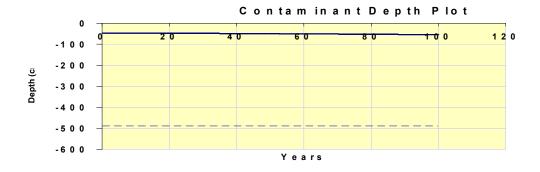
C:\SEV7 WIN7\CAMDEN LABS\CAMDEN.CLM

Chemical File: Lead And Compounds (Kd)

C:\SEV7 WIN7\CAMDEN LABS\LEAD AND COMPOUNDS (KD).CHM


Soil File: Sand, Perm = 1.00E-3 cm/sec


C:\SEV7 WIN7\CAMDEN LABS\SAND.SOI


Application File: SEVIEW Default Application Parameters

C:\SEV7 WIN7\CAMDEN LABS\LEAD - POST-EX.APL

Starting Depth:45.73cmEnding Depth:53.42cmTotal Depth:488.00cm

APPENDIX E: PHOTO LOG

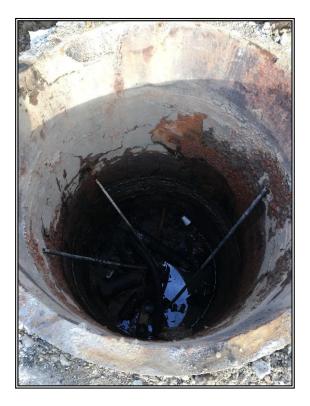


Photo 1: Sump 1 (Interior)

Photo 2: Sump 1 (Exterior)

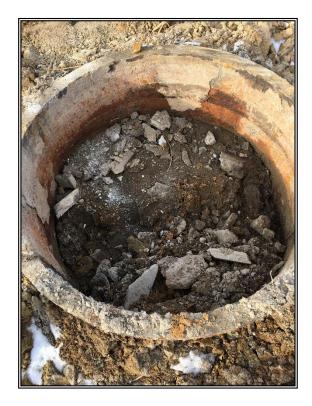


Photo 3: Sump 2 (Interior)

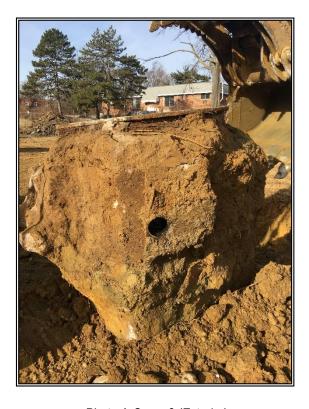


Photo 4: Sump 2 (Exterior)

Photo 5: Sump 3 (Interior)

Photo 6: Sump 3 (Exterior)

Photo 7: Hyrdaulic Pit (Interior)

Photo 8: Hydraulic Pit Hole

Photo 9: Hydraulic Pit – Soil Staining

Photo 10: Anomaly Test Pit

APPENDIX F: SOIL BORING LOGS

& CURRAN STANDARD - GINT STD US. GDT - 3/8/18 16:43 - WWOODDARDCURRAN NETSHAREDIPROJECTS/0230198.01 CAMDEN LABS REMEDIAL INVESTIGATIONIWIP/02 - SURVEY AND WORKPAPERS/BORING LOGS/CAMDEN LABS MERCURY. GPJ **BORING NUMBER M-8** PAGE 1 OF 1 Woodard & Curran WOODARD &CURRAN PROJECT NAME Camden Labs CLIENT Camden Redevelopment Agency PROJECT NUMBER 230198 PROJECT LOCATION Camden, NJ COMPLETED 2/5/18 GROUND ELEVATION _____ DATE STARTED 2/5/18 HOLE SIZE 2 DRILLING CONTRACTOR Enviroprobe Service, Inc. **GROUND WATER LEVELS:** DRILLING METHOD Direct Push $\sqrt{2}$ AT TIME OF DRILLING 16.00 ft LOGGED BY Adam Kloo CHECKED BY _ AT END OF DRILLING _---**NOTES** AFTER DRILLING _---Environmental Data REMARKS GRAPHIC LOG U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION Brownish orange fine to medium SAND, some Clay; No stain; No odor; Dry. Sample M-8 (1.5-2') SC Vapor = 0ppmv Brown fine to medium ORGANICS; No stain; No odor; Dry. OL Grayish tan fine to medium SAND; No stain; No odor; Dry. SP 6 Tanish orange fine SAND; No stain; No odor; Dry. SP 8 8.0 Grayish tan fine SAND; No stain; No odor; Dry. SP 10 Brownish tan fine to medium SAND: No stain: No odor: Drv. SP 12.0 12 Grayish tan fine SAND; No stain; No odor; Dry. 14 SP 16 Tanish orange fine SAND; No stain; No odor; Wet. SP 17.0 Grayish tan fine SAND; No stain; No odor; Wet. Sample M-8 Vapor = (18-18.5')SP 0ppmv

Tanish brown fine SAND; No stain; No odor; Dry.

19.5

20.0

SP

& CURRAN STANDARD - GINT STD US. GDT - 3/8/18 16:43 - WWOODDARDCURRAN NETSHAREDIPROJECTS/0230198.01 CAMDEN LABS REMEDIAL INVESTIGATIONIWIP/02 - SURVEY AND WORKPAPERS/BORING LOGS/CAMDEN LABS MERCURY. GPJ **BORING NUMBER M-9** PAGE 1 OF 1 Woodard & Curran WOODARD &CURRAN PROJECT NAME Camden Labs CLIENT Camden Redevelopment Agency PROJECT NUMBER 230198 PROJECT LOCATION Camden, NJ GROUND ELEVATION HOLE SIZE 2 **COMPLETED** 2/5/18 DATE STARTED 2/5/18 DRILLING CONTRACTOR _Enviroprobe Service, Inc. _____ GROUND WATER LEVELS: DRILLING METHOD Direct Push $\sqrt{2}$ AT TIME OF DRILLING 16.00 ft LOGGED BY Adam Kloo CHECKED BY AT END OF DRILLING _---**NOTES** AFTER DRILLING _---Environmental Data REMARKS GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION Brownish tan fine SAND, some Clay; No stain; No odor; Dry. SP-SC Brown fine to medium ORGANICS; No stain; No odor; Dry. OL Tan medium SAND; No stain; No odor; Dry. SP 6 6.0 Tan fine to medium SAND; No stain; No odor; Dry. SP 8 8.0 Tan fine to medium SAND; No stain; No odor; Dry. 10 SP 12 Tan fine to medium SAND; No stain; No odor; Dry. 14 16 16.0 ∇ Grayish tan fine to medium SAND; No stain; No odor; Wet. SP Sample 18 18.0 MW-9 Grayish tan fine to medium SAND; No stain; No odor; Dry. Vapor = (18-18.5')0ppmv SP

20.0

INVESTIGATIONIWIP\02 - SURVEY AND WORKPAPERS\BORING LOGS\CAMDEN LABS MERCURY.GPJ **BORING NUMBER M-10** Woodard & Curran WOODARD &CURRAN PROJECT NAME Camden Labs CLIENT Camden Redevelopment Agency PROJECT NUMBER 230198 PROJECT LOCATION Camden, NJ COMPLETED 2/5/18 GROUND ELEVATION HOLE SIZE 2 DATE STARTED 2/5/18 DRILLING CONTRACTOR Enviroprobe Service, Inc. **GROUND WATER LEVELS:** DRILLING METHOD Direct Push $\sqrt{2}$ AT TIME OF DRILLING 16.00 ft LOGGED BY Adam Kloo CHECKED BY AT END OF DRILLING _---**NOTES** AFTER DRILLING _---Environmental Data REMARKS GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION Brown fine to medium SAND, some Clay; No stain; No odor; Dry. SP-Sample SC M-10 (1.5-2') Vapor = 0ppmv 16:43 - \\WOODARDCURRAN.NET\SHARED\PROJECTS\0230198.01 CAMDEN LABS REMEDIAL Brown fine to medium ORGANICS; No stain; No odor; Dry. OL 4 Tan fine to medium SAND; No stain; No odor; Dry. SP 6 6.0 Tan medium to coarse SAND; No stain; No odor; Dry. SP 8 8.0 Tan fine SAND; No stain; No odor; Dry. SP 10 Tanish brown fine to medium SAND: No stain: No odor: Drv. 12.0 12 SP-Blackish tan fine to medium SAND; No stain; No odor; Dry. 12.5 SP-WOODARD & CURRAN STANDARD - GINT STD US.GDT - 3/8/18 Blackish tan fine to medium SAND; No stain; No odor; Dry. SM Tan fine to medium SAND; No stain; No odor; Dry. 14 SP 16 16.0 ▽ Grayish tan fine to medium SAND; No stain; No odor; Wet. SP Sample 18 18.0 M-10 Grayish tan fine to medium SAND; No stain; No odor; Dry. Vapor = (18-18.5')

SP

20.0

0ppmv

19.0

Vapor = 0ppmv

SP

SP

Sample MW-12

(18-18.5')

Environmental Data

Vapor = 0ppmv

Vapor =

0ppmv

Grayish brown fine SAND; No stain; No odor; Wet.

APPENDIX G: SPLP CALCULATORS FOR AOC-16

NJDEP SPLP Spreadsheet, V3.1, November 2013

Case name/area of concern:
Case number:
Case number:
Sampling date:

Camden Labs/AOC-16

08-07-01-1547-19

2/5/2018

CALCULATE SITE SPECIFIC IGW STANDARD

Reset Spreadsheet Print Results

Instructions

Print to file

Exit

Contaminant: Mercury (total) _____VOTE:

CAS No: 7439-97-6

Water solubility (mg/L) NA

Aqueous reporting limit (µg/L): 5.00E-02

Soil reporting limit (mg/kg): 1.00E-01

Health-based GWQC (µg/L)

DAF (20, or site-specific if approved): 20

Leachate Criterion (µg/L): 4.00E+01

Henry's law constant (dimensionless): 0.00E+00

USE ONE PAGE PER CONTAMINANT, do not leave empty rows between samples Do not enter samples with soil concentrations at or below the reporting limit When leachate concentration is non-detect, enter the aqueous reporting limit Enter site-specific dilution-attenuation factor (DAF) if desired

CLICK HERE if chemical is not on drop-

down list, or to enter alternate GWQC

Data entry cells (do not skip rows)
Optional data entry

Calculated or locked cells

Indicates that Alternative Remediation Standard needs to be recalculated

	Soil	Leachate	Total Soil	SPLP Leachate	Final pH of		Option	nal data			%	Field leachate	
Sample ID	sample weight (kg)	Volume (L)	Concentration (mg/kg)	Concentration (µg/L)	Leachate (except VOCs)	Sampling Depth (ft)	Soil Type	Organic Carbon (mg/kg)	Organic Carbon (%)	. (5,	Contaminant in Leachate		Pass or
M-10(1.5-2.0)	0.1003	2.005	0.048	0.2	6.22					220.0	8.33	0.22	PASS
M-10(1.5-2.0)	0.1003	2.005	0.048	0.2	6.22					220.0	8.33	0.22	PASS
M-9(18-18.5)	0.1004	2.009	0.68	0.68	8.22					980.0	2.00	0.69	PASS
M-9(18-18.5)	0.1004	2.009	0.68	0.68	8.22					980.0	2.00	0.69	PASS

SPLP RESULTS for

OPTION 1a: All adjusted leachate concentrations are below the leachate criterion

REMEDIATION STANDARD = 0.68 mg/kg

OPTION 1b: Simple inspection of tabulated results to find highest acceptable standard EVERYTHING PASSED, OPTION 1b NOT VALID

OPTION 2: Remediation standard using site-specific Kd value

Kd ratio = 4.45, AVERAGING Kds OK

Kd USED FOR CALCULATING STANDARD = 600. L/kg

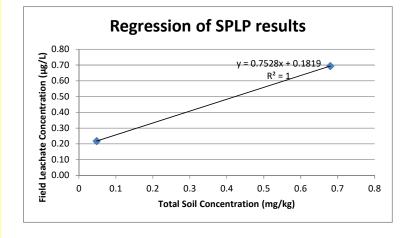
result before rounding = 24.0061 mg/kg

REMEDIATION STANDARD = 0.7 mg/kg (controlled by maximum soil concentration)

OPTION 3: Remediation standard using linear regression

Number of points = 4

Soil concentration midrange = .36


Number of points above midrange = 2

Enough points above midrange? YES

R-Square high enough? YES

Leachate criterion within range of leachate concentrations? NO

OPTION 3 NOT VALID

APPENDIX H: MONITORING WELL DOCCUMENTATION

New Jersey Department of Environmental Protection Site Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

		(For Department use only)
SECTION A. SITE NAME AND LOCATION		
Site Name: 51326-CAMDEN LABORATORIES		
List all AKAs: CAMDEN LABORATORIES		
Street Address: 1667 DAVIS STREET & COPEWOOD	STREET - CAMDEN,	NJ
Municipality: CITY OF CAMDEN	(Townsh	ip, Borough or City)
County: CAMDEN	Zip Code	e: 08103
Program Interest (PI) Number(s): 016718	Case	Tracking Number(s): 08-07-01-1547-19
SECTION B. WELL OWNER AND LOCATION		
Name of Well Owner CITY OF CAMDEN		
Well Location (Street Address) 1667 DAVIS STRE	ET	
Well Location (Municipal Block and Lot) Block	k#1392	Lot # 33
SECTION C. WELL LOCATION SPECIFICS		
1. Well Permit Number (This number must be permaner	tly affixed to the well of	easing): E201807594
2. Site Well Number (As shown on application or plans):		
3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second:	
Latitude: North 39 ° 55 ' 23.120 "	_ Longitude:	West _75 ° 5 ' 51.650 "
4. New Jersey State Plane Coordinates NAD 83 datum,	US survey feet units,	to nearest foot:
North 397461.61	East	324505.49
5. Elevation of Top of Inner Casing (cap off) at reference	mark (nearest 0.01')	22.24
Elevation Top of Outer casing: 22.50	_ Elevation of ground	d: 22.41
Check one: X NAVD 88 NGVD 29 Or	Site Datum Ot	her
Source of elevation datum (benchmark, number/desc	ription and elevation/d	atum). If an on-site datum is used, identify
here, assume datum of 100', and give approximated a		ncing NAVD 88).
NGS "PAPH" (CORS) (NAD 83_2011) (EPOCH 20:	(GEOID 12B)	
Significant observations and notes:		
		and the second
SECTION D. LAND SURVEYOR'S CERTIFICATION		SEAL
I certify under penalty of law that I have personally examined	and am familiar with th	e
information submitted in this document and all attachments at those individuals immediately responsible for obtaining the in-	nd that, based on my ir formation. I believe the	nquiry of
submitted information is true, accurate and complete am a	ware that there e s	nificant
penalties for submitting false information including the possib	ility of fine so imprisor	20/24/40
Professional Land Surveyor's Signature: Surveyor's Name: JAMES M. STEWART	100	Date 08/31/18
Firm Name: DENNIS W. SKLAR, INC.	0.475	License Number: 24GS02610800
	Certifica	ate of Authorization #: 24GA28150900
Mailing Address 2837 OGDEN AVENUE City/Town: BENSALEM	State PENNSYLV	ANIA 7: 0 : 10020
Phone Number (215) 268-7988		Zip Gode.
THORE HAITINGS	Ext.: N/A	Fax: (215) 268-7966

New Jersey Department of Environmental ProtectionSite Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION			1100	or Department use only)
Site Name: 51326-CAMDEN LABORATORIES				
List all AKAs: CAMDEN LABORATORIES				
Street Address: 1667 DAVIS STREET & COPEWOOD	CTDEET	CAMDEN NI		
Municipality: CITY OF CAMPEN				
CAMPEN			08103	
Program Interest (PI) Number(s): 016718				07.01.1547.10
		Case Track	ing Number(s):	3-07-01-1547-19
SECTION B. WELL OWNER AND LOCATION				
Name of Well Owner CITY OF CAMDEN				
2. Well Location (Street Address) 1667 DAVIS STRI				
Well Location (Municipal Block and Lot) Block	ck#	1392	Lot #	33
SECTION C. WELL LOCATION SPECIFICS				
1. Well Permit Number (This number must be permane	ntly affixed	to the well casing)	E2018	807595
2. Site Well Number (As shown on application or plans)	:		MW-2	
3. Geographic Coordinate NAD 83 to nearest 1/100 of a	second:			
Latitude: North 39 ° 55 ' 22.570 "	_	Longitude: West	75 ° 5 '	50.535 "
4. New Jersey State Plane Coordinates NAD 83 datum	US surve	ey feet units, to near	rest foot:	
North 397405.32	_	East	324592.03	
5. Elevation of Top of Inner Casing (cap off) at reference	e mark (n	earest 0.01'):	20.9	2
Elevation Top of Outer casing:21.23				3
Check one: X NAVD 88 NGVD 29 O	n Site Dat	tum Other		
6. Source of elevation datum (benchmark, number/desc	cription an	d elevation/datum).	If an on-site datu	m is used, identify
here, assume datum of 100', and give approximated			NAVD 88).	
NGS "PAPH" (CORS) (NAD 83_2011) (EPOCH 20	10.00) (6	EOID 12B)		
7. Significant observations and notes:				
				V * .
SECTION D. LAND SURVEYOR'S CERTIFICATION			SEAL	· ·
I certify under penalty of law that I have personally examine	d and am f	amiliar with the		5 5 5
information submitted in this document and all attachments those individuals immediately responsible for obtaining me i	and that, b	ased on my inquiry of	of	
submitted information is true, accurate and complete am a	aware that	there e sinificant	PROJECT	IO. 2105LIST
penalties for submitting false information including the possi	bility of fine	e od improof		
Professional Land Surveyor's Signature:	-			Date 08/31/18
Surveyor's Name: JAMES M. STEWART				24GS02610800
Firm Name: DENNIS W. SKLAR, INC.		_ Certificate of	Authorization #: 2	4GA28150900
Mailing Address 2837 OGDEN AVENUE		DESIGNATION OF THE PARTY OF THE		
City/Town: BENSALEM	State	PENNSYLVANIA		
Phone Number (215) 268-7988	Ext.:	N/A	_ Fax: (215) 20	68-7966

New Jersey Department of Environmental Protection Site Remediation Program

Monitoring Well Certification Form B - Location Certification

Date Stamp (For Department use only)

SECTION A. SITE NAME AND LOCATION
Site Name: 51326-CAMDEN LABORATORIES
List all AKAs: CAMDEN LABORATORIES
Street Address: 1667 DAVIS STREET & COPEWOOD STREET - CAMDEN, NJ
Municipality: CITY OF CAMDEN (Township, Borough or City)
County: CAMDEN Zip Code: 08103
Program Interest (PI) Number(s): 016718
SECTION B. WELL OWNER AND LOCATION
Name of Well Owner CITY OF CAMDEN
Well Location (Street Address) 1667 DAVIS STREET
3. Well Location (Municipal Block and Lot) Block# 1392 Lot # 33
SECTION C. WELL LOCATION SPECIFICS
Well Permit Number (This number must be permanently affixed to the well casing):
Site Well Number (As shown on application or plans):
3. Geographic Coordinate NAD 83 to nearest 1/100 of a second:
Latitude: North 39 ° 55 ' 22.294 " Longitude: West 75 ° 5 ' 51.299 "
 New Jersey State Plane Coordinates NAD 83 datum, US survey feet units, to nearest foot:
North 397377.89
5. Elevation of Top of Inner Casing (cap off) at reference mark (nearest 0.01'): 21.34
Elevation Top of Outer casing: 21.56 Elevation of ground: 21.42
Check one: X NAVD 88 NGVD 29 On Site Datum Other
6. Source of elevation datum (benchmark, number/description and elevation/datum). If an on-site datum is used, identify
here, assume datum of 100', and give approximated actual elevation (referencing NAVD 88). NGS "PAPH" (CORS) (NAD 83_2011) (EPOCH 2010.00) (GEOID 12B)
103 FAFT (CORS) (NAD 85_2011) (EPOCH 2010.00) (GEOID 12B)
7. Significant observations and notes:
SECTION D. LAND SURVEYOR'S CERTIFICATION SEAL
I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of
those individuals immediately responsible for obtaining the information. I believe the
submitted information is true, accurate and completed am aware that there is sinificant penalties for submitting false information including the possibility of fine and improvement and provide properties.
Professional Land Surveyor's Signature: Date 08/31/18
Surveyor's Name: JAMES M. STEWART License Number: 24GS02610800
Firm Name: DENNIS W. SKLAR, INC. Certificate of Authorization #: 24GA28150900
Mailing Address 2837 OGDEN AVENUE
City/Town: BENSALEM State PENNSYLVANIA Zip Code: 19020
Phone Number (215) 268-7988 Ext.: N/A Fax: (215) 268-7966

Well Permit Number E201807594

WELL PERMIT

New Well

Permit Issued to: ENVIROPROBE SERVICE INC Company Address: 81 MARTER AVE MOUNT LAUREL, NJ 08057 PROPERTY OWNER Name: CITY OF CAMDEN Organization: City of Camden Address: 520 Market ST City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Derilling Method: Hollow Stem Augers	Certifying Driller: JASON J KUNI, MONITO	DRING LICENSE # 450560
PROPERTY OWNER Name: CITY OF CAMDEN Organization: City of Camden Address: 520 Market ST City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Pump Capacity (gpm): 0 Deviation Requested: N Dorilling Method: Hollow Stem Augers	Permit Issued to: ENVIROPROBE SERVIC	PE INC
PROPERTY OWNER Name: CITY OF CAMDEN Organization: City of Camden Address: 520 Market ST City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Duameter (in.): 25 Pump Capacity (gpm): 0 Deviation Requested: N Ortilling Method: Hollow Stem Augers		
Organization: City of Camden Address: 520 Market ST City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers		
Organization: City of Camden Address: 520 Market ST City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	Name: _CITY OF CAMDEN	
City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Plane (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	Organization Gives a c	
City: Camden State: New Jersey Zip Code: 08101 PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	Address: 520 Market ST	
PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Piameter (in.): 2 Regulatory Program Requiring Wells/Borings: Diameter (in.): 25 Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	City: Camden State:	New Jersey Zin Code: 00101
Facility Name: Former Camden Labs Address: 1667 Davis St County: Camden	PROPOSED WELL LOCATION	Zip Code: Zip Code:
Address: 1667 Davis St County: Camden		
County: Camden Municipality: Camden City Lot: 33 Block: 1392 Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Regulatory Program Requiring Wells/Borings: Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	William Control of the Control of th	
Easting (X): 324506 Northing (Y): 397423 Local ID: MW-1 Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers		City
Coordinate System: NJ State Plane (NAD83) - USFEET SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Columeter (in.): 2 Regulatory Program Requiring Wells/Borings: Coepth (ft.): 25 Case ID Number: Coump Capacity (gpm): 0 Deviation Requested: N Orilling Method: Hollow Stem Augers		
SITE CHARACTERISTICS PROPOSED CONSTRUCTION WELL USE: MONITORING Other Use(s): Claimeter (in.): 2 Regulatory Program Requiring Wells/Borings: Claimeter (in.): 25 Case ID Number: Claimeter (in.): 2 Deviation Requested: N Orilling Method: Hollow Stem Augers	Easting (X): 324506 Northing (Y): 3	197423 Local ID: MW-1
PROPOSED CONSTRUCTION WELL USE: _MONITORING Other Use(s):		JSFEET
PROPOSED CONSTRUCTION WELL USE: _MONITORING	SITE CHARACTERISTICS	
WELL USE: _MONITORING Other Use(s):	DDADAGED CONCERNICENCY	
Diameter (in.): 2 Regulatory Program Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers		
Diameter (in.): 2 Regulatory Flogram Requiring Wells/Borings: Depth (ft.): 25 Case ID Number: Pump Capacity (gpm): 0 Deviation Requested: N Drilling Method: Hollow Stem Augers	WELL USE: MONITORING	Other Use(s):
Depth (ft.): 25 Case ID Number:	Diameter (in.): 2	regulatory i rogram
Pump Capacity (gpm): 0 Deviation Requested: N Orilling Method: Hollow Stem Augers	Depth (ft.): _25	
Orilling Method: Hollow Stem Augers	cump Capacity (gpm): _0	
Attacher	Prilling Mothed. II-II- G.	
Attachments:	Attachments:	
	Pump Capacity (gpm): 0 Prilling Method: Hollow Stem Augers	Case ID Number: Deviation Requested: N
	2 SALE CONDITIONS/REQUIREMENTS	
Attachments:SPECIFIC CONDITIONS/REQUIREMENTS	- 2007 2 CONDITIONS/REQUIREMENTS	

Approval Date: July 31, 2018 Expiration Date: July 31, 2019 Approved by the authority of: Catherine R. McCabe Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201807595

WELL PERMIT

New Well

accompanying same application, and applicable laws and regula enumerated in the supporting documents which are agreed to by	tions. This permit is also subject to C. 1. 11.1.
Certifying Driller: JASON J KUNI, MONITORING LIG	
Permit Issued to: ENVIROPROBE SERVICE INC	
Company Address: 81 MARTER AVE MOUNT LAUF	REL, NJ 08057
PROPERTY OWNER	
Name: CITY OF CAMDEN	
Organization: City of Camden	
Address: 520 Market ST	
City: Camden State: New Jers	zip Code: <u>08101</u>
PROPOSED WELL LOCATION	
Facility Name: Former Camden Labs	
Address: 1667 Davis St	
County: Camden Municipality: Camden City	Lot: _33 Block: 1392
Easting (X): 324574 Northing (Y): 397410	
Coordinate System: NJ State Plane (NAD83) - USFEET	
SITE CHARACTERISTICS	
PROPOSED CONSTRUCTION	
WELL USE: MONITORING	Other Use(s):
Diameter (in.): 2	Regulatory Program Requiring Wells/Borings:
Depth (ft.): 25	Case ID Number:
Pump Capacity (gpm): 0	Deviation Requested: N
Drilling Method: Hollow Stem Augers	
Attachments:	
SPECIFIC CONDITIONS/REQUIREMENTS	

Approval Date: July 31, 2018 Expiration Date: July 31, 2019 Approved by the authority of: Catherine R. McCabe Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201807596

WELL PERMIT

New Well

The New Jersey Department of Environmental Protection grants accompanying same application, and applicable laws and regula enumerated in the supporting documents which are agreed to by	tions This permit is also	a subject to firsthan and it.
Certifying Driller: JASON J KUNI, MONITORING LI		
Permit Issued to: ENVIROPROBE SERVICE INC		
Company Address: 81 MARTER AVE MOUNT LAUR	REL, NJ 08057	
PROPERTY OWNER		
Name:CITY OF CAMDEN		
Organization: City of Camden		
Address: 520 Market ST	Per de la contra de	
City: Camden State: New Jers	sey	Zip Code: 08101
PROPOSED WELL LOCATION Facility Name: Former Camden Labs Address: 1667 Davis St		
County: Camden Municipality: Camden City	Lot: 33	Block: 1392
Easting (X): 324555 Northing (Y): 397347 Coordinate System: NJ State Plane (NAD83) - USFEET		MW-3
SITE CHARACTERISTICS		
PROPOSED CONSTRUCTION		
WELL USE: MONITORING	Other Use(s):	
Diameter (in.): 2	Regulatory Program Requiring Wells/Borin	ngs:
Depth (ft.): 25	Case ID Number:	
Pump Capacity (gpm): 0	Deviation Requested:	N
Drilling Method: Hollow Stem Augers		
Attachments:	The grant	
SPECIFIC CONDITIONS/REQUIREMENTS		

Approval Date: July 31, 2018 Expiration Date: July 31, 2019 Approved by the authority of: Catherine R. McCabe Commissioner

Well Permit -- Page 1 of 2

Jerry D. P. lawski

Terry Pilawski, Chief Bureau of Water Allocation and Well Permitting

Well Permit Number E201807594

Cotal ID: MW-1 WELL CONSTRUCTION	Company/Or	ganization: C	City of Camden					
Address: 1667 Davis St County: Camden	Address: _5	20 Market ST	Camden, New	Jersey 08101				
Address: 1667 Davis St County: Camden	WELL LOC	CATION: Fo	rmer Camden	Labs				
County: Camden	Address: 1	667 Davis St						
Easting (X): 324488			Municipalit	y: Camden City	y	Lot: 33	Block: 139	92
Coordinate System: NJ State Plane (NAD83) - USFEET	Easting (X):	324488						
Material Well Surface Flush Mount								
Cotal ID: MW-1 WELL CONSTRUCTION	WELL USE	: MONITOR	ING			TE WEEL COM	LETED. August 0, 20	018
Depth to Depth to Top (ft.) Depth to Depth (ft.) Depth to Top (ft.) Bottom (ft.) Depth to Top (ft.) Bottom (ft.) Depth to Top (ft.) Bottom (ft.) Depth to Depth to Top (ft.) Bottom (ft.) Depth to Depth to Depth to Top (ft.) Depth to Depth to Depth to Top (ft.) Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Depth to Dottom (ft.) Dottom (ft.) Depth to Depth to Depth to Dottom (ft.) Depth to Dept						Local ID: MY	W-1	
Depth to Depth to Top (ft.) Depth to Diameter (inches) Depth to Top (ft.) Bottom (ft.) (inches) Depth to Top (ft.) Bottom (ft.) Depth to Depth to (inches) Depth to (inches) Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Depth to Diameter (inches) Diameter (inches) Diameter (inches) Depth to Depth to Double to Diameter (inches)								
Depth to Top (ft.) Bottom (ft.) (inches) Borehole 0 24 8 Casing 0 14 2 PVC sch 40 Screen 14 24 2 PVC sch 40 Depth to Top (ft.) Bottom (ft.) Outer Inner Diameter (in) Depth to Top (ft.) Bottom (ft.) Diameter (in) Depth to Top (ft.) Bottom (ft.) Diameter (in) Depth to Top (ft.) Bottom (ft.) Diameter (in) Grout 0 12 8 2 Material Grout 0 12 8 2 Material Grout Pressure method (Tremie Pipe) Grouting Method: Pressure method (Tremie Pipe) Drilling Method: Hollow Stem Augers ADDITIONAL INFORMATION Protective Casing: Yes Water Level: 16.7 ft. below land surface Water Level Measure Tool: tape Well Development Period: 1 hrs. Material Bentonite (lbs.) Neat Cement (lbs.) Water (ga 329 18.20 Fulling Method: Hollow Stem Augers Pump Capacity: _gpm Total Design Head: _ft. Drilling Fluid: Drill Rig: 7822 Health and Safety Plan Submitted? No ATTACHMENTS: GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand				Finished Wa	Il Donth (A.).	24	W-11 G - C	
Top (ft.) Bottom (ft.) (inches) (inc	rotai Beptii						Well Surface: Flush	1 Mount
Borehole 0 24 8		The second secon				Material		
Screen 14 24 2 pvc .010 Depth to Depth to Top (ft.) Bottom (ft.) Diameter (in.) Diameter (in.) Diameter (in.) Diameter (in.) Reat Cement (lbs.) Water (ga Gravel Pack 12 24 8 2 #1 well gravel	Borehole						(lbs	/cn no.)
Depth to Depth to Top (ft.) Bottom (ft.) Diameter (in.) Diamet	Casing	0	14	2		PVC	sch 40	
Top (ft.) Bottom (ft.) Diameter (in.) Diameter (in) Bentonite (lbs.) Neat Cement (lbs.) Water (ga Grout 0 12 8 2 329 18.20 Gravel Pack 12 24 8 2 #1 well gravel Grouting Method: Pressure method (Tremie Pipe) Drilling Method: Hollow Stem Augers ADDITIONAL INFORMATION Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: 16.7 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: tape Drilling Fluid: Well Development Period: 1 hrs. Method of Development: pump and surge Pump Type: ATTACHMENTS: GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand	Screen	14	24	2		pvc		
Top (ft.) Bottom (ft.) Diameter (in.) Diameter (in) Bentonite (lbs.) Neat Cement (lbs.) Water (ga Grout 0 12 8 2 329 18.20 Gravel Pack 12 24 8 2 #1 well gravel Grouting Method: Pressure method (Tremie Pipe) Drilling Method: Hollow Stem Augers ADDITIONAL INFORMATION Protective Casing: Yes Static Water Level: 16.7 ft. below land surface Total Design Head: _ft. Water Level Measure Tool: tape Well Development Period: _1 hrs. Method of Development: pump and surge Pump Type: ATTACHMENTS: GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand		Depth to	Depth to	Outer	Inner		Material	
Grouting Method: 12 24 8 2 #1 well gravel Grouting Method: Pressure method (Tremie Pipe) ADDITIONAL INFORMATION Protective Casing: Yes Static Water Level: 16.7 ft. below land surface Water Level Measure Tool: tape Well Development Period: 1 hrs. Method of Development: pump and surge Pump Type: ATTACHMENTS: GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other sand	~				Diameter (in)	Bentonite (lbs.)		Water (gal.)
Grouting Method: Pressure method (Tremie Pipe) Drilling Method: Hollow Stem Augers ADDITIONAL INFORMATION Protective Casing: Yes Static Water Level: 16.7 ft. below land surface Water Level Measure Tool: tape Well Development Period: 1 hrs. Drilling Fluid: Drilling Fluid: Drilling Fluid: Drilling Fluid: Drilling Fluid: Drill Rig: 7822 Health and Safety Plan Submitted? No Pump Type: ATTACHMENTS: GEOLOGIC LOG D - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand								
ADDITIONAL INFORMATION Protective Casing: Yes Pump Capacity: _ gpm Static Water Level: 16.7 ft. below land surface Total Design Head: _ ft. Water Level Measure Tool: tape Drilling Fluid: Well Development Period: 1 hrs. Drill Rig: 7822 Method of Development: pump and surge Health and Safety Plan Submitted? No Pump Type: ATTACHMENTS: GEOLOGIC LOG D - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand								
Protective Casing: Yes Static Water Level: 16.7 ft. below land surface Water Level Measure Tool: tape Well Development Period: 1 hrs. Drill Rig: 7822 Method of Development: pump and surge Pump Type: ATTACHMENTS: GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand			-	nie Pipe)	Dril	ling Method: Holl	low Stem Augers	
GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand	ADDITION	L HITOKWI		rface				
GEOLOGIC LOG 0 - 5: brown OT - Other clayey silt 5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand 20 - 24: light tan OT - Other clayey sand	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type:	Level: 16.7 ft Measure Tool: pment Period: evelopment: pu	tape 1 hrs.		Dril Dril	ling Fluid: l Rig: <u>7822</u>		
5 - 10: tan OT - Other silty sand 10 - 20: light tan OT - Other sand	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type:	Level: 16.7 ft Measure Tool: oment Period: evelopment: pu	tape 1 hrs.		Dril Dril	ling Fluid: l Rig: <u>7822</u>		
10 - 20: light tan OT - Other sand	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type: ATTACHM GEOLOGIC	Level: 16.7 ft Measure Tool: pment Period: evelopment: pu	tape 1 hrs. ump and surge		Dril Dril	ling Fluid: l Rig: <u>7822</u>		
	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type: ATTACHM GEOLOGIC 0 - 5: brown	Level: 16.7 ft Measure Tool: Diment Period: Development: pu ENTS: C LOG OT - Other clay	tape 1 hrs. amp and surge yey silt		Dril Dril	ling Fluid: l Rig: <u>7822</u>		
27. Inght tail of a other clayey sailed	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type: ATTACHM GEOLOGIC 0 - 5: brown of 5 - 10: tan O	Level: 16.7 ft Measure Tool: Dependent Period: Development: pu ENTS: CLOG OT - Other class C - Other silty s	tape 1 hrs. amp and surge yey silt sand		Dril Dril	ling Fluid: l Rig: <u>7822</u>		
ADDITIONAL INFORMATION:	Protective Ca Static Water Water Level Well Develop Method of Do Pump Type: ATTACHM GEOLOGIC 0 - 5: brown of 5 - 10: tan Of 10 - 20: light	Level: 16.7 ft Measure Tool: Dependent Period: Development: pu ENTS: C LOG OT - Other clay T - Other silty st tan OT - Other	tape 1 hrs. amp and surge yey silt sand r sand		Dril Dril	ling Fluid: l Rig: <u>7822</u>		

New Jersey State Department of Environmental Protection Bureau of Water Allocation and Well Permitting

Mail Code 401-04Q PO BOX 420 Trenton, NJ 08625-0420 Tel: 609-984-6831

Well Permit Number E201807595

MONITORING WELL RECORD

PROPERTY	OWNER: _	CITY OF CA	MDEN				
		City of Camden					
Address: 5	20 Market ST	Camden, New	Jersey 08101				
WELL LOC	CATION: Fo	rmer Camden I	Labs				
Address: 1	667 Davis St				THE STATE OF		
County: Ca	mden	_ Municipalit	y: <u>Camden Cit</u>	у	_ Lot:_33	Block: _139	2
			(Y): <u>397409</u> NAD83) - USFI	SAME INC.		TARTED: August 6, 20	
The second secon	: MONITOR		NAD63) - USFI	DA	ATE WELL COM	PLETED: August 6, 20	18
					Local ID: M	W-2	
	ISTRUCTION						
		24	Finished We	all Depth (ft.):	24	Well Surface: Flush	Mount
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Screen # Used ch no.)		
Borehole	0	24	8			(IDS)	GITTIO.)
Casing	0	14	2		PVC	scl	h 40
Screen	14	24	2		pvc .010		
	Depth to	Depth to	Outer	Inner		Material	
Grout	Top (ft.)	Bottom (ft.)	Diameter (in.)	\ /	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Gravel Pack	0 12	12 24	8	2		329	18.20
		e method (Trer		2		#1 well gravel	
ADDITIONA Protective Ca Static Water I Water Level I Well Develop	AL INFORMA sing: Yes Level: 15.6 ft Measure Tool: oment Period:	ATION . below land su tape		Pun Tota Dril Dril	ling Method: Hol np Capacity: gpm al Design Head: fi ling Fluid: I Rig: 7822 Ith and Safety Plan		
ATTACHME	ENTS:						
5 - 15: light ta	OT - Other sand an OT - Other s	sand					
15 - 24: brown	n black OT - C	other sands					
ADDITIONA	L INFORMA	ATION:					
					THE REAL PROPERTY.	THE RESERVE OF THE PERSON OF T	

Jason J Kuni, Driller of Record: MONITORING LICENSE #450560

Company: ENVIROPROBE SERVICE INC

Well Permit Number E201807596

PROPERTY	OWNER: _	CITY OF CA		ORING WE	LL RECORD		
Company/Or	ganization: _C	City of Camden					
Address: _52	20 Market ST	Camden, New	Jersey 08101				
WELL LOC	CATION: Fo	rmer Camden	Labs				
Address: 10	667 Davis St					Note that the same of the same	
County: Ca	mden	Municipalit	y: Camden Cit	у	Lot: 33	Block: _139)2
			(Y): <u>397387</u> NAD83) - USF	DDM.		TARTED: August 6, 20	
	:_MONITOR		1411003) - 0311	D D	ATE WELL COM	PLETED: August 6, 20	018
	11.				Local ID: M	W-3	
	STRUCTION						
	Drilled (ft.):_		Finished We	ell Depth (ft.):_	24	Well Surface: Flush	Mount
	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)		Material		Screen # Used
Borehole	0	24	8			(100)	VII 110.)
Casing	0	14	2		PVC	sc	h 40
Screen	14	24	2		pvc		010
	Depth to	Depth to	Outer	Inner		Material	
	Top (ft.)	Bottom (ft.)	Diameter (in.)	Diameter (in)	Bentonite (lbs.)	Neat Cement (lbs.)	Water (gal.)
Grout	0	12	8	2		329	18.20
Gravel Pack	12	24	8	2		#1 well gravel	
	hod: Pressur	e method (Trer	nie Pipe)	Dr	illing Method: Hol	low Stem Augers	
Protective Car Static Water I Water Level M Well Develop	sing: <u>Yes</u> Level: <u>16.2</u> ft Measure Tool: ment Period:	. below land su	rface	To Dri Dri	mp Capacity: _ gpm tal Design Head: _ f Illing Fluid: Il Rig: <u>7822</u> alth and Safety Plan	t.	
ATTACHMI	ENTS:						
GEOLOGIC							
0 - 5: brown C							
5 - 15: light ta	in OT - Other s	sand					
15 - 20: dark t							
20 - 24: grey (OT - Other cla	у					
ADDITIONA	L INFORMA	ATION:					
					MENT		

Jason J Kuni, Driller of Record: MONITORING LICENSE # 450560 Company: _ENVIROPROBE SERVICE INC

APPENDIX I: DISPOSAL DOCCUMENTATION

SG PPW 2/14/2019

1157512

,	
WORK ORDER	NO: 1001018188

).		STRAIGHT BII	L OF LADING		in the second se	
TRANSPORTER	316	Yaan Ha	rhors Environmental Service	s inc	_ VEHICLE II	D# <u>-5</u> 5	556
EPA ID#		A A D O	39322250		_ TRANS. 1 I	PHONE _(781) 71) <u>2-5000</u>
TRANSPORTER	32				_ VEHICLE I	D#	
EPA ID#					_ TRANS. 2 I	PHONE	
DESIGNATED	FACILITY			SHIPPER			
FACILITY EPA			el Services. Inc.	The Ambient SHIPPER EPA CESOG			·
ADDRESS 2000 Ro	\$ 100 miles			ADDRESS 1007 Davis	Street	•	· (
CITY Clevelon	rd		STATE ZIP ON 44118	CITY Camden	erika uyata <u>un unun asalin men</u> a	STATE Z	1Pa ₁₀₃
CONTAINERS NO. & SIZE	TYPE	НМ	DESCRIPTION	ON OF MATERIAL	S	TOTAL QUANTITY	UNIT WT/VOL
1455	Dm		A. NON DOT REGULATED MA			400	P
ax40	Ù		B. NON DOT REGULA	IED MATER	ZAL	850	P
			C.				
			D.				
			Ē.				
			F.				

			G.				

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER MARKUARTMAN	SIGNANRA	DATE
TRANSPORTER 1 T. Chaus	SIGN	DATE 07-27-19
PRINT TRANSPORTER 2	SIGN	DATE
PRINT RECEIVED BY	SIGN	DATE

Site Address:

SAME

SC PPW 2/14/2019

1157513

WORK ORDER NO. 1901018158

DOCUMENT NO.			STRAIGHT B	ILL OF LADING			et :
TRANSPORTER 1	Gle	an Ha	tora Environmental Sande	ss Inc	VEHICLE ID	# _5)	76
EPA ID#		<u> </u>	19322760		_ TRANS. 1 PI	HONE _/7R1.78	22.500 <u> </u>
TRANSPORTER 2			200	**************************************	_ VEHICLE ID	#	
EPA ID#					TRANS. 2 PI	HONE	and the second s
DESIGNATED FAC	CILITY	- Basan		SHIPPER The Ambient	A		
FACILITY EPA ID	# 81662	9	ver y ille.	SHIPPER EP CESQG	10.00		
ADDRESS Spring	Grove Av	enue		ADDRESS 1867 Davis	Street		
CITY Cinginnati			STATE ZIP 45232	CITY Camden		STATE Z	Y8103
CONTAINERS NO. & SIZE T	YPE	нм		ION OF MATERIAL	S	TOTAL	UNIT WT/VOL
6 X 55 1)/h		A. NON DOT REGULATED M			300	P
			В.				
			C.				
			D.				·
			E.				
			F.				and Color to the second the angular transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission and the second transmission a
			G.				
			Н.				
SPECIAL HANDLIN A.CH1785421	IG INSTI	RUCTI	ONS EMERGENCY PHON	E #: (800) 483-3718	GENERATOR	The Ambient G	quo

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	MARK HARTMAN	SIGN Mark Mark	BA757 / 19
TRANSPORTER 1	PRINT J. Colours	SIGN	DATE 5-32-19
TRANSPORTER 2	PRINT	SIGN	DATE
RECEIVED BY	PRINT	SIGN	DATE

Envirowaste 13 Pattison Ave Philadelphia, PA 19148 (215) 755-1060

Ticket: 144520 Date: 3/27/2019

Time: 14:41:55 - 14:54:15

Scale

Gross:

26120lb

Scale INBOUN Scale OUTBO

Tare: Net:

249801b 1140lb

Customer: 2391570001/ROBINSON WASTE DISPOSAL SERVICE

Truck Type: ROLLOFF TRUCK

Truck: ROB3

310 AMERICAN WAY VOORHEES, NJ 08043-1117 Carrier: ROBINSON/ROLL OFF

Comment:

Origin

Materials & Services

Quantity Unit

NJ004000/Camden County

C&D/C&D

0.57 Ton

Driver:	

Deputy Weighmaster: Yilisi A.

Envirowaste 13 Pattison Ave Philadelphia, PA 19148 (215) 755-1060

Ticket: 144520 Date: 3/27/2019

Time: 14:41:55 - 14:54:15

Scale

Gross:

261201b

Scale INBOUN

Tare:

24980 lb

Out Scale OUTBOI

Net:

1140lb

Customer: 2391570001/ROBINSON WASTE DISPOSAL SERVICE

INC

Truck Type: ROLLOFF TRUCK

Truck: ROB3

310 AMERICAN WAY

VOORHEES, NJ 08043-1117

Carrier: ROBINSON/ROLL OFF

Comment:

Origin

Materials & Services

Quantity Unit

NJ004000/Camden County

Deputy Weighmaster: Yilisi A.

APPENDIX J: FIELD SAMPLING FORMS

WATER SAMPLE COLLECTION REPORT

Project	Camper	1 labs	Sample II	$\sim M_{\odot}$	W-1	
Project No.	23019	8	Well No.	<u> </u>		
Sample Date	8 12	281 2018	Sampled	Ву	16	
Sample Time (start/e	nd) 1) 2	20 1/140	Sample S	Sequence No.		3
Sample Collection Ed		Bailer	I wha	le Pen	np	
Depth to Water Prior		7	16	. 86	1/17	00_
Recharge Time	NA		Mea	sured from 🗹	OC TOP	R □ GS
Tioonalgo Tiillo	<u> </u>					
		FIELD MEASUR	EMENTS			
рН		Standard Unit	S	1 6	<u>. 8 () </u>	
Specific Cond	ductance	μs/cm		3	28	
Water Temp	perature	°C		<u> </u>	<u>5.38</u>	
Dissolved (Oxygen	ppm		ļ	5.12	
Redo	ox	mV		4	2124.	
Turbid	lity	NTU		<u> </u>	225.	2
Meter Calibration Pe Water Appearance, I		N 🔽 Y	Bru	Date	oudy	
Sampling Flow Rate	v () ()		., .		<u> </u>	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13					
		SAMPLE TYPES C				-10
Parameter	Volume	# Containers		Filtered?		rved?
<u> </u>	SOUML		Υ□	N ℚ	,	V03ND
			Υ□	N 🗆	Y 🗆	_ N 🗆
	A STATE OF THE STA		Υ□	N□	Y 🗆	
			Υ□	N	Y 🗆	
			Υ□	N□		
			Υ□	N□	Υ□	
		Separate sep	Υ□	N□	Y 🗆	
			Υ□	N \square	Y 🗆	
			Υ□	N□	Y 🗆	
	1		Υ□	N □ . A.		
Number of Containe	ers	Filtratio	n Method	Non		-7
Laboratory	<u> 565</u>	Deliver	_ 4	Courier	_ Date	8/28
Weather Conditions	Hot,	Sunny, Hu	mid		,	
	,	(] '				

WATER SAMPLE COLLECTION REPORT

Project Project No. Sample Date Sample Time (start/end) Sample Collection Equipment Depth to Water Prior to Purging/Samp Recharge Time	len Labs 98 1281 2018 04011050 Bailor/	Wres	By	MW- AB AMP 1/15, FOC 11 TOP	2 2 86 1 GS
	FIELD MEASURE	MENTS			
рН	Standard Units		6	.74	
Specific Conductance	μs/cm		2	65_	
Water Temperature	°C		1	1. <i>58</i> _	
Dissolved Oxygen	ppm			4.26	
Redox	mV			207.1	
Turbidity	NTU			470	
Meter Calibration Performed? Water Appearance, Immiscible Phase Sampling Flow Rate:	4	Clou	Date _	Brow	<u>n</u>
	SAMPLE TYPES CO			/	
Parameter Volume	# Containers		iltered?	Prese	
H6 SOOML		Υ□	N 🖸	Λ 🗆 —	ИП Л О 3 И П
		Y 🗆 Y 🗖	N 🗆	Y 🗆	
		Υ□	N□	Y 🗆	
		Υ□	N□	Y 🗆	
		Υ□	N□	Y 🗆	
		Y□	N□	Y 🗆	_ N 🗆
		Y□	N□	Y 🗆	_ N 🗆
		Y□	N□	Y 🗆	_ N 🗆
		Y□	N□	Y 🗆	_ N 🗆
Number of Containers Laboratory 563		Method d Via	Courier	None	8/28
Weather Conditions #0		rmid			

WATER SAMPLE COLLECTION REPORT

Project	Camele	in Labs	Sample ID	MI	N - 3		
Project No.	-00100		Well No.				
Sample Date	mple Date 8 / 28 / / 3		Sampled E	By <u>A</u>			
Sample Time (start	sample Time (start/end) 1008 / 1018 Sample Sequence No.						
Sample Collection I	Equipment	Bailor	/wha	<u>le Pun</u>	10		
Depth to Water Price	or to Purging/Sampling	g (ft)	//0	6.22	1/17.	72	
Recharge Time	- NA		Meas	sured from 🗹	FOC TOR	□ GS .	
		FIELD MEASUR	EMENTS				
pl	1	Standard Unit	S	4.	34		
Specific Co	nductance	μs/cm		30	7		
Water Ten	nperature	°C		15	<u>,97</u>		
Dissolved	l Oxygen	ppm		1.	30		
Rec	lox	mV		20	9.2		
Turb	idity	NTU		6	<u> </u>		
Water Appearance Sampling Flow Rat	R						
		SAMPLE TYPES (COLLECTED				
Parameter	Volume	# Containers	Field Fi	Itered?			
HG	500mL		Y□	N 🖾	Y A HIND?		
			Y□	N□			
	·						
<u> </u>							
	-						

		t				11 =	
Number of Contain	0			1		7/	
Laboratory	<u> 565</u>			1	_ Date	128	
Weather Condition	ns <i>ftof</i>	Sunny,	Humi	4		· -	
Cammanta	Comments						

APPENDIX K: RECEPTOR EVALUATION

APPENDIX L: LABORATORY REPORTS

Table K1. Land Use - Camden Labs; Camden, New Jersey.

BLOCK	LOT	PROPERTY LOCATION	CLASSIFICATION	OWNER NAME
1391	35	SW DAVIS & SHERIDAN ST	Appartment/Res.	BEACON PLACE LIMITED
1368	26	1417 DECATUR ST	Residential	DECARLO, DANIEL J
1368	12	1423 DECATUR ST	Residential	UZZLE, ANDRE P & TANGRIS D
1368	101	1425 DECATUR ST	Residential	COMBS, SHARON
1376	57	1430 DAYTON ST	Residential	TUBENS, MANUEL & OLGA
1374	56	1756 PERSHING ST	Residential	HILL, ANNELLE & SELLERS, NORMA
1374	35	1770 PERSHING ST	Residential	MORALES, JOSE LUIS
1374	17	1416 DECATUR ST	Residential	ROY, SANDY C
1374	82	1418 DECATUR ST	Residential	RODRIQUEZ, CARLOS M
1374	42	1423 DAYTON ST	Residential	SEANEUS, LLC
1374	67	1772 PERSHING ST	Residential	FARHAT, EZAT
1374	68	1774 PERSHING ST	Residential	CICONTA, ROBERT & MARK
1374	65	1762 PERSHING ST	Residential	COLLINS, KATHY
1374	89	1427 DAYTON ST	Residential	BROWN, MELODY
1374	83	1420 DECATUR ST	Residential	SEANEUS, LLC
1374	84	1422 DECATUR ST	Residential	MACBELLO, THOMAS
1374	85	1424 DECATUR ST	Residential	FARQUHARSON, MICHELLE R
1374	41	1426 DECATUR ST	Residential	BUSSIE, OLLIE ET UX
1374	66	1768 PERSHING ST	Residential	LAND, APRIL
1374	87	1421 DAYTON ST	Residential	COLE, IRIS A
1374	20	1752 PERSHING ST	Residential	CORBETT, DORIS
1368	100	1428 CARL MILLER BLVD	Residential	JENKINS, RHONDA D
1374	63	1780 PERSHING ST	Residential	MARSH, BILLY F; ET AL
1374	69	1776 PERSHING ST	Residential	MORGAN, FRANCES V
1376	53	1806 PERSHING ST	Residential	PADILLA, ERNESTO
1376	41	1414 DAYTON ST	Residential	BOONE, KAPRENA
1376	55	1426 DAYTON ST	Residential	ROBLES, CARLOS
1374	64	1760 PERSHING ST	Residential	PAYTON, DENISE A
1376	54	1419-1435 BROWNING ST	Residential	CAMPOS, JAIME
1374	45	1419 DAYTON ST	Residential	MCKINNEY, DONALD & SHIRLEY D
1374	88	1425 DAYTON ST	Residential	LEE, ANNIE M
1374	57	1758 PERSHING ST	Residential	GOMEZ-MATA, ROSAURA
1374	70	1778 PERSHING ST	Residential	BAGBY, SCOTT
1376	58	NS BROWNING 130E PERSHING	Residential	CAMPOS, JAIME
1374	86	1417 DAYTON ST	Residential	HALL, TRACEY L
1374	40	1754 PERSHING ST	Residential	BRITO, JOSE
1392	33	1667 DAVIS ST	Commercial	CAMDEN LABORATORIES
1388	7	1800 COPEWOOD ST	Commercial	PHIL-MAR INDUSTRIES, INC
1392	3	NE SAYRS & HALLOWELL LANE	Public Park	CAMDEN CITY
1389	9	1626 COPEWOOD ST	Public School	CAMDEN BOARD OF EDUCATION
1376	56	NS BROWNING 90 E PERSHING	Vacant	CAMPOS, JAIME
1368	115	SS CARL MILLER 120E PRSHG	Vacant	JENKINS, RHONDA D
			17	
1368	54	SS CARL MILLER 1403 PRSHG	Vacant	JENKINS, RHONDA D

Notes:

Data extracted from NJDEP GeoWeb

